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Abstract: Previously, Rahardja (2020) paper (in the first reference list) developed a (pairwise) multiple
comparison procedure (MCP) to determine which (proportions) pairs of Multiple Binomial Propor-
tions (with under-reported data), the significant differences came from. Generally, such an MCP test
(developed by Rahardja, 2020) is the second part of a two-stage sequential test. In this paper, we
derived two omnibus tests (i.e., the overall equality of multiple proportions test) as the first part of the
above two-stage sequential test (with under-reported data), in general. Using two likelihood-based
approaches, we acquire two Wald-type (Omnibus) tests to compare Multiple Binomial