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Abstract: Multi-stage sampling designs are often used in household surveys because a sampling
frame of elements may not be available or for cost considerations when data collection involves
face-to-face interviews. In this context, variance estimation is a complex task as it relies on the
availability of second-order inclusion probabilities at each stage. To cope with this issue, several
bootstrap algorithms have been proposed in the literature in the context of a two-stage sampling
design. In this paper, we describe some of these algorithms and compare them empirically in terms
of bias, stability, and coverage probability.
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1. Introduction

Many surveys conducted by national statistical offices use stratified multi-stage sam-
pling designs for selecting a sample. Reasons for using multi-stage sampling rather than
direct element sampling include the lack of element-level sampling frames and cost con-
siderations when data collection involves face-to-face interviews. Stratified multi-stage
sampling designs include some form of stratification, selection of primary sampling units
(psu), and subsampling within selected psus. This is especially common in social and
health surveys. For general multi-stage sampling designs, unbiased variance estimation
is a complex task as it relies on the availability of the second-order inclusion probabilities
at each stage. If the first-stage sampling fraction is small, a common variance estimation
strategy is to pretend that the psus were selected with replacement and use the customary
with replacement variance estimator. The resulting estimator is generally conservative in
the sense that it may suffer from a small positive bias.

Another approach to variance estimation for survey data is bootstrap variance es-
timation originally proposed by Efron [1] in the context of independent and identically
distributed observations. In a finite population sampling, bootstrap procedures can be clas-
sified into two broad groups. In the first, bootstrap samples are selected from the original
sample; e.g., [2,3] among others. Rao and Wu [2] applied a scale adjustment directly to the
survey data values so as to recover the usual variance formulae. Rao et al. [4] presented a
modification of the method of Rao and Wu [2], where the scale adjustment is applied to the
survey weights rather than to the data values. The second group of procedures consists of
first creating a pseudo-population from the original sample. Bootstrap samples are then
selected from the pseudo-population using the same sampling design utilized to select the
original samples; see [5–8], among others. Many of the aforementioned bootstrap proce-
dures may be implemented by randomly generating bootstrap weights so that the first two
(or more) design moments of the sampling error are tracked by the corresponding bootstrap
moments; see [9,10]. These procedures are often referred to as bootstrap weight procedures.
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For a comprehensive review of bootstrap procedures for survey data, the reader is referred
to Mashreghi et al. [11].

The goal of this paper is to empirically compare several existing bootstrap algorithms
that have been proposed in the literature for two-stage sampling designs. The bootstrap
procedures are compared with respect to bias, stability, and coverage probability of confi-
dence intervals. In Section 2 we present the basic setup and discuss some classical variance
estimation procedures for two-stage sampling designs. In Section 3, we present some boot-
strap algorithms proposed in the case of simple random sampling without replacement in
both stages. Bootstrap algorithms for unequal probability sampling designs are described
in Section 4. In Section 5, we present the results from a simulation study. We make some
final remarks in Section 6.

2. The Setup

Consider a finite population U consisting of N primary sampling units (psu), U1, . . . , UN,
of size M1, . . . , MN, such that U =

⋃
i∈U Ui and Ui ∩Uj = ∅ if i 6= j. Let M0 = ∑i∈U Mi be

the total number of elements in the population. We are interested in estimating a population
total ty of a survey variable y:

ty = ∑
i∈U

ti,

where ti = ∑k∈Ui
yik denotes the ith psu total, i = 1, . . . , N, and yik denotes the y-value for

the kth element in the ith psu. To that end, we select a sample according to a two-stage
sampling design:

(i) A sample S1st of psus, of size n, is selected according to a given sampling design
P(S1st) with first-order inclusion probabilities, πi = P(i ∈ S1st), and with second-
order inclusion probabilities, πij = P(i ∈ S1st & j ∈ S1st). Finally, let ∆ij = πij − πiπj.

(ii) In the ith psu sampled at the first stage, i ∈ S1st, a subsample of the elements, Si, of size
mi is selected according to a given sampling design P(Si|S1st) with first-order inclusion
probabilities πk|i = P(k ∈ Si|i ∈ S1st) and second-order inclusion probabilities
πk`|i = P(k ∈ Si & ` ∈ Si|i ∈ S1st). Subsampling in a given psu is carried out
independently of subsampling in any other psu.

A design-unbiased estimator of ty is the Horvitz–Thompson estimator given by

t̂y = ∑
i∈S1st

π−1
i t̂i, (1)

where t̂i = ∑k∈Si
yik/πk|i. The estimator (1) can be written as t̂y = ∑k∈S̃ wkyk, where

wk = π−1
k with πk = πi × πk|i, and S̃ denotes the sample of elements of size ∑i∈S1st

mi.
The design variance of t̂y, denoted by Vp(t̂y), can be unbiasedly estimated by

V̂(t̂y) = ∑
i∈S1st

∑
j∈S1st

∆ij

πij

t̂i
πi

t̂j

πj
+ ∑

i∈S1st

π−1
i V̂i, (2)

where

V̂i = ∑
k∈Si

∑
`∈Si

∆k`|i
πk`|i

yik
πk|i

yi`
π`|i

and ∆k`|i = πk`|i − πk|iπ`|i. That is, E1E2

{
V̂(t̂y) | S1st

}
= Vp(t̂y), where E1(·) denotes the

expectation with respect to the first-stage sampling design, and E2(· | S1st) denotes the
expectation with respect to the second-stage sampling design conditionally on S1st. In the
case of simple random sampling without replacement at both stages, the estimator (2)
reduces to

V̂(t̂y,π) = N2
(

1− n
N

) s2
t

n
+

N
n ∑

i∈S
M2

i

(
1− mi

Mi

) s2
yi

mi
, (3)
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where

s2
t =

1
n− 1 ∑

i∈S1st

(
t̂i −

∑i∈S t̂i
n

)2

and
s2

yi =
1

mi − 1 ∑
k∈Si

(yik − yi)
2

with yi = m−1
i ∑k∈Si

yik.

