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Abstract: Crop area estimates based on counting pixels over classified satellite images are a promising
application of remote sensing to agriculture. However, such area estimates are biased, and their
variance is a function of the error rates of the classification rule. To redress the bias, estimators (direct
and inverse) relying on the so-called confusion matrix have been proposed, but analytic estimators
for variances can be tricky to derive. This article proposes a bootstrap method for assessing statistical
properties of such estimators based on information from a sample confusion matrix. The proposed
method can be applied to any other type of estimator that is built upon confusion matrix information.
The resampling procedure is illustrated in a small study to assess the biases and variances of estimates
using purely pixel counting and estimates provided by both direct and inverse estimators. The method
has the advantage of being simple to implement even when the sample confusion matrix is generated
under unequal probability sample design. The results show the limitations of estimates based solely
on pixel counting as well as respective advantages and drawbacks of the direct and inverse estimators
with respect to their feasibility, unbiasedness, and variance.
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1. Introduction

Official agricultural statistics usually rely on field surveys based on well-designed
sampling plans. Unfortunately, developing countries face financial and organizational
problems in conducting such periodic inventories [1], and the current free access to satellite
imagery offers an attractive complementary or even alternative solution. For many years,
remote sensing has been advocated for boosting the precision of such censuses [2], using
the so-called “regression” estimator to reduce the sampling variance of the field surveys.
Unfortunately, the relative efficiency of the approach remained limited [3].

More recently, entire image classification at country level provided cheap crop maps,
and temptation became high to just proceed to crop classes pixel counting to obtain crop
areas [4]. Unfortunately, image classification is subject to errors (omissions and commis-
sions [5] so that the results obtained are generally biased although exempt from sampling
variance.

Instead of conceiving the use of imagery as a way to reduce the sampling variance
of estimates derived from agricultural surveys, the idea proposed in this paper is to use
the ground survey data firstly to correct the bias of an exhaustive image classification and
secondly to propagate the errors of the classification rule to derive precision for the crop
area estimates.

In 1982, the direct estimator based on image classification was proposed [6]. Later,
in 1988, the inverse estimator was introduced [7], leading to a discussion about how direct
and inverse estimators should be chosen [8]. Both can be used to redress the biased “pixel
counting” estimators by using the so-called confusion matrix of the classification rule.
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However, the problem of assessing their bias level as well as the variance of their estimates
has not been addressed yet. In practice, no attempt to report variances is made because
no variance formula is provided by [6–8]. The fact that the choice of the appropriate
estimator depends on the sampling approach to the ground data collection has also not
been discussed yet, representing another literature gap. In this paper, direct and inverse
estimators are reviewed, and a discussion about how their feasibility in practice depends
on the sampling strategy to collect data on the ground is provided. In addition, bootstrap is
proposed as a statistical resampling method useful to assess both bias and variance of the
direct and inverse estimators. A bootstrap algorithm based on information from a sample
confusion matrix is introduced so as to properly consider the sampling strategy used to
generate the sample data used by the estimators. The proposed method can be applied to
any other type of estimator that is built upon confusion matrix information.

This paper is structured in six sections, including this introduction. Section 2 intro-
duces types of errors and the direct and inverse calibration estimators. Section 3 discusses
the feasibility of using the considered estimators in practice depending on how ground
data are collected. Section 4 introduces a brief review on the bootstrap method and presents
a bootstrap algorithm for assessing crop area estimates produced via confusion matrices.
Section 5 illustrates the application of the proposed resampling method to assess statistical
properties of estimates based only on pixel counting and estimates provided by the direct
and inverse estimators. Section 6 includes concluding remarks.

2. Remote Sensing Estimates

Estimation of crop areas using pixel counting is subject to at least two sources of errors:
mixed-borders pixels and misclassification of pure pixels. Considering the territory of
interest is completely covered by satellite imagery, and assuming the effect of mixed border
pixels can be neglected, the bias due to misclassification of pure pixel counting on crop area
estimates can be defined with respect to an error matrix.

Consider the classification of images of the whole territory of interest leading to the
identification of M classes of land covering so that R = (A+1, A+2, . . . , A+M)′ is an M× 1
column vector with the total area of pixels classified in each type of class. The actual areas
are represented by T = (A1+, A2+, . . . , AM+)

′ , an M× 1 column vector with the truth total
area of classes found on the ground. The error matrix, also called confusion matrix, is an
M×M matrix A so that its elements are areas classified according to remote sensing image
and ground truth:

A =


A11 A12
A21 A22

· · · A1M
A2M

...
...

. . .
...

AM1 AM2 · · · AMM

.

The elements of the error matrix A, denoted by Agc, are areas of class g (ground), also
classified as class c by pixel counting. All these components can be arranged into a table
with the same structure as the partitioned matrix Q, which is given by:

Q =

(
A T
R′ A++

)
(M+1)×(M+1)

.

Table 1 illustrates an example of such a matrix in tabular form, with only three classes
of land cover: wheat, corn, and soy. Such structure assumes the image classification
algorithm is capable of correctly identifying the classes on the ground (absence of clouds).
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Table 1. Example of a Q matrix in table form.

