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Abstract: The normal or Gaussian distribution plays a prominent role in almost all fields of science.
However, it is well known that the Gauss (or Euler–Poisson) integral over a finite boundary, as is
necessary, for instance, for the error function or the cumulative distribution of the normal distribution,
cannot be expressed by analytic functions. This is proven by the Risch algorithm. Regardless, there
are proposals for approximate solutions. In this paper, we give a new solution in terms of normal
distributions by applying a geometric procedure iteratively to the problem.
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1. Introduction

The normal or Gaussian distribution plays a prominent role in almost all fields of
science, as the sum of random variables tends to the normal distribution if the quite general
conditions of the central limit theorem [1] are satisfied. Besides the unbounded normal inte-
gral, the bounded integral or error function is crucial for the determination of probabilities.
However, there is no analytic expression found for this function, a fact that can be tested
by using the Risch algorithm [2,3]. Powerful modern computer facilities but also simple
personal computers allow for a numerical calculation of the error function with any needed
precision. However, if a multitude of such calculations has to be performed in a limited
time, for instance, in Monte Carlo simulations, the processing time becomes essential. In
order to speed up these calculations, simple and more educated approximations have been
proposed in the literature. The spectrum of approximations contains, for instance, the Gaus-
sian exponential function, including either numerical constants [4] or powers and square
roots [5], approximations using ordinary and hyperbolic tangent functions [6], a rational
function of an exponential function with the exponent given by a power series [7], or an
approximation by Jacobi theta functions [8]. Without knowing the error function explicitly,
expectation values can be calculated by an approximation of the normal distribution by a
series in ordinary exponential functions [9].

The present paper contains a continuation of this topic. Employing a geometric
approach, we provide an approximation of the squared error function by a finite sum
of N Gaussian exponential functions with different widths, where the values of which
are constrained to fixed intervals. We show that, by fine-tuning these width parameters,
one can optimise the precision, which, even for the leading order N = 1, is better than
the error estimates given by the constraints in Ref. [5]. In addition, by choosing N as
appropriately large, one can afford an arbitrary precision. On the other hand, even on
a personal computer, the calculation with our leading order approximation is obtained
34 times faster than an exact numerical calculation, the processing time for higher orders
being multiplied by N.

Our paper is organised as follows. In Section 2, we introduce the basic concepts for
the calculation of the Gaussian integral that are necessary for the understanding of our
geometric approach. The precisions of the leading order approximation obtained here
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and simple, straightforward extensions of this approximation are discussed in Section 3.
In Section 4, we explain the geometric background for our approximation and provide a
systematic way to create higher order approximations. The iterative construction of higher
order approximations is explained in general in Section 5 in terms of partitions before we
turn to the partition into N = 2p intervals for increasing values of p. In Section 6, we
explain a similar ternary construction. In Section 7, we provide our conclusions and an
outlook on possible extensions. The convergence of our iterative procedure is discussed in
more detail in Appendix A. In addition, we discuss the continuum limit, which, of course,
cannot be part of the algorithm but allows, as a bonus, for a different representation of the
error function.

2. Basic Concepts

The error function is based on the standard normal density distribution

ρ(x) =
1√
2π

e−x2/2 (1)

which does not have a direct practical meaning, while it is desirable to evaluate the integral
of this function over a bounded interval [−t, t], leading to the probability P(t) to find the
result within this interval,

P(t) =
∫ t

−t
ρ(x) dx =

∫ t

−t
ρ(y) dy . (2)

From Equations (1) and (2), the square of probability is given by

P2(t) =
1

2π

∫ t

−t
ρ(x) dx

∫ t

−t
ρ(y) dy =

1
2π

∫ t

−t

∫ t

−t
e−(x2+y2)/2 dx dy , (3)

where the integration area is a square in Figure 1A. Introducing polar coordinates
x = r cos ϕ and y = r sin ϕ, one obtains

P2 =
1

2π

∫ ∫
e−r2/2 r dr dϕ . (4)