For general two-stage sampling designs, the computation of (2) is cumbersome as it re-
quires the availability of the second-order inclusion probabilities at each stage. A simplified
variance estimator is given by

V̂sim(t̂y) = ∑
i∈S1st

∑
j∈S1st

∆ij

πij

t̂i
πi

t̂j

πj
. (4)

That is, only the first term of (2) is kept. The bias of V̂sim(t̂y), which is always negative, is
expected to be small provided that the first-stage sampling fraction, f1 = n/N, is small;
see [12,13].

An alternative simplified variance estimator can be obtained by pretending that the
psus are selected with replacement. It is given by

V̂(t̂y,wr) =
1

n(n− 1)

n

∑
i=1

(
t̂i
pi
− t̂y,wr

)2

, (5)

where t̂y,wr = ∑i∈S
t̂i

npi
, with pi denoting the probability of selection of the ith psu at any

given draw. If the first-stage sampling fraction, f1, is small, we expect (5) to suffer from
a small positive bias. Unlike (4), the estimator does not require the availability of the
second-order inclusion probabilities πij.

So far, we have considered the case of a population total ty. In practice, it may be of
interest to estimate more complex parameters such as distribution functions and quantiles.
Let θN be defined as the solution of the following census estimating equation:

UN(θ) =
1

M0
∑
i∈U

∑
k∈Ui

u(yik; θ) = 0, (6)

where u(yik; θ) can be either a smooth (i.e., a function that is differentiable and whose
derivatives are continuous) or a non-smooth function of θ. When u(·) is smooth, the solution
of (6) is called a smooth parameter; otherwise, it is called a non-smooth parameter. Common
parameters include: (i) the population mean obtained with u(yik; θ) = yik − θ; (ii) the finite
population distribution function obtained with u(yik; θ) = I(yik ≤ t)− θ, t ∈ R; (iii) the
τ-th population percentile obtained with u(yik; θ) = I(yik ≤ θ)− τ. The population mean
is an example of a smooth parameter, whereas distribution functions and quantiles are
examples of non-smooth parameters.

An estimator θ̂ of θN can be obtained by solving the following sample estimating
equation:

ÛS(θ) =
1

M0
∑
k∈S̃

wku(yk; θ) = 0. (7)

The variance of θ̂ may be obtained using a first-order Taylor expansion or by using
a resampling method such as balanced repeated replication, jackknife, and bootstrap;
see [14] for a discussion of resampling methods. In the remainder of this paper, we confine
to bootstrap.
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3. Bootstrap Procedures for Simple Random Sampling without Replacement at
Both Stages

In this section, we describe several bootstrap algorithms for a two-stage sampling
design with simple random sampling without replacement at both stages.

3.1. The Rescaling Bootstrap Algorithm

Rao and Wu [2] proposed a rescaled bootstrap algorithm for both uni-stage and
two-stage sampling designs. Because the rescaling factor is applied to the y-values, this
method is applicable to smooth statistics but not to the case of non-smooth statistics such
as quantiles. The algorithm can be described as follows:

Step 1. Draw a sample of size n psus from S1st, according to simple random sampling
with replacement.

Step 2. From each psu selected in Step 1, select a sample of elements, of size mi according
to simple random sampling with replacement. For a psu selected more than once in
Step 1, perform independent subsampling.

Step 3. Let y∗ik be the y-value of the kth bootstrap element in the ith bootstrap psu and m∗i
be the mi-value of the ith bootstrap psu and M∗i is defined similarly. Let

ỹik = Ŷ +

{
n(1− f1)

n− 1

}1/2
(

t̂∗i
M0
− Ŷ

)
+

{
m∗i f1(1− f ∗2i)

m∗i − 1

}1/2
(

M∗i y∗ik
M0

−
t̂∗i

M0

)
,

where f ∗2i = m∗i /M∗i , t̂∗i =
M∗i
m∗i

∑
m∗i
k=1 yik, M0 = M0/N and Ŷ = 1

M0
N
n ∑i∈S1st

Mi
mi

∑k∈Si
yik.

Step 4. Compute θ̂∗ using the same formulae that were used to obtain the original point
estimator.

Step 5. Repeat Steps 1–4 a large number of times, B, to obtain θ̂∗1 , . . . , θ̂∗B.
Step 6. The bootstrap variance estimator is var∗(θ̂∗). In practice, the Monte Carlo approxi-

mation of var∗(θ̂∗) is applied

v̂ar∗ =
1

B− 1

B

∑
b=1

(θ̂∗b − θ̂∗)2,

where θ̂∗ = B−1 ∑B
b=1 θ̂∗b .

Rao and Wu [2] showed that in the case of a population total, the above algorithm
matches the standard variance estimator (3). Rao et al. [4] proposed a weighted version of
the Rao–Wu method, whereby the rescaling is applied to the sampling weights rather than
the y-values; see also [10]. The method of Rao et al. [4] is described in Section 4.