Crop Area Classification
Remote Sensing Classification

Total
Wheat Corn Soy

Wheat A11 A12 A13 A1+
Corn A21 A22 A23 A2+

Ground
truth
classes Soy A31 A32 A33 A3+
Total A+1 A+2 A+3 A++

In Table 1, A11, A22, and A33 represent area estimates of wheat, corn, and soy, respec-
tively, using pixels correctly classified as the corresponding ground truth data. In addition,
A21 and A31 represent area estimates of wheat based on pixel counting that are indeed areas
of corn and soy, respectively. The summation (A21 + A31) = Φ1 is called the commission
error related to the wheat area estimate. On the other hand, A12 and A13 are wheat ground
area that were mistakenly estimated as corn and soy areas, respectively, using pixel count-
ing. The summation (A12 + A13) = Ψ1 is called the omission error related to wheat estimate.
The vectors R′ and T are, respectively, the row and the column marginals of the Table 1,
while A++ represents the total number of pixels classified over the considered territory.

Total Area and Bias Estimation

Error matrix A and column vector T are unknown in practice. T is the parameter of
interest. Estimating the total crop areas of T based only on R is subject to a bias given
by the difference between the commission and the omission errors. Let Rc represent the
crop c area estimator based solely on pixel counting and Tc be the ground truth area of
the same crop. Define Bc = Bc(Rc, Tc) as the bias of the estimator Rc for the total area Tc.
Let Φc = A+c − Acc and Ψc = Ac+ − Acc be the commission and the omission error related
to such estimate, respectively. Then,

Bc = Φc −Ψc = A+c − Ac+. (1)

Denoting by B = (B1, B2, . . . , BM)′ , the column vector of biases for each of the M
classes’ estimates, one can write:

B = R− T. (2)

Define DR = diag(A+1, A+2, . . . , A+M) as the diagonal matrix with the R information
in the main diagonal. Let the following relative error matrix be defined:

Eg|c = AD−1
R =


A11/A+1 A12/A+2
A21/A+1 A22/A+2

· · · A1M/A+M
A2M/A+M

...
...

. . .
...

AM1/A+1 AM2/A+2 · · · AMM/A+M

;

Eg|c is a matrix with conditional probabilities that a pixel is over the ground truth class
g given the pixel is classified as c. Its column vectors are the relative columns frequencies
of the table based on matrix Q. Hence,

T = Eg|cR. (3)

Based on expression (3), if Êg|c denotes an unbiased estimator for Eg|c, then one can use

T̂1 = Êg|cR (4)

as an unbiased estimator of T.
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Following a similar reasoning, let DT = diag(A1+, A2+, . . . , AM+) be the diagonal
matrix with the T information in the main diagonal and Ec|g the relative error matrix
given by:

Ec|g = A′D−1
T =


A11/A1+ A21/A2+
A12/A1+ A22/A2+

· · · AM1/AM+

AM2/AM+

...
...

. . .
...

A1M/A1+ A2M/A2+ · · · AMM/AM+

;

Ec|g is a matrix with conditional probabilities that a pixel is classified as class c given
the ground truth class is g. Its column vectors are relative row frequencies of the table
based on matrix Q. Therefore,

R = Ec|gT. (5)

If Ec|g is non-singular, then it is possible to write

T = E−1
c|g R. (6)

If Ê−1
c|g is an unbiased estimator for E−1

c|g , one can use

T̂2 = Ê−1
c|g R (7)

as an unbiased estimator for T.
Approximately unbiased estimators Êg|c and Ê−1

c|g can be defined depending on the
availability of further data. Suppose ground information can be observed for a sample of
n test points, following Gallego’s recommendations [5] (p. 252) so that a sample M×M
error matrix a is available:

a =


a11 a12
a21 a22

· · · a1M
a2M

...
...

. . .
...

aM1 aM2 · · · aMM

.

The elements agc of the sample error matrix a are areas of class g (ground) classified as
class c by pixel counting over a set of sampling testing points. a provides information that
can be used to estimate A.

Let r = (a+1, a+2, . . . , a+M)′ be an M× 1 column vector with the total area of sample
test pixels classified in each type of class. Let t = (a1+, a2+, . . . , aM+)

′ be an M× 1 column
vector with the truth total areas of classes found on the sample ground points. All these
components can be arranged into a table with the same structure as the partitioned matrix q,
which is given by:

q =

(
a t
r′ a++

)
(M+1)×(M+1)

,

with a++ = n.
Define the following diagonal matrices based on q: Dr = diag(a+1, a+2, . . . , a+M) and

Dt = diag(a1+, a2+, . . . , aM+). Then, one can define Êg|c = eg|c, and Ê−1
c|g = e−1

c|g so that:

eg|c = aD−1
r =


a11/a+1 a12/a+2
a21/a+1 a22/a+2

· · · a1M/a+M
a2M/a+M

...
...

. . .
...

aM1/a+1 aM2/a+2 · · · aMM/a+M

,
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and

ec|g = a′D−1
t =


a11/a1+ a21/a2+
a12/a1+ a22/a2+

· · · aM1/aM+

aM2/aM+

...
...

. . .
...

a1M/a1+ a2M/a2+ · · · aMM/aM+

.

The two estimators previously written as T̂1 and T̂2 assume the form of the known
direct and inverse calibration type estimators, respectively, defined by:

The direct calibration estimator:

T̂Direct = eg|cR =


a11/a+1 a12/a+2
a21/a+1 a22/a+2

· · · a1M/a+M
a2m/a+M

...
...

. . .
...

aM1/a+1 aM2/a+2 · · · aMM/a+M




A+1
A+2

...
A+M

; (8)

The inverse calibration estimator:

T̂Inverse = e−1
c|g R =


a11/a1+ a21/a2+
a12/a1+ a22/a2+

· · · aM1/aM+

aM2/aM+

...
...