The integral in Equation (4) is analytically calculable if the integration is performed
over the interior of some circle with radius R. Indeed,

I2(R) =
1

2π

∫ 2π

0
dϕ
∫ R

0
e−r2/2 r dr = 1− e−R2/2 . (5)

Here, the function I(R) increases monotonically with R as the integral in Equation (4)
is taken over a positive function. This is why I(R = m) < P < I(R = M), with m = t and
M = t

√
2; see Figure 1A. Therefore,

P(t) =
√

1− e−k2(t)t2/2 , (6)

where 1 < k(t) <
√

2. Using a PC for analyzing the set of Equations (1), (2), and (6), one
concludes that k(t) is even more constrained by 1 < k(t) <

√
4/π. Hence,

Pm(t) < P(t) < PM(t), (7)

and PM(t)− Pm(t) has a maximum of 0.0592 at t = t0 = 1.0668. The Inequality (7) proves
to be incomparably elegant, easy to remember, and much more accurate than the best result
of Ref. [5], which, if transformed into the present formalism, will be

Pm(t) = 1− 4

√
2
π

exp(−t2/2)

3 t +
√

t2 + 8
, (8)
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PM(t) = 1− 1√
2π

(
√

t2 + 4− t) exp(−t2/2) . (9)

The largest range PM(t)− Pm(t) ≈ 0.330 for these constraints occurs for t = 0. Com-
pared to this, even at the leading order observed so far, our value for PM(t)− Pm(t) <
0.0592� 0.330 is more restrictive. In more detail, if, in Equation (6), we choose k =

√
4/π,

the error will be below 0.006, but if we take k = 1.116, the maximal error is only 0.0033.
Even modern reviews on this subject do not have better results [10].

Figure 1. (A) As the integrant is positive, the value of the integral over the interior of the square lies
between the values of integrals over the interiors of the circumferences of radii m and M. (B) The
previous integration square is taken and rotated by π/4 and put together with the exact copy of the
square. The integral over the common inner area is denoted by ω.

3. Simple Extensions

By adding additional terms to the leading order approximation, one can increase the
precision further. For the normal integral

P(t) =
1√
2π

∫ t

−t
e−x2/2dx (10)

and the leading order approximation, for k1 = 1.116, one has∣∣∣P(t)−√1− e−k2
1t2/2

∣∣∣ < 0.0033 . (11)

However, the precision increases by a factor of 14 ≈ 0.0033/0.00024 by using∣∣∣P(t)−√1− 1
2 (e
−k2

1t2/2 + e−k2
2t2/2)

∣∣∣ < 0.00024 , (12)

where k1 = 1.01, k2 = 1.23345. The next order of precision has∣∣∣P(t)−√1− 1
3 (e
−k2

1t2/2 + e−k2
2t2/2 + e−k2

3t2/2)
∣∣∣ < 0.00003 , (13)

where k1 = 1.02335, k2 = 1.05674, and k3 = 1.28633. Therefore, this formula with three
exponentials is at least 8 times more precise than the one with two exponentials, and it is
at least 110 times more precise than Equation (11) with one exponential only. Finally, it is
11, 000 ≈ 0.33/0.00003 times more precise than the approximation in Ref. [5]. As it turns
out, the values for the parameters ki for i running from 1 to N take values between 1 and
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√
2, while the sum of the exponential factors is divided by N. Still, there is a degree of

arbitrariness in the determination of these parameters. In order to remove this arbitrariness,
in the following, we develop an iterative method based on geometry.