3.2. The Mirror-Match Bootstrap Algorithm

Sitter [3] proposed an extension of his mirror-match bootstrap to the case of a two-
stage sampling design. In [3], the algorithm assumed that the number of repetetions k1 and
k2i (see below) are integers. It can be described as follows:

Step 1. Choose 1 ≤ n′ < n and draw a sample of size n′ psus from S1st, according to simple
random sampling without replacement.

Step 2. Repeat Step 1 k1 = n(1− f ∗1 )/{n′(1− f1)} times independently to obtain a boot-
strap sample of psus of size n∗ = k1n′, where f ∗1 = n′/n.

Step 3. Choose 1 ≤ m′i < mi and draw according to simple random sampling without
replacement m′i units within the ith psu obtained in Steps 1 and 2.

Step 4. Repeat Step 3 k2i = Nmi(1− f ∗2i)/{n∗m′i(1− f2i)} times independently to obtain
a bootstrap sample of size m∗i = k2im′i from the ith psu drawn in Step 3, where
f ∗2i = m′i/mi.
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Step 5. Compute θ̂∗ using the same formulae that were used to obtain the original point
estimator.

Step 6. Repeat Steps 1–5 a large number of times, B, to obtain θ̂∗1 , . . . , θ̂∗B.
Step 7. The bootstrap variance estimator is var∗(θ̂∗). In practice, the Monte Carlo approxi-

mation of var∗(θ̂∗) is applied

v̂ar∗ =
1

B− 1

B

∑
b=1

(θ̂∗b − θ̂∗)2,

where θ̂∗ = B−1 ∑B
b=1 θ̂∗b .

Sitter [3] showed that in the case of a population total, the above algorithm matches
the standard variance estimator (3). If k1 and k2i are not integers, a randomization between
bracketing integer values is proposed in [15].

3.3. The Without-Replacement Bootstrap Algorithm

Sitter [16] proposed a pseudo-population bootstrap algorithm, referred to as the
without-replacement bootstrap (BWO) method, in the case of uni-stage and two-stage
sampling designs. We focus on the latter. In [16], the algorithm assumed that the quantities
k1, n′, k2i, and m′i (see below) are integers. It can be described as follows:

Step 1: Create a pseudo-population by replicating each psu in S1st k1 times and each unit
within the ith psu k2i times. Let U′ be the resulting pseudo-population consisting
of N′ = nk1 psus, U′1, . . . , U′N′ , of size M′1, . . . , M′N′ , where there exists j ∈ S1st
such that M′i = mjk2j. Let M′0 = ∑i∈U′ M′i be the total number of elements in
the pseudo-population.

Step 2: From the pseudo-population U′, select a sample of psus, S∗1st, of size n′, according
to simple random sampling without replacement. In each selected psu, select a
sample, S∗i , of size m′i according to simple random sampling without replacement.

Step 3: Compute θ̂∗ using the formulae that were used to obtain the original point estimator.
Step 4: Repeat Steps 2 and 3 a large number of times, B, to obtain θ̂∗1 , . . . , θ̂∗B.
Step 5: The bootstrap variance estimator is var∗(θ̂∗). In practice, the Monte Carlo approxi-

mation of var∗(θ̂∗) is applied

v̂ar∗ =
1

B− 1

B

∑
b=1

(θ̂∗b − θ̂∗)2,

where θ̂∗ = B−1 ∑B
b=1 θ̂∗b .

In the case of the population total (or the population mean), Sitter [16] showed that
the bootstrap variance estimator reduces to the standard variance estimator provided that
n′ and k1 satisfy

f ′1 = f1 and
k1(n− 1)

n′(k1n− 1)
=

1
n

, (8)

and m′i and k2i satisfy

f ′2i = f2i and
k2i(mi − 1)

n′(k2imi − 1)
=

f1

nmi
, (9)

where f ′1 = n′/N′ and f ′2i = m′i/M′i , for each i. If k1, n′, k2i, and m′i are not integers,
a randomization between bracketing integer values was proposed in [15]. In Appendix A,
we show that, if we define k1, n′, k2i, and m′i as in (8) and (9), the bootstrap variance estimator
does not reduce to the standard variance estimator in (3). We suggest a modification to (8)
and (9) so that the bootstrap variance estimators reduces to the standard variance estimator
(3). In the simulation study (see Section 5), we show that the modified version of Sitter [16]
works well in terms of bias and coverage probability of confidence intervals.



Stats 2022, 5 526

3.4. The Bernoulli Bootstrap Algorithm

Funaoka et al. [17] proposed two bootstrap procedures, referred to as Bernoulli boot-
strap, for stratified three-stage sampling. Here, we consider the special case of two-stage
sampling. Funaoka et al. [17] proposed a short-cut algorithm and a general algorithm.
The general algorithm can handle any combination of sample sizes but is more computa-
tionally intensive. The general algorithm can be described as follows:

Step 1. Draw a sample, S̃1, of size n′ = n− 1, from the original sample of clusters, S1st,
according to simple random sampling with replacement. Generate n Bernoulli
random variables, I1i, with probability

p1 = 1− 1− f1

2(1− n−1)
.

For each i ∈ S1st, keep the ith cluster in the bootstrap sample S∗ and go to Step 2,
if I1i = 1, and replace the ith cluster with one randomly selected cluster from S̃1st,
if I1i = 0.