. . .
...

a1M/a1+ a2M/a2+ · · · aMM/aM+


−1

A+1
A+2

...
A+M

, (9)

for nonsingular ec|g.
The bias B for using only R as crop area estimates for T can then be assessed depending

on the calibration estimator used:

B̂Direct = R− T̂Direct; (10)

or
B̂Inverse = R− T̂Inverse. (11)

T̂Direct and T̂Inverse are nonlinear estimators. Analytical expressions for their variances
depend on how the sample of test points that generated the matrix q was selected and
may not be simple to derive. Although Taylor linearization technique could be applied to
assess the direct estimator, assessment of the inverse estimator variance is not a simple task.
In this paper, a bootstrap algorithm to estimate the variances of both estimators is intro-
duced, which takes into account unequal probability sample designs. The same algorithm
idea can be adapted to assess any estimator built upon confusion matrices’ information.

3. Feasibility of Estimators in Practice

Direct and inverse calibration estimators rely on estimates of conditional probabilities
Êg|c = eg|c, and Ê−1

c|g = e−1
c|g , respectively.

Let P(G = i, C = j), i = 1, 2, . . . , M, j = 1, 2, . . . , M be the joint probability of a pixel
being on the ground of crop i and being classified as crop j. Let P(G = i) be the probability
that a pixel is over a ground truth crop i and P(C = j) be the probability that a pixel is
classified as crop j. Then, it is possible to write:

P(G = i) =
M

∑
j=1

P(G = i, C = j) =
M

∑
j=1

P(G = i|C = j)P(C = j); (12)

P(C = j) =
M

∑
i=1

P(G = i, C = j) =
M

∑
i=1

P(C = j|G = i)P(G = i). (13)
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The direct calibration estimator defined in (8) relies on the relationship between the
joint probabilities and the conditional probabilities expressed by (12), while the inverse
calibration estimator defined in (9) relies on the relationship described in Equation (13).

The need to reach the joint distribution P(G = i, C = j) is addressed through the
conditional probabilities P(G = i|C = j) and P(C = j|G = i), estimated by a sample of test
points. In practice, the following strategies to collect testing points could be considered:

Strategy 1. Bivariate classification of points (Bivariate): To randomly select a set of geographical
coordinates in the region of interest and then to observe their category in the image (image
classification) and over the field (ground truth).

The Bivariate strategy of classification provides direct information of the joint prob-
abilities P(G = i, C = j), allowing the choice of using either T̂Direct or T̂Inverse. However,
field work costs involved with this procedure may lead to its non-feasibility in practice.

Strategy 2. Classification by Remote Sensing (RS): To use stratified sampling by randomly
selecting a set of pixels in each classified image category and to later observe their ground
truth class in the field.

The RS strategy of classification can provide information about the conditional prob-
abilities P(G = i|C = j) , allowing the use of the direct estimator T̂Direct. However, such
strategy may also represent a challenge to be implemented in practice due to field costs.
If this strategy is used, it is not possible to estimate P(C = i|G = j) , and so the inverse
estimator has no theoretical basis to be chosen.

Strategy 3. Classification by Ground (G): To use stratified sampling by randomly selecting
a set of points over each ground truth category in the field and to later check about their
image classification.

The G strategy of classification provides information about the conditional proba-
bilities P(C = j|G = i) so that the inverse calibration estimator T̂Inverse can be used. If
this strategy is implemented, it is not possible to estimate P(G = i|C = j) , so there is no
theoretical justification to choose the direct estimator even though considering organizing
the field work this way tends to be more cost-effective. Therefore, the choice of the G
strategy of classification seems to be the one with most appeal to be used in practice.

It is possible that both direct and inverse estimators could suffer instability when the
number of pixels observed is not large enough [8]. Agreement between the interpretation
of the classification rules and the surveyed ground classes is essential. Inverse estimator
is not feasible if nearly singular sample confusion matrices are observed. This can be a
consequence, for example, of a poor classification algorithm. Inversibility of the sample
confusion matrix is ensured when the classification rule is deemed minimally acceptable in
practice [9] so that:

P(C = i|G = i) > 0.5 for all i = 1, 2, . . . , M.

Further, caution is also needed when the image classification imposes the use of more
categories (i.e., a class corresponding to cloudy areas) than the reality seen on the ground,
leading to rectangular sample confusion matrices. Inverse estimators based on completing
such matrices with zeroes are not guaranteed to work. In addition, an extra source of
care is needed concerning the sample design used to select the testing points. Strategies
1 to 3 mention the use of random samples in the sense that probability sample designs
are employed. Such designs may range from equal probability sampling to more complex
selection methods. The bootstrap method proposed in this paper considers the possibility
that an unequal probability sample design is used to generate the sample confusion matrix.
In case of unequal probability sampling, the direct and inverse estimators also have to be
weighted in function of inclusion probabilities. In this case, the sample confusion matrix
a =

{
âgc
}

must be composed by design-consistent estimators using sampling weights
defined as the inverse of inclusion probabilities πk.
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4. Bootstrap Resampling

Bootstrap is a computer-intensive statistical methodology introduced by Efron in
1979 [10], which replaces complex analytical procedures by computer intensive empirical
analysis. It relies on Monte Carlo method, where several random resamples are drawn from
a given original sample. The bootstrap method has been applied in a variety of situations
(e.g., [11–14]). Several authors provide comprehensive discussion of the bootstrap method.
Beaumont [15], Efron and Tibshirani [16], Hersterber [17], and Shao and Tu [18] are some
of them.

Consider a random sample y = (y1, . . . , yn)
T of size n, where each element is a random

draw from the random variable Y, which has the distribution function F = F(θ), and θ
is the parameter that indexes the distribution. Here, θ is viewed as a functional of F, i.e.,
θ = T(F). Let θ̂ be an estimator of θ based on y so that it is possible to write θ̂ = S(y).
The application of the bootstrap method consists in obtaining a large number of pseudo-
samples y∗ =

(
y∗1 , . . . , y∗n

)T from the original sample y and then extracting information
from these pseudo-samples to improve inference.