4. Geometric Background of Our Procedure

In order to understand our method, we refer to Figure 1B for the first step. Starting
with the square with side length 2t representing the square P2(t) of the probability, we
turn this square by an angle of π/4 to obtain P2(t) again. In union and intersection, these
two overlayed squares construct two eight-angle figures. In order to obtain the area of the
larger figure, one has to subtract the area of the smaller figure from the twofold square area,
as this smaller figure is covered twice by the two squares. Accordingly, for the integrals
over the probability density, one obtains the relation

Ω(t) = 2P2(t)−ω(t) (14)

between the probabilities. Now,

ω(t) = 1− e−k2
1t2/2 , Ω(t) = 1− e−k2

2t2/2 , (15)

where
1 < k1 < 1/ cos θ , 1/ cos θ < k2 <

√
2, (16)

and the angle θ = π/8 is enclosed between the x axis and the vector u shown in Figure 1B.
We study ∆(k1, k2, t) = P(k1, k2, t)− P(t) with

P(k1, k2, t) =
√

1− 1
2

(
e−k2

1t2/2 + e−k2
2t2/2

)
. (17)

Drawing three-dimensional graphics and looking for a minimum of |∆(k1, k2, t)|,
one obtains ∣∣∣∆(k1, k2, t)

∣∣∣ < 0.00024 , (18)

where k1 = 1.01 and k2 = 1.23345. This is the starting point.

5. Basic Construction of the Procedure

In order to construct the iteration, one performs a partition of the figure describing
ω(t), Ω(t), or both of these, by repeating the geometric construction shown before. For
instance, taking only the larger eight-angle figure describing Ω(t), one can turn this figure
by an angle θ = π/16 and overlay the new figure with the old one. In doing so, one can
separate a new larger and smaller 16-angle figure in the same way as was carried out before
for the 8-angle figures. Accordingly, by geometric means, one obtains new constraints. In
order to describe the procedure in a unique way, in each iterative step, we rename kn by k2n,
and, if this new k2n is subject to a partition, the smaller and larger figure of this partition
are related to the values k2n−1 and k2n, respectively.

Using the case in the previous section as an illustrative example for the procedure, we
might keep the smaller eight-angle figure related to ω(t) but apply a partition to the larger
eight-angle figure related to Ω(t). Accordingly, k1 is replaced by k2 and k2 is replaced by
k4, but this new k4 is again split up into k3 and k4. The constraint for the lowest parameter
k2 (the former k1) remains the same,

1 ≤ k2 ≤ 1/ cos(π/8) (19)

whereas, for the two new higher parameters, we obtain

1/ cos(2π/16) ≤ k3 ≤ 1/ cos(3π/16) (20)
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and
1/ cos(3π/16) ≤ k4 ≤ 1/ cos(4π/16) =

√
2. (21)

The intervals are consecutive, but π/8 is replaced by 2π/16 in order to indicate the
new partition. Finally, the upper limit stays at 1/ cos(4π/16) = 1/ cos(π/4) =

√
2. For

these values k2, k3, and k4, one obtains the approximation

P(t) ≈ P(k2, k3, k4, t) (22)

with
P(k2, k3, k4, t) =

√
1− 1

2 e−k2
2t2/2 − 1

4 e−k2
3t2/2 − 1

4 e−k2
4t2/2 (23)

because of the geometric transformations of Figure 1 and the corresponding double use
of Equation (14). Note that the set of parameters k2, k3, k4 is different from the set k1, k2,
and k3 in Equation (13). Indeed, if, for Equation (23), one uses k2 = 1.025187, k3 = 1.1249,
and k4 = 1.31336, the precision improves to 0.000015. Still, it is obvious that this example
is only half of an iteration step, and one could definitely achieve a greater result by also
performing the partition for the smaller eight-angle figure, leading to four parameters
separated uniformly,

1 ≤ k1 ≤
1

cos(π/16)
≤ k2 ≤

1
cos(π/8)

≤ k3 ≤
1

cos(3π/16)
≤ k4 ≤

√
2. (24)