Step 2. For cluster i kept in Step 1, draw a sample, S̃2i, of size m′i = mi − 1, from the original
sample S2i according to simple random sampling with replacement. Generate mi
Bernoulli random variable, I2ij, with probability

p2i = 1− f1(1− f2i)

2p−1
1 (1−m−1

i )
.

For each (ij) ∈ S2i, keep the (ij)th element in the bootstrap sample, S∗, if I2ij = 1,
and replace it with one randomly selected element from S̃2i, if I2ij = 0.

Step 3. Compute θ̂∗ using the formulae that were used to obtain the original point estimator.
Step 4. Repeat Steps 1–3 a large number of times, B, to obtain θ̂∗1 , . . . , θ̂∗B.
Step 5. The bootstrap variance estimator is var∗(θ̂∗). In practice, the Monte Carlo approxi-

mation of var∗(θ̂∗) is applied

v̂ar∗ =
1

B− 1

B

∑
b=1

(θ̂∗b − θ̂∗)2,

where θ̂∗ = B−1 ∑B
b=1 θ̂∗b .

Funaoka et al. [17] argued that the resulting bootstrap variance estimator is consistent
for both smooth and non-smooth parameters.

3.5. The Preston Bootstrap Weights Algorithm

Preston [18] proposed a bootstrap weights approach for stratified three-stage sampling.
Here, we focus on the special case of two-stage sampling. The algorithm can be described
as follows:

Step 1. Draw a sample of size n′ psus from S1st, according to simple random sampling
without replacement. Let δi = 1 if the ith psu is selected and δi = 0, otherwise.

Step 2. Define the psu bootstrap weights:

w∗i =
{

1 + λ1

( n
n′

δi − 1
)}

π−1
i ,

where λ1 = {n′(1− f1)/(n− n′)}1/2.
Step 3. Within each of the sample of psus selected in Step 1, draw a simple random sample

without replacement, of size m′i. Let δik = 1 if the kth element in the ith psu is
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selected and δik = 0, otherwise. We define the conditional element bootstrap
weights:

w∗ik =
{

1 + λ1

( n
n′

δi − 1
)
+ λ2i

( n
n′
)1/2

δi

(
mi
m′i

δik − 1
)}

π−1
i

w∗i
π−1

k|i ,

where λ2i = {m′i f1(1− f2i)/(mi −m′i)}1/2.
Step 4. Compute θ̂∗ using the formulae that were used to obtain the original point estimator

with the original weights replaced by the bootstrap weights w∗ik.
Step 5. Repeat Steps 1–4 a large number of times, B, to obtain θ̂∗1 , . . . , θ̂∗B.
Step 6. The bootstrap variance estimator is var∗(θ̂∗). In practice, the Monte Carlo approxi-

mation of var∗(θ̂∗) is applied

v̂ar∗ =
1

B− 1

B

∑
b=1

(θ̂∗b − θ̂∗)2,

where θ̂∗ = B−1 ∑B
b=1 θ̂∗b .

In the case of the population total, Preston [18] showed that the bootstrap variance
estimator reduces to the textbook variance estimator (3). He suggested that the choice of
n′ = bn/2c and m′i = bmi/2c will be optimal and lead to non-negative bootstrap weights,
where b·c denotes the integer part.

4. Bootstrap Procedures for Unequal Probability Sampling Designs
4.1. The Rao-Wu-Yue Bootstrap Weights Algorithm

Rao et al. [4] proposed a bootstrap weights approach for stratified multi-stage sampling
designs. Unlike the method of Rao and Wu [2], it can be applied to estimate the variance of
smooth and non-smooth parameters (e.g., quantiles).

Step 1. Select n′ psus according to simple random sampling with replacement from S1st.
Step 2. Define the bootstrap weight as

w∗ik =

{
1 +

(
n′

n− 1

)1/2(nn∗i
n′
− 1
)}

π−1
i π−1

k|i ,

where n∗i denotes the number of times the ith psu is selected in the bootstrap sample.
Step 3. Compute θ̂∗ using the formulae that were used to obtain the original point estimator

with the original weights replaced by the bootstrap weights w∗ik.
Step 4. Repeat Steps 1–3 B times to obtain θ̂∗1 , . . . , θ̂∗B.
Step 5. The bootstrap variance estimator is var∗(θ̂∗). In practice, the Monte Carlo approxi-

mation of var∗(θ̂∗) is applied

v̂ar∗ =
1

B− 1

B

∑
b=1

(θ̂∗b − θ̂∗)2,

where θ̂∗ = B−1 ∑B
b=1 θ̂∗b .

The algorithm of Rao et al. [4] leads to consistent variance estimators provided that the
first-stage sampling fraction is negligible. The choice 0 < n′ ≤ n− 1 leads to non-negative
bootstrap weights.

4.2. The Pseudo-population Bootstrap Algorithm

Chauvet [8] proposed a pseudo-population bootstrap approach (PPB) in the case of
unequal two-stage sampling designs. It can be described as follows:
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Step 1. Each unit k ∈ Si is duplicated [π−1
k|i ] times to create a second-stage pseudo-population

denoted by U∗i , i ∈ S1st, where [·] denotes the closet integer.
Step 2. Each pair (Si, U∗i ) is duplicated bπ−1

i c times. The population of pairs is completed by
selecting a sample in the set {(Si, U∗i ); i ∈ S1st} by means of sampling design with
first-order inclusion probabilities π−1

i − bπ
−1
i c. This leads to the pseudo-population U∗.

Step 3. Select a first-stage bootstrap sample S∗1st from U∗ using the original first-stage
sampling design with first-order inclusion probabilities πi.