In principle, there are two different ways of obtaining and evaluating bootstrap
estimates: non-parametric bootstrap, which does not assume any distribution of the popu-
lation, and parametric bootstrap, which assumes a particular distribution for the sample at
hand [19]. In the parametric version, the bootstrap samples are obtained from F

(
θ̂
)
, which

is expressed here as Fθ̂ , whereas in the nonparametric version, they are obtained from the
empirical distribution function F̂ through sampling with replacement. The nonparametric
bootstrap does not entail parametric assumptions.

Let BF
(
θ̂, θ
)

be the bias of the estimator θ̂ = S(y); that is,

BF
(
θ̂, θ
)
= EF

(
θ̂ − θ

)
= EF[S(y)]− T(F), (14)

where the subscript F indicates that expectation is taken with respect to F. The boot-
strap estimators of the bias in the parametric and nonparametric versions are obtained
by replacing the true distribution F, which generated the original sample, with Fθ̂ and F̂,
respectively, in (13). Therefore, the parametric and nonparametric estimates of the bias are
given, respectively, by:

BFθ̂

(
θ̂, θ
)
= EFθ̂

[S(y)]− T
(

Fθ̂

)
, (15)

and
BF̂
(
θ̂, θ
)
= EF̂[S(y)]− T

(
F̂
)
. (16)

If B bootstrap samples
(
y∗1, y∗2, . . . , y∗B

)
are generated independently from the

original sample y, and the respective bootstrap replications (θ̂∗1, θ̂∗2, . . . , θ̂∗B) are calculated
where θ̂∗b = S

(
y∗b
)

, b = 1, 2 . . . , B, then it is possible to approximate the bootstrap
expectations EFθ̂

[S(y)] and EF̂[S(y)] by the average

θ̂∗(.) =
1
B

B

∑
b=1

θ̂∗b.

Therefore, the bootstrap bias estimates based on B replications of θ̂ are:

B̂Fθ̂

(
θ̂, θ
)
= θ̂∗(.) − S(y), (17)

and
B̂F̂
(
θ̂, θ
)
= θ̂∗(.) − S(y), (18)
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for the parametric and nonparametric versions, respectively. By using the two bootstrap
bias estimators above, it is possible to obtain estimates that are bias-corrected up to order
O
(
n−1). In addition, bootstrap variances can be assessed using:

V̂(θ̂∗(.)) =
1

B− 1 ∑B
b=1

(
θ̂∗b − θ̂∗(.)

)2
. (19)

A Bootstrap Algorithm for Crop Area Estimates’ Assessment

Monte Carlo simulation based on artificial data has been used to compare the per-
formances of crop area estimators [20]. Bootstrap has been applied to assess accuracy
of agricultural land classifications relying on resampling points on the entire territory
of interest [21]. In this paper, the interest is to explore the potential for using bootstrap
methods to assess crop estimates generated by estimators that are function of confusion
(error) matrices, such as the direct and the inverse estimators. Hence, a bootstrap algorithm
is proposed, built upon the use of confusion matrix sample information.

Define U as the set of all N pixel points needed to cover the entire territory of interest.
The elements (pixel points) of such set need not be identifiable, but they are rather deemed
to be used to build the matrix Q.

Direct and inverse estimators presented depend upon data provided by a sample
S ⊂ U of n testing pixel points to compose a sample confusion matrix a. Consider sample
S is selected from U using one of the three strategies listed on the last section by a probability
sampling design p(.). Define Ik = 1 if pixel k ∈ S and Ik = 0 if pixel k /∈ S so that
πk = P(Ik = 1) is the first order inclusion probability for k ∈ U.

Let Q̂(S) = q0 be the sample matrix estimate for the matrix Q based on the probability
sampling design p(.) so that:

q0 =

(
a0
rT

0

t0
a0
++

)
.

a0 =
{

âgc
}

is the sample confusion matrix built upon the classification of all n pixel
points in S. Let γk(g, c) = 1 if pixel k is classified as crop g on the ground and class c by the
satellite image; otherwise, γk(g, c) = 0,. Then, each element of a0 can be written as:

âgc = ∑k∈S
γk(g, c)

πk
= ∑k∈U

γk(g, c)
πk

Ik. (20)

In 2020, Conti et al. provided the asymptotic theory needed to support selecting
bootstrap samples in two phases where, in the first phase, a pseudo-population U∗ is
predicted and calibrated to the size of the original population U, and in the second phase,
bootstrap resamples are selected conditionally from U∗ based on the original sampling
design p(.) [22]. The following are proposed algorithms adapted from them to fit the crop
area estimation scenario:

Bootsrtrap Algorithm to be Used with a Bivariate Strategy of Point Classification:

Step 1. Build a multinomial pseudo-population:

Let i = 1, 2, . . . , N be a sequence of independent trials where for each i, a pixel k ∈ S is
selected for the pseudo-population with probability pk = πk/ ∑j∈S πj. If pixel k is selected
for the pseudo-population, information regarding the two-way classification of pixel k is
also retained. Let δik = 1 if pixel k ∈ S is selected at the i-th trial; otherwise, δik = 0. Recall
that γk(g, c) = 1 if pixel k is classified as crop g on the ground and class c by the satellite
image; otherwise, γk(g, c) = 0. Then, the retained two-way classification of a pixel i ∈ U∗,
γi(g, c) can be written as:

γi(g, c) = ∑
k∈S

δikγk(g, c). (21)

The pseudo-population U∗ is then composed by the set of N pixels selected from S and
their respective classification γi(g, c), for i = 1, 2, . . . N.
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Step 2. Select the b-th bootstrap sample:

Select a probability sample of n pixels from the pseudo-population Sb ⊂ U∗ using the same
sample design p(.) used to generate the original sample S ⊂ U. This means to select Sb
with inclusion probability πi = ∑k∈S δikπk. Keep the values γi(g, c) for those i ∈ Sb.