Therefore, a full iteration step is increasing the number of parameters kn by a factor
of two, and, after p full iteration steps, one has N = 2p parameters. Each iteration step is
finalized by optimizing the N (or less) parameters kn. For any finite (or even very large) N,
the constraints

kmin
n (N) ≤ kn ≤ kmax

n (N) (25)

with kmin
n (N) = kmax

n−1(N) can be calculated from geometry observations in a similar fashion.
In practice, for a small set of parameters, we use a graphical method. For instance, the
method applied to obtain the three values k2, k3, and k4 in Equation (23) was to look for the
solution of the system of three equations

Q(t = 1) = 0 , Q(t =
√

2) = 0 , Q(t = 2) = 0 , (26)

where
Q(t) = P2(k2, k3, k4, t)− P2(t) . (27)

The values t = 1,
√

2, and 2 are used as nodes for this approximation. Their choice
depends on the application of the approximation and has to be adjusted to the number
of width parameters to be determined. Each equation in (26) can be treated individually.
Therefore, the solution is very easy to find. From Q(t = 1) = 0, one extracts the function
k2 = k2(k3, k4). Inserting these solutions into Q(t =

√
2) = 0, one extracts the two positive

functions k3 = k3(k4) and k3 = k̃3(k4). Inserting these solutions into Q(t = 2) = 0 and
plotting the function Q(t = 2, k4), one finds the position of the zero, which proves to be
k4 = 1.31336. Using this knowledge, one obtains k3 = k3(k4) and k2 = k2(k3, k4) as well.
However, as k3 = k̃3(k4) is given for k4 < 1 only, this is not a valid solution, as kn ≥ 1 for
all n. Note that the graphical method cannot be applied any more for N ≥ 4. Instead, we
used a random number generator to create values for the parameters kn in the respective
intervals in Equation (24). Proceeding in this way, for N = 4 (p = 2), we obtain the values
k1 = 1.00725, k2 = 1.04665, k3 = 1.12192, and k4 = 1.3129, and a precision of 0.00001, which
is, again, the lowest precision for a given N. As becomes obvious, the lowest precisions are
obtained for uniform partitions. This is not only the case for N being a power of 2 but also
for N being a power of 3, as discussed in the next section.



Stats 2022, 5 543

6. A Similar Ternary Procedure

As the approximation (13) gained high precision, we tried and succeeded in finding
a geometric interpretation for this, as is shown in Figure 2. In this ternary approach, the
initial step is to rotate the square not by an angle of π/4 as in the previous approach but by
an angle of π/6. The overlapping squares in Figure 2 can be split up into three 12-angle
figures that, at the same time, determine the constraints for the parameters ki,

1 ≤ k1 ≤ 1/ cos(π/12) ≤ k2 ≤ 1/ cos(π/6) ≤ k3 ≤ 1/ cos(π/4). (28)

Note that the values k1 = 1.02335, k2 = 1.05674 and k3 = 1.28633 chosen in Equation (13)
fit into these intervals. This procedure can be continued iteratively in a ternary way, i.e.,
turning the 12-angle figures by an angle of π/18, and generally by the angle α = π/(2 · 3p).
In the next section, we deal with the convergence of this and the previous procedure for
increasing values of p.

Figure 2. The case of three “boxes” and, accordingly, three approximating exponents. The picture
becomes more and more rotationally symmetric as the number of boxes grows.

7. Conclusions and Outlook

In this paper, we have given an approximation for the Gauss integral with a finite
boundary in terms of the square root of a normalized sum of normal distributions plus one,
each of those distributions depending on the (symmetric) boundary [−t, t] of the integral
and a set of maximally N parameters kn. By simple geometrical means, it is shown that
these parameters are constrained to intervals given by the inverse cosine with equally
distributed angles. We performed this approximation procedure in both a binary (N = 2p)
and a ternary way (N = 3p) and showed that the procedure converges for an increasing
degree p. The continuum limit leads to a further approximation.
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Appendix A. On the Convergence of the Procedure

In general, one has

P2(k1, k2, . . . , kN , t) = 1− 1
N

N

∑
n=1

e−k2
nt2/2 . (A1)

For geometry reasons, in the limit N → ∞, the largest parameter in the infinite set
{k1, k2, . . . , k∞} must be

√
2, whereas the lowest one must be 1. The reason is that, in

using the technique as in Figure 1B over and over again, the final areas of integration turn
to perfect circles between the radii t and t

√
2. The convergence of this method becomes

obvious by considering the backstep iteration. Suppose we start with an approximation
for a given set of parameters kn with a given precision. The degeneration of two adjacent
parameters means that a partition is skipped, leading to a more imprecise approximation
as the degree of freedom in choosing different parameter values is lost.