Step 4. Select a second-stage bootstrap sample S∗∗i from U∗i using the original second-stage
sampling design. We set S∗i = S∗∗i with probability πi and S∗i = Si with probability
1− πi. This procedure is applied to each pair (Si, U∗i ) ∈ S∗1st. The union of the S∗i ’s
leads to the bootstrap sample S∗.

Step 5. Compute θ̂∗ using the formulae that were used to obtain the original point estimator.
Step 6. Steps 3–5 are repeated BPPB times to obtain the bootstrap statistics θ̂∗1 , . . . , θ̂∗PPB. Let

v̂∗ =
1

BPPB − 1

BPPB

∑
b=1

(θ̂∗b − θ̂∗)2,

where θ̂∗ = B−1
PPB ∑BPPB

b=1 θ̂∗b .
Step 7. Steps 2–6 are repeated APPB times to obtain v̂∗1 , . . . , v̂∗APPB

. The variance of θ̂ is
estimated by

v̂ar∗ =
1

APPB

APPB

∑
a=1

v̂∗a .

Chauvet [8] showed that in the case of high entropy sampling design (e.g., [19–22]) at
both stages, the above algorithm leads to a consistent estimator in the context of a popula-
tion total. In the case of a fixed-size sampling design, Chauvet [8] suggested completing
the pseudo-population in Step 2, by applying Poisson sampling design with inclusion
probabilities π−1

i − bπ
−1
i c.

5. Simulation Study

We conducted a simulation study to assess the performance of the bootstrap proce-
dures described in Sections 3 and 4 in terms of bias, stability, and coverage rate of confidence
intervals based on the t-distribution with n− 1 degrees of freedom. The simulation study
was carried out using the R software. We created two finite populations consisting of
N = 200 primary sampling units. The cluster sizes Mi were generated according to a
Poisson distribution with a mean equal to 50. In each population, we generated a survey
variable y according to

yij = 10 + xi + εij,

where

xi ∼ N
(

0,
√

ρ

1− ρ

)
and εij ∼ N(Mi, 1). (10)

The parameter ρ in (10) was set to 0.1 for Population 1 and 0.3 for Population 2. We
were interested in estimating the population total of the y-variable, ty, as well as the finite
population median.

From each population, we selected K = 3000 samples according to a two-stage sam-
pling design:

(i) At the first stage, we selected n psus according to two sampling designs: simple
random sampling without replacement and inclusion probability-proportional-to-size
randomized systematic sampling. The value of n was set to n = 10 which corresponds
to a first-stage sampling fraction, f1 = 5%, and n = 40, which corresponds to f1 = 20%.

(ii) At the second stage, mi = 5 elements within each psu selected at the first stage were
selected according to simple random sampling without replacement.
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In each sample, we computed the estimator t̂y given by (1). Its variance was estimated
using the variance estimation procedures listed in Table 1. Except of the procedure of
Chauvet [8], we used B = 500 bootstrap samples for all the other bootstrap procedures.
For the procedure of Chauvet [8] , we used APPB = 10 and BPPB = 50 (B = APPB × BPPB).

Table 1. Variance estimation procedures for each population parameter/sampling design.

Sampling Design Population Total Population Median

SRSWOR/SRSWOR

Textbook variance estimator
Rao and Wu [2]
Rao et al. [4]
Modified Sitter
Funaoka et al. [17]
Chauvet [8]
Preston [18]

Linearization variance estimator
Rao and Wu [2]
Rao et al. [4]
Modified Sitter
Funaoka et al. [17]
Chauvet [8]
Preston [18]

IPPSWOR/SRSWOR
Textbook variance estimator
Rao et al. [4]
Chauvet [8]

Linearization variance estimator
Rao et al. [4]
Chauvet [8]

As a measure of bias of a variance estimator v̂ar, we computed its Monte Carlo percent
relative bias

RBMC(v̂ar) = 100×
EMC(v̂ar)−VMC(t̂y)

VMC(t̂y)
,

where EMC(v̂ar) denotes the Monte Carlo expectation of v̂ar and VMC(t̂y) denotes the
Monte Carlo variance estimator of t̂y. As a measure of stability of a variance estimator v̂ar,
we computed its Monte Carlo percent coefficient of variation given by

CVMC = 100×
√
VMC(v̂ar)
EMC(v̂ar)

,

where VMC(v̂ar) denotes the Monte Carlo variance estimator of v̂ar. Finally, we computed
the Monte Carlo coverage rate of t-based confidence intervals and their corresponding
Monte Carlo average length.

Tables 2–5 show the results for the bootstrap methods in the case of SRSWOR/SRSWOR.
Table 2 shows the Monte Carlo percent relative bias of the bootstrap variance estimators.
For the population total, all the procedures led to small biases for f1 = 5% with the value of
absolute relative bias ranging from 1.08% to 8.66%. For the population median, except for
the method of Rao and Wu [2], the other procedures led to good results with an absolute
relative bias ranging from 0.02% to 16.58%. As expected, the method of Rao and Wu [2]
led to substantial bias because it cannot be applied to non-smooth statistics. For f1 = 20%,
the absolute relative bias varied between 2.49% and 10.00% for all bootstrap methods except
for the method of Rao et al. [4] who suffered from a significant positive bias. This can be
explained by the fact that the sampling fraction was not small. For f1 = 20% the absolute
relative bias varied between 2.60% and 13.20% for all bootstrap methods except for the
methods of Rao and Wu [2] and Rao et al. [4].