Step 3. Build the b-th bootstrap sample confusion matrix ab =
{

a(b)gc

}
:

a(b)gc = ∑
i∈Sb

γi(g, c)
πi

, (22)

and calculate:

rT
b =

(
a(b)+1, a(b)+2, . . . , a(b)+M

)
= ∑M

g=1

(
a(b)g1 , a(b)g2 , . . . , a(b)gM

)
,

tb =
(

a(b)1+, a(b)2+, . . . , a(b)M+

)
= ∑M

c=1

(
a(b)1c , a(b)2c , . . . , a(b)Mc

)
,

and a(b)++ = ∑M
g=1 ∑M

c=1 a(b)gc .

Step 4. Calculate the b-th bootstrap sample conditional probability matrices:

eb
g|c =

{
p(b)g|c

}
=

 a(b)gc

a(b)+c

, (23)

eb
c|g =

{
p(b)c|g

}
=

 a(b)gc

a(b)g+

, (24)

for g = 1, 2, . . . M and c = 1, 2, . . . M.

Step 5. Calculate the b-th bootstrap estimates and keep their values:

Let R0 be the observed crop area estimates for the territory of interest based solely on pixel
counting from satellite image. R0 is the only component of Q that is known:

Q =

(
A T
R′0 A++

)
.

Calculate the b-th bootstrap estimates using:

T̂(b)
Direct = eb

g|cR0, (25)

and
T̂(b)

Inverse = eb
c|g
−1R0. (26)

Step 6. Repeat steps 2 to 5 for b = 1, 2, . . . B, where B is the desired number of bootstrap
replicated samples.

Step 7. Calculate the bootstrap estimates and respective variances:

T̂Bootstrap
Direct =

1
B ∑B

b=1T̂(b)
Direct ; (27)

ˆVarBootstrap
(
T̂Direct

)
=

1
B− 1 ∑B

b=1

(
T̂(b)

Direct − T̂Bootstrap
Direct

)2
. (28)

T̂Bootstrap
Inverse =

1
B ∑B

b=1T̂(b)
Inverse ; (29)
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ˆVarBootstrap
(
T̂Inverse

)
=

1
B− 1 ∑B

b=1

(
T̂(b)

Inverse − T̂Bootstrap
Inverse

)2
. (30)

One should note that the possibility of calculating the two bootstrap estimators, direct
and inverse, relies on the fact that a Bivariate strategy of classification of testing points is
used, as described in Section 3. However, as discussed in the same section, a G strategy of
classification of points is the one that is feasible in practice. If the G strategy is adopted,
the bootstrap algorithm steps 1 and 2 must be implemented for each ground category
g = 1, 2, . . . , M independently. The modified steps 1 and 2 can be written as:

Modified Bootstrap Algorithm Steps for Using with G strategy of Point Classification:

Step 1. Build a multinomial-product pseudo-population for a G strategy:

Let Sg be the sample of ng = n/M test points selected using the G strategy to compose the
sample confusion matrix a for g = 1, . . . , M based on the probability sample design pg(.).
Let i = 1, 2, . . . , N/M be a sequence of independent trials, where for each i, a pixel k ∈ Sg is
selected for the pseudo-population stratum Ug with probability pk = πk/ ∑j∈Sg πj. If pixel
k is selected for the pseudo-population stratum Ug, information regarding the two-way
classification of pixel k is also retained. Let δik = 1 if pixel k ∈ Sg is selected at the i-th trial,
and δik = 0 otherwise. Recall that γk(g, c) = 1 if pixel k is classified as crop g on the ground
and class c by the satellite image; and γk(g, c) = 0 otherwise. Then, the retained two-way
classification of a pixel i ∈ U∗g , γi(g, c) can be written as:

γi(g, c) = ∑
k∈Sg

δikγk(g, c). (31)

The pseudo-population stratum U∗g is then composed by the set of N/M pixels selected
from Sg and their respective classification γi(g, c) for i = 1, 2, . . . N/M. The pseudo-
population is so that U∗ = ∪N/M

g=1 U∗g , with all two-way classification information retained.

Step 2. Select the b-th bootstrap sample under the G strategy:

Let Ug and U∗g be the set of pixels in the population stratum g and pseudo-population
stratum g, respectively. For each g = 1, 2, . . . , M, select a probability sample of n/M pixels
S(b)

g ⊂ U∗g using the same sample design pg(.) used to generate the original sample Sg ⊂ Ug.

This means to select S(b)
g from U∗g with inclusion probability

πi|g = ∑k∈S(b)
g

δikπk,

and keep the values γi(g, c) for those i ∈ S(b)
g .

In this case, only the bootstrap inverse estimator makes sense to be calculated. Therefore,
in step 4, only Equation (24) should be calculated, and in step 5, only the inverse estimator
defined by Equation (26) should be calculated. In step 7, only Equations (29) and (30) apply.