For the general analysis, we calculate the convergence by fixing the parameters in
Equation (A1) to the upper boundary, kn = 1/ cos(πn/(4 · 2p)), and analyse

∆N(N, t) = ∆(k1, . . . , kN , t) = P(k1, . . . , kN , t)− P(t) (A2)

for N = 2p and a fixed value of t, e.g., t0 = 1.0668, at which, the uncertainty range of
Equation (7) turns out to be maximal. One obtains the values in Table A1 demonstrating
the convergence of the approximations.

Table A1. Deviations in the uniform N = 2p approximations for increasing p. Note that values higher
than p = 15 could not be checked with the PC at hand.

p 11 12 13 14 15

|∆N(2p, t0)| 0.00004 0.00002 0.00001 0.000005 0.0000026

For the ternary procedure, we again fix the parameters to the upper boundary,
kn = 1/ cos(πn/(4 · 3p)), and analyse ∆N(N, t) for N = 3p and for the same fixed value
t0 = 1.0668. One obtains the values in Table A2.

Table A2. Deviations in the uniform N = 3p approximations for increasing p. Note that values higher
than p = 10 could not be checked with the PC at hand.

p 6 7 8 9 10

|∆N(3p, t0)| 0.0001 0.00004 0.00001 0.000004 0.000001

The values in Tables A1 and A2 can be approximated by the formula |∆p(N, 1)| < 0.09/N,
i.e., the deviation is inversely proportional to N. This can be seen as follows. The worst
error of the squared Gauss integral P2(t) is given by using the approximations where the
kn takes the maximal or minimal values, respectively. The difference between these squares
of extremal values is given by

P2
M(t)− P2

m(t) =
1
N

N

∑
n=1

(
e−(k

min
n )2t2/2 − e−(k

max
n )2t2/2

)
=

H(t)
N

, (A3)
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where H(t) = e−t2/2 − e−t2
is obtained by using the property kmin

n = kmax
n−1 in order to

cancel intermediate consecutive terms. Using the third binomial to obtain P2
M(t)− P2

m(t) ≈
2P(t)(PM(t)− Pm(t)), one has

PM(t)− Pm(t) ≈
H(t)

2P(t)N
. (A4)

Finally, one can use P(t) > Pmin(t) =
√

1− e−t2/2 to obtain

PM(t)− Pm(t) <
1

2N
H(t)

√
1− e−t2/2 <

0.09
N

, (A5)

where H(t)
√

1− e−t2/2 ≤
√

2233/55 is used. The error for P(t) itself is, at most, the
difference between the two extremal values. Equation (A1) can be considered as the
discretised form of the Gauss integral. Applying the continuum limit ∑i fi(zi)∆zi →∫

f (z)dz, one obtains

P2(t) = 1− 4
π

∫ π/4

0
exp

( −t2

2 cos2 φ

)
dφ. (A6)

The exponential function can be expanded into a series of finite degree N. Again, we
obtain an approximation, as

∣∣∣P2(t)− 4
π

N

∑
n=1

(−1)n−1

n!
t2n

2n cn

∣∣∣ < t2N

N!N
(A7)

with

cn =
∫ π/4

0

dφ

cos2n φ
=

n−1

∑
k=0

1
2k + 1

(
n− 1

k

)
= 2F1(1/2, 1− n; 3/2;−1), (A8)

where 2F1(a, b; c; z) is the hypergeometric function.
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