Table 3 shows the percent CV. All the bootstrap methods led to similar Monte Carlo
coefficients of variation (CV). For f1 = 5%, the CV varied between 41.2% and 46.0% for the
population total, and between 59.0% and 64.3% (except for the method of Rao and Wu [2]
that led to a CV of 69.1% for ρ = 0.3) for the population median. For f1 = 20%, the CV
varied between 18.9% and 21.0% for the population total, and between 36.4% and 42.3% for
the population median.

Tables 4 and 5 show the coverage probability and the average length of 95% confidence
intervals based on the t-distribution, respectively. All the bootstrap methods led to good
coverage and similar average length except the method of Rao and Wu [2] for the population
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median. The coverage rate in all cases, except the method of Rao and Wu [2] for the
population median, varied between 93.17% and 96.73%.

Tables 6–9 show the results for the bootstrap methods in the case of randomized
IPPS systematic/SRSWOR. Table 6 shows the percent relative bias of the bootstrap vari-
ance estimators. The method of Chauvet [8] worked generally better than the method
of Rao et al. [4] in terms of relative bias, especially in the case of the population median.
The percent CVs presented in Table 7 were very similar for both methods.

Tables 8 and 9 respectively show the coverage probability and the average length of
the 95 percent confidence intervals based on the t-distribution for both methods. Both
bootstrap methods led to good coverage and similar average length. The coverage rate in
all cases varied from 93.23% to 96.43%.

Table 2. Monte Carlo percent RB of the bootstrap variance estimators to estimate the variance of the
point estimator based on 3000 samples selected according to SRSWOR/SRSWOR.

ρ = 0.1 ρ = 0.3

f1 = 5% f1 = 20% f1 = 5% f1 = 20%

θ̂ Bootstrap Method (n = 10) (n = 40) (n = 10) (n = 40)

t̂y Textbook 1.99 5.10 1.28 5.05

Chauvet [8] −7.79 2.49 −8.39 2.54

Rao et al. [4] 6.99 29.07 6.27 29.38

Rao and Wu [2] 8.66 10.00 6.96 9.20

Preston [18] 1.88 5.20 1.13 5.11

Modified Sitter 6.97 9.93 5.84 9.49

Funaoka et al. [17] 1.80 4.00 1.08 4.15

θ̂1/2 Textbook 11.71 7.42 19.31 10.96

Chauvet [8] −0.02 7.56 0.03 8.67

Rao et al. [4] 11.19 20.39 13.05 27.92

Rao and Wu [2] 930.28 729.81 502.50 367.14

Preston [18] 10.97 7.58 16.58 11.00

Modified Sitter 11.81 12.98 10.74 13.20

Funaoka et al. [17] 7.38 2.60 9.21 6.76
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Table 3. Monte Carlo percent CV based on 3000 samples selected according to SRSWOR/SRSWOR.

ρ = 0.1 ρ = 0.3

f1 = 5% f1 = 20% f1 = 5% f1 = 20%

θ̂ Bootstrap Method (n = 10) (n = 40) (n = 10) (n = 40)

t̂y Textbook 43.4 18.9 45.3 19.8

Chauvet [8] 43.9 19.9 45.9 20.9

Rao et al. [4] 44.0 20.1 45.8 21.0

Rao and Wu [2] 41.2 19.3 43.3 20.2

Preston [18] 43.8 20.2 45.6 21.0

Modified Sitter 43.6 19.9 45.0 20.6

Funaoka et al. [17] 44.1 20.2 46.0 21.0

θ̂1/2 Textbook 62.0 37.2 62.4 36.4

Chauvet [8] 61.0 41.1 60.5 38.9

Rao et al. [4] 59.9 41.1 59.3 38.0

Rao and Wu [2] 64.3 37.4 69.1 39.7

Preston [18] 63.8 38.0 64.0 37.3

Modified Sitter 59.4 40.4 59.0 38.3

Funaoka et al. [17] 59.8 42.3 59.3 39.5

Table 4. Coverage rate (CR) of the 95% t-distribution based confidence intervals constructed using
bootstrap standard error estimators based on 3000 samples selected according to SRSWOR/SRSWOR.

ρ = 0.1 ρ = 0.3

f1 = 5% f1 = 20% f1 = 5% f1 = 20%

θ̂ Bootstrap Method (n = 10) (n = 40) (n = 10) (n = 40)

t̂y Textbook 95.33 95.07 95.40 94.73

Chauvet [8] 94.50 94.87 94.70 94.67

Rao et al. [4] 95.50 96.63 95.77 96.73

Rao and Wu [2] 96.10 95.33 96.00 95.47

Preston [18] 95.37 95.07 95.30 94.77

Modified Sitter 95.80 95.47 95.73 95.30

Funaoka et al. [17] 95.27 94.97 95.33 94.73
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Table 4. Cont.

ρ = 0.1 ρ = 0.3

θ̂1/2 Textbook 94.63 95.23 94.27 95.20

Chauvet [8] 93.90 94.67 93.17 94.57

Rao et al. [4] 95.10 95.97 94.70 96.03

Rao and Wu [2] 100.00 99.97 99.97 99.93

Preston [18] 94.50 95.23 93.70 94.80

Modified Sitter 95.07 95.13 94.67 94.93

Funaoka et al. [17] 94.73 94.27 94.20 94.13

Table 5. Average length (AL) of the 95% t-distribution based confidence intervals constructed using
bootstrap standard error estimators based on 3000 samples selected according to SRSWOR/SRSWOR.