If the RS strategy is used instead, then the bootstrap algorithm steps 1 and 2 must be
implemented for each class category c = 1, 2, . . . , M independently. The modified steps 1
and 2 are given by:

Modified Bootstrap Algorithm Steps for Using with RS strategy of Point Classification:

Step 1. Build a multinomial-product pseudo-population for an RS strategy:

Let Sc be the sample of nc = n/M test points selected using the RS strategy to compose the
sample confusion matrix a for c = 1, . . . , M based on the probability sample design pc(.).
Let i = 1, 2, . . . , N/M be a sequence of independent trials, where for each i, a pixel k ∈ Sc is
selected for the pseudo-population stratum Uc with probability pk = πk/ ∑j∈Sc πj. If pixel
k is selected for the pseudo-population stratum Uc, information regarding the two-way
classification of pixel k is also retained. Let δik = 1 if pixel k ∈ Sc is selected at the i-th trial,
and δik = 0 otherwise. Recall that γk(g, c) = 1 if pixel k is classified as crop c on the ground
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and class c by the satellite image; and γk(g, c) = 0 otherwise. Then, the retained two-way
classification of a pixel i ∈ U∗c , γi(g, c) can be written as:

γi(g, c) = ∑
k∈Sc

δikγk(g, c). (32)

The pseudo-population stratum U∗c is then composed by the set of N/M pixels selected
from Sc and their respective classification γi(g, c) for i = 1, 2, . . . N/M. The pseudo-
population is so that U∗ = ∪N/M

c=1 U∗c , with all two-way classification information retained.

Step 2. Select the b-th bootstrap sample under the RS strategy:

Let Uc and U∗c be the set of pixels in the population and pseudo-population, respectively,
with image classification c. For each c = 1, 2, . . . , M, select a probability sample of n/M
pixels S(b)

c ⊂ U∗c using the same sample design p(.) used to generate the original sample
Sc ⊂ Uc. This means to select S(b)

c from U∗c with inclusion probability

πi|c = ∑k∈S(b)
c

δikπk.

Keep the values γi(g, c) for those i ∈ S(b)
c .

In this case, only the bootstrap direct estimator makes sense to be calculated. Therefore,
in step 4, only Equation (23) should be calculated, and in step 5, only the inverse estimator
defined by Equation (25) should be calculated. In step 7, only Equations (27) and (28) apply.

5. Application and Results

The proposed method is illustrated using data built upon the joint probabilities de-
scribed in Table 2. The numbers correspond to a scenario where the crop areas of wheat,
rapeseed, corn, sugar beet, and others are present in a given territory in the proportions of
25%, 5%, 10%, 20%, and 40%, respectively. The classification rule is such that 0.2/0.25 = 0.8
of the area with wheat is correctly classified. The proportion of correct classification for
rapeseed, corn, sugar beet, and others are 0.6, 0.8, 0.6, and 0.6, respectively, all satisfying
the condition to be practically minimally acceptable [9].

Table 2. Joint probabilities for the artificial data set.

Crop Area
Classification

Remote Sensing Classification
Total

Wheat Rapeseed Corn Sugar Beet Others
Wheat 0.2 0.02 0.005 0.005 0.02 0.25
Rapeseed 0.01 0.03 0 0 0.01 0.05
Corn 0.001 0.01 0.08 0.005 0.004 0.1
Sugar beet 0.005 0.015 0.04 0.12 0.02 0.2

Ground
truth
classes

Others 0.1 0.02 0.01 0.03 0.24 0.4
Total 0.316 0.095 0.135 0.16 0.294 1

It is assumed the area of the territory of interest is covered by 1 million pixels (N) that
are classified generating an estimate of areas by pixel counting so that the proportion of area
cultivated by wheat is 31.6%, by rapeseed 9.5%, by corn 13.5%, by sugar beet 16%, and by
other crops (others) 29.4%. Such estimates reveal the classification rule overestimates wheat,
rapeseed, and corn and underestimates sugar beet and others. The set of 1 million pixels is
the population U, and the estimates based purely on pixel counting for this population is
the R vector that corresponds to the marginal column of Table 2 multiplied by 1 million.

Assessment of purely pixel counting estimates and estimates generated by direct and
inverse estimators was done for the three strategies of collecting test points, as described in
Section 3.
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Bivariate strategy was first investigated using simple random sampling of a thousand
pixels that are classified based on the ground and based on the satellite image, generating
Table 3.

Table 3. Test points classification using Bivariate strategy, with 1000 pixels selected by simple
random sampling.

Crop Area
Classification

Remote Sensing Classification

Wheat Rapeseed Corn Sugar Beet Others
Wheat 201 23 6 3 19
Rapeseed 11 36 0 0 7
Corn 4 8 82 6 5
Sugar beet 4 17 38 117 19

Ground
truth
classes

Others 108 31 7 29 219

Table 3 information is used to generate a sample confusion matrix a with crop area
estimates. For example, the confusion matrix area for the classification g = 1, c = 1,
is provided by:

â11 = 1,000,000×∑
i∈S

γi(1, 1)
1000

= 1000× 201 = 201,000.

The elements of the confusion matrix can also be represented by the estimated propor-
tion of each crop area classification. In such a case,

â11 = ∑
i∈S

γi(1, 1)
1000

= 0.201.

The confusion matrix is then used to provide input for the direct and inverse calibra-
tion estimators.

The proposed bootstrap algorithm was used to first generate a pseudo-population
U∗ of size 1 million, built upon the set of test points classified in Table 3 and then, at each
replicate b, to select a new set of 1000 points using strategy 1 and simple random sampling
to generate ab and to compose the direct and inverse estimates.

RS strategy of classification of selected test points was then investigated using inde-
pendent simple random sampling of two hundred pixels within each class of crop classified
by remote sensing. This corresponds to use the columns of Table 2 as strata to select the
test points. The selected points are then classified based on the ground, generating Table 4.

Table 4 information can only be used to generate a sample confusion matrix a with
crop area estimates based on probabilities conditioned to the remote sensing classification
(columns). For example, the confusion matrix proportion area for the classification g = 1,
given a pixel is classified as c = 1, is provided by:

â11 = ∑
i∈S1

γi(1, 1)
200

=
127
200

= 0.635.

Therefore, it only makes sense to use such information to calculate estimates by the
direct estimator.
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Table 4. Test points classification using RS strategy, with 200 pixels selected by simple random
sampling from each set of remote sensing class independently.

Crop Area
Classification

Remote Sensing Classification

Wheat Rapeseed Corn Sugar Beet Others
Wheat 127 44 11 4 10
Rapeseed 4 49 0 0 9
Corn 1 27 119 5 4
Sugar beet 4 29 56 160 17

Ground
truth
classes

Others 64 51 14 31 160
Total 200 200 200 200 200

The proposed bootstrap algorithm, with modified steps 1 and 2 to strategy 2, was
used to first generate a pseudo-population U∗ of size 1 million, built upon the set of
test points classified in Table 4 and then, at each replicate b, to select independently a
new set of 200 points for each class of remote sensing using simple random sampling.
The data generate ab, and estimates are calculated using the direct estimator. Although
inappropriate, the inverse estimator was also calculated for each bootstrap replicate for the
sake of illustration.

G strategy was studied using independent simple random sampling of two hundred
pixels within each class of crop classified on the ground. This corresponds to use the rows
of Table 2 as strata to select the test points. The selected points are then classified based on
remote sensing, generating Table 5.

Table 5. Test points classification using G strategy, with 200 pixels selected by simple random
sampling from each set of ground class independently.

Crop Area
Classification

Remote Sensing Classification
Total

Wheat Rapeseed Corn Sugar Beet Others
Wheat 163 14 3 6 14 200
Rapeseed 37 124 0 0 39 200
Corn 3 25 150 15 7 200
Sugar beet 7 15 37 117 24 200

Ground
truth
classes

Others 57 15 3 12 113 200

Table 5 information can only be used to generate a sample confusion matrix a with
crop area estimates based on probabilities conditioned to the ground classification (rows).
For example, the confusion matrix proportion area for the classification c = 1, given a pixel
is on the ground class g = 1, is provided by:

â11 = ∑
i∈S1

γi(1, 1)
200

=
163
200

= 0.815.

Therefore, it only makes sense to use such information to calculate estimates by the
inverse estimator.

The proposed bootstrap algorithm, with steps 1 and 2 modified to strategy 3, was
used to first generate a pseudo-population U∗ of size 1 million, built upon the set of test
points classified in Table 5 and then, at each replicate b, to select independently a new set of
200 points for each ground class using simple random sampling. The data generate ab, and
estimates are calculated using the inverse estimator. Although inappropriate, the direct
estimator was also calculated for each bootstrap replicate for the sake of illustration.

All the strategies were evaluated using 1000 bootstrap replicates. Figure 1 summarizes
the results for each one, describing the bootstrap distribution of the direct and inverse
estimators for each crop.
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In Figure 1, the dotted line represents the parameter of the population (ground truth, T),
and the solid line represents the estimate based purely on pixel counting (R). Strategy 1
uses a multinomial selection to compose the confusion matrix and hence allows for the use
of either direct or inverse estimators. Focusing on the results of strategy 1, it is possible to
see the bias of the estimates provided by R, based on pixel counting. Clearly, using direct or
inverse estimates results in improvement over the ones from R. Considering crop areas of
sugar beet, both estimators (direct and inverse) provide practically unbiased estimates, with
the direct estimator showing smaller variance. For corn, a small bias is noted for both direct
and inverse estimators, with direct estimator providing smaller variance. For rapeseed,
wheat, and others, one can see that the direct estimator performs better than the inverse,
showing smaller variance and bias.

The analysis of the results under the RS strategy must consider the fact that the
confusion matrix was built based on a multinomial product selection of points per image
classification. Hence, when analyzing the results in Figure 1, only the direct estimator
makes sense to be calculated. For all crops, the estimates provided by the direct estimator
represent an improvement over estimates provided by R, based on pixel counting in the
sense that it redresses considerably the bias. For wheat, rapeseed, and others, the direct
estimator shows smaller bias than for corn and sugar beet. The use of the inverse estimator
is not appropriate in this scenario, and one can see that its performance does not represent
improvement over the R estimates.

The last analysis refers to the G strategy to classify selected testing points. Under this
strategy, confusion matrix is built based on a multinomial product selection of points per
ground classification. Therefore, only the inverse estimator makes sense to be calculated.
Focusing on the results for the G strategy in Figure 1, one can see that for all the crops,
using the inverse estimator represents improvements over the use of R in the sense of
redressing the bias of using only pixel counting estimates. The use of the direct estimator is
not appropriate in this case, and one can see that for rapeseed, corn, and others, the direct
estimator is not acting to diminishing bias. Although for sugar beet and wheat, the direct
estimator has shown a similar effect of bias reduction as the inverse estimator and with
smaller variance, its composition has no support under this scenario and should be avoided.