ρ = 0.1 ρ = 0.3

f1 = 5% f1 = 20% f1 = 5% f1 = 20%

θ̂ Bootstrap Method (n = 10) (n = 40) (n = 10) (n = 40)

t̂y Textbook 21,470.7 8725.5 23,157.5 9721.9

Chauvet [8] 20,404.4 8612.6 22,012.1 9599.7

Rao et al. [4] 21,978.5 9663.6 23,707.2 10,782.5

Rao and Wu [2] 22,218.5 8925.4 23,857.5 9910.3

Preston [18] 21,450.9 8724.4 23,134.4 9718.9

Modified Sitter 21,988.4 8919.4 23,684.7 9921.4

Funaoka et al. [17] 21,435.4 8674.5 23,119.5 9674.2

θ̂1/2 Textbook 0.9796 0.4081 1.3847 0.5705

Chauvet [8] 0.9284 0.4071 1.2717 0.5634

Rao et al. [4] 0.9798 0.4306 1.3537 0.6117

Rao and Wu [2] 2.9770 1.1343 3.0965 1.1681

Preston [18] 0.9736 0.4081 1.3654 0.5701

Modified Sitter 0.9795 0.4175 1.3407 0.5753

Funaoka et al. [17] 0.9634 0.3972 1.3306 0.5582
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Table 6. Monte Carlo percent RB of the bootstrap variance estimators to estimate the variance of the
point estimator based on 3000 samples selected according to IPPS/SRSWOR.

ρ = 0.1 ρ = 0.3

f1 = 5% f1 = 20% f1 = 5% f1 = 20%

θ̂ Bootstrap Method (n = 10) (n = 40) (n = 10) (n = 40)

t̂y Textbook −1.26 −0.36 −1.98 −0.05

Chauvet [8] −13.65 −5.74 −11.86 −3.83

Rao et al. [4] 1.24 9.93 2.06 18.03

θ̂1/2 Textbook 18.37 3.92 22.58 5.14

Chauvet [8] 0.16 −3.24 2.65 2.09

Rao et al. [4] 16.45 15.71 17.72 21.56

Table 7. Monte Carlo percent CV based on 3000 samples selected according to IPPS/SRSWOR.

ρ = 0.1 ρ = 0.3

f1 = 5% f1 = 20% f1 = 5% f1 = 20%

θ̂ Bootstrap Method (n = 10) (n = 40) (n = 10) (n = 40)

t̂y Textbook 44.9 18.9 44.6 19.0

Chauvet [8] 46.2 21.0 46.7 21.3

Rao et al. [4] 46.9 22.4 46.1 21.3

θ̂1/2 Textbook 62.0 37.7 59.3 36.1

Chauvet [8] 61.3 40.5 61.0 40.1

Rao et al. [4] 60.3 41.2 58.4 37.5

Table 8. Coverage rate (CR) of the 95% t-distribution based confidence intervals constructed using
bootstrap standard error estimators based on 3000 samples selected according to IPPS/SRSWOR.

ρ = 0.1 ρ = 0.3

f1 = 5% f1 = 20% f1 = 5% f1 = 20%

θ̂ Bootstrap Method (n = 10) (n = 40) (n = 10) (n = 40)

t̂y Textbook 95.27 95.50 94.73 94.83

Chauvet [8] 93.23 94.83 93.63 94.70

Rao et al. [4] 95.40 96.07 95.03 96.43

θ̂1/2 Textbook 94.53 94.63 95.70 93.63

Chauvet [8] 93.77 93.80 93.27 93.93

Rao et al. [4] 95.17 94.93 95.27 95.43
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Table 9. Average length (AL) of the 95% t-distribution based confidence intervals constructed using
bootstrap standard error estimators based on 3000 samples selected according to IPPS/SRSWOR.

ρ = 0.1 ρ = 0.3

f1 = 5% f1 = 20% f1 = 5% f1 = 20%

θ̂ Bootstrap Method (n = 10) (n = 40) (n = 10) (n = 40)

t̂y Textbook 7694.4 3401.9 11,021.3 4746.8

Chauvet [8] 7317.2 3314.3 10,508.3 4650.7

Rao et al. [4] 7772.1 3566.9 11228.1 5152.5

θ̂1/2 Textbook 0.9797 0.4184 1.3709 0.5597

Chauvet [8] 0.9247 0.4110 1.2627 0.5472

Rao et al. [4] 0.9736 0.4403 1.3461 0.6011

6. Final Remarks

The results of the simulation studies suggest that most bootstrap procedures work
well in terms of bias and coverage rate of confidence intervals for estimating smooth or non-
smooth parameters. An exception is the method of Rao and Wu [2] for quantiles and the
method of Rao et al. [4] for appreciable first-stage sampling fractions. In terms of stability
of the variance estimators, there is little difference between the bootstrap procedures. Our
results are aligned with those of Saigo [23] who empirically compared four bootstrap
procedures in the context of stratified three-stage sampling with simple random sampling
without replacement at each stage: the procedure of Funaoka et al. [17], the mirror match
bootstrap of Sitter [3], the method of Rao et al. [4], and the BWO method of Sitter [16].