Figure 2 allows for an analysis emphasizing the effect of the different strategies for
selecting test points over the crop area estimates of corn. In this case, when the Bivariate
strategy is adopted, direct and inverse estimators offer improved estimates in the sense
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that they show smaller bias than the estimate based on pixel counting alone. The use of
either estimator is theoretically justified, and the direct estimator shows smaller variance
than the inverse one.
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Continuing to analyze Figure 2, if the RS strategy is adopted, then only the direct
estimator is theoretically justified. Indeed, the bootstrap distributions show that only the
direct estimator was able to redress considerably the bias for corn area estimates compared
to the estimate based solely on pixel counting (R). On the other hand, if the G strategy is
adopted, only the use of the inverse estimator can be justified. Indeed, one can see that for
the G strategy, the performance of the estimators shows that only the inverse estimator
was able to diminish bias for corn area estimates. In such case, the inappropriate use of
the direct estimator leads to an increase in bias. It should be noted, however, that only the
G strategy has an appeal to be used in practice, as argued in Section 3.

The type of analysis presented for corn in Figure 2 can also be done for the remaining
considered crops. Although they are omitted due to space constraints, they are available
through a GitHub directory. Tables with the summary of statistical properties for each
estimator under each strategy are presented in the Appendix A. When analyzing the
summaries of Tables A1–A3, one should keep in mind that offices of official statistics look
for CVs around 5–10% at the regional level (10,000 km2). Considering that 1 million pixels
of Sentinel 1 (10 × 10 m2) correspond roughly to only 100 km2 and the fact that, very often,
the obtained CVs are below 10%, it is possible to conclude that the obtained precision is
well in line with the needs.

6. Concluding Remarks

Remote sensing has several potential uses in agricultural statistics [23–25], including
estimating crop areas based on pixel counting over satellite images. Such estimates, based
purely on pixel counting, are known to be biased [5,20], and their variance depends upon
the error rates of the classification rule in use even though several studies still use them
with no further assessment of their statistical properties. Keeping the accuracy of the
estimates under some control [26] may depend on factors such as landscape and image
resolution. Direct and inverse calibration estimators reviewed in this paper are built upon
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sample confusion matrix information and intend to redress the bias of estimates based on
pixel counting. Several studies comparing both estimators describe the direct estimator as
presenting the best performance [26,27]. There are instances where the inverse estimator
shows smaller variance [20]. In this paper, we emphasized the fact that the feasibility of
each estimator in practice depends upon the chosen strategy to collect and classify testing
points on the field. Three strategies were discussed in this paper: the Bivariate, the RS and
the G strategy. The G strategy is presented as the one with more practical appeal. If the
G strategy is carried out in practice, the only estimator that is theoretically supported is
the inverse estimator. Even considering the appropriate sampling strategy, assessing their
variance may not be a simple task, as it also depends on the complexity of the sample
design used to build the confusion matrix. In order to cope with this problem, a bootstrap
algorithm was introduced for each sampling strategy, based on information provided by
confusion matrices, that considers unequal inclusion probabilities. A small simulation
study was presented where the statistical properties of the considered estimators were
assessed based on the proposed bootstrap algorithm. The results illustrate the effectiveness
of the bootstrap resampling method to assess direct and inverse calibration estimators
under appropriate strategies. The performances shown are in line with the theoretical
expectations and with the results from other studies [20,21,26–28]. The codes and main
results of the simulation can be found in [29].
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Appendix A

Tables A1–A3 show the summaries of the performances of each estimator of crop
area, assessed by the proposed bootstrap algorithm, with 1000 replicates. Each Table
corresponds to a strategy of sampling testing points in the ground. Estimates of area need
to be multiplied by 1000 to represent the estimated total area in hectares. Estimators are
assessed with respect to standard deviation (Std.Dev.), CV expressed in percentage, and
absolute bias (Bias).

Table A1. Statistical performances per crop for the Bivariate strategy.

Crop Estimator Estimate Std.Dev. CV (%) Bias

Wheat
Direct 243.1 10.45 4.3 −6.5

Inverse 225.6 23.33 10.3 −24.0

Rapeseed
Direct 47.7 5.81 12.2 −2.4

Inverse 19.9 15.66 78.7 −30.2

Corn
Direct 105.8 7.23 6.8 6.0

Inverse 106.4 12.46 11.7 6.6

Sugar beet
Direct 198.2 9.54 4.8 −2.1

Inverse 198.0 17.76 9.0 −2.4

Others
Direct 405.3 13.01 3.2 5.1

Inverse 450.2 28.10 6.2 50.0
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Table A2. Statistical performances per crop for the RS strategy.

Crop Estimator Estimate Std.Dev. CV (%) Bias

Wheat
Direct 247.5 12.14 4.9 −2.2

Inverse 322.8 22.76 7.1 73.2

Rapeseed
Direct 43.0 6.02 14.0 −7.1

Inverse −126.4 20.81 −16.5 −176.5

Corn
Direct 104.6 6.52 6.2 4.9

Inverse 77.0 10.64 13.8 −22.7

Sugar beet
Direct 210.7 9.76 4.6 10.3

Inverse 158.9 15.38 9.7 −41.5

Others
Direct 394.3 14.26 3.6 −6.0

Inverse 567.8 30.22 5.3 167.5

Table A3. Statistical performances per crop for the G strategy.

Crop Estimator Estimate Std.Dev. CV (%) Bias

Wheat
Direct 229.6 6.99 3.0 −20.0

Inverse 219.1 28.82 13.2 −30.6

Rapeseed
Direct 162.8 7.34 4.5 112.7

Inverse 29.0 18.46 63.6 −21.1

Corn
Direct 147.0 5.22 3.6 47.3

Inverse 116.6 12.77 11.0 16.9

Sugar beet
Direct 202.1 6.78 3.4 1.8

Inverse 203.0 20.67 10.2 2.6

Others
Direct 258.5 7.11 2.7 −141.8

Inverse 432.3 36.06 8.3 32.1
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