In this paper, we have compared several bootstrap algorithms in the context of a
two-stage sampling design. The algorithms were described in an ideal setup. In practice,
the design weights π−1

k undergo a weighting process that involves a nonresponse adjust-
ment followed by some form of calibration, whose goal is to ensure consistency between
survey estimates and known population quantities. When the first-stage sampling fraction
is small, the method of Rao et al. [4] is typically used in surveys conducted by national
statistical offices. To account for unit nonresponse and calibration, the bootstrap weights
need to undergo the same weighting process (non-response adjustment and calibration)
that was used in the original sample were.

Bootstrap may be used to estimate the variance of imputed estimators in the context
of imputation for item nonresponse. If the first-stage sampling fraction is small, one can re-
impute the missing values in each bootstrap sample using the same imputation procedure
that was utilized in the original sample, see [24]. The case of non-negligible first-stage
sampling fractions requires further research.

We end this paper by pointing out a very recent paper by Beaumont and Émond [25],
who proposed a bootstrap weight approach for multi-stage sampling designs. It would be
interesting to compare this method to the procedures considered in this paper.
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Appendix A

In this section, we show that, obtaining k1, n′, k2i, and m′i from Equations (8) and (9) in
the Sitter [16] algorithm in Section 3.3, the resulting bootstrap variance estimator does not
reduce to the standard variance estimator in the case of the population total θ = ty.
In the case of θ = ty, the bootstrap estimator is

θ̂∗ =
N′

n′ ∑
i∈S∗1st

M′i
m′i

∑
k∈S∗i

y∗ik

where y∗ik is the y-value for the kth selected element in S∗i in Step 2. The bootstrap variance
of θ̂∗ is

var∗(θ̂∗) = V1∗E2∗
(

θ̂∗|S∗1st

)
+E1∗V2∗

(
θ̂∗|S∗1st

)
, (A1)

where the subscripts 1∗ and 2∗ respectively denote the expectation and the variance with
respect to the first-stage and second-stage resampling design in Step 2. Let t′i = ∑k∈U′i

yik

be the total of y-values in U′i in Step 1. The first and the second component of the bootstrap
variance estimator var∗(θ̂∗) in (A1) respectively are

V1∗E2∗
(

θ̂∗|S∗1st

)
= V1∗

N′

n′ ∑
i∈S∗1st

t′i


= N′2

1− f ′1
n′

1
N′ − 1 ∑

i∈U′

t′i −
1

N′ ∑
j∈U′

t′j

2

= N′2
1− f ′1

n′
k1

k1n− 1 ∑
i∈S1st

(
k2imi ȳi −

1
n ∑

j∈S1st

k2jmjȳj

)2
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and

E1∗V2∗
(

θ̂∗|S∗1st

)
= E1∗

N′2

n′2 ∑
i∈S∗1st

M′i
2 1− f ′2i

m′i

1
M′i − 1 ∑

k∈U′i

y∗ik −
1

M′i
∑

l∈U′i

y∗il

2


=
N′

n′ ∑
i∈U′

M′i
2 1− f ′2i

m′i

1
M′i − 1 ∑

k∈U′i

y∗ik −
1

M′i
∑

l∈U′i

y∗il

2

= N′2
1

nn′ ∑
i∈S1st

(k2imi)
2 1− f ′2i

m′i

k2i
k2imi − 1 ∑

k∈Si

(yik − ȳi)
2

= ∑
i∈S1st

(
N′k2imi

)2 1− f ′2i
nn′m′i

k2i(mi − 1)
k2imi − 1

s2
yi,

where ȳi = ∑i∈Si
/mi. In [16], it is claimed that the first and the second components of the

bootstrap variance estimator respectively are

N2 k1(n− 1)
k1n− 1

1− f ′1
n′

s2
t ,

and

N2 ∑
i∈S1st

M2
i

1− f ′2i
nn′m′i

k2i(mi − 1)
k2imi − 1

s2
yi,

see Equation (3.5) in Section 3.2 in [16]. This is true only when

N′ = k1n = N, and k2imi = Mi for all i ∈ S1st. (A2)

In other words, we have to define k1 = N/n and k2i = Mi/mi which is contradictory
to the way Sitter [16] defined k1, n′, k2i, and m′i using Equations (8) and (9).

In the following, we suggest how the method of Sitter [16] can be modified. We first define

k1 =
N
n

and k2i =
Mi
mi

. (A3)

To have the equality between the first and the second component of the bootstrap vari-
ance estimator and the first and the second component of the standard variance estimator
in (3), respectively, we need to have

k1(n− 1)
k1n− 1

(1− f ′1)
n′

=
1− f1

n

=⇒ k1(n− 1)
k1n− 1

1− n′
N

n′
=

1− f1

n

=⇒n′ =
N

1 + 1− f1
f1

k1n−1
k1(n−1)

(A4)

and

k2i(mi − 1)
k2imi − 1

1− m′i
M′i

n′m′i
=

f1

nmi
(1− f2i)

=⇒
1− m′i

Mi

m′i
=

f1(1− f2i)

nmi

n′(k2imi − 1)
k2i(mi − 1)

=⇒m′i =
Mi

1 + f1(1− f2i)
n f2i

n′(k2imi−1)
k2i(mi−1)

(A5)
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Defining k1, n′, k2i, and m′i as in Equations (A3)–(A5), the bootstrap variance estimator
reduces to the usual variance estimator in (3). In the simulation study, the method "Modified
Sitter" refers to the method of Sitter [16] while applying the modified k1, n′, k2i, and m′i
defined in Equations (A3)–(A5). When k1, n′, k2i, or m′i is not integer, we simply rounded it
to the closest integer value.
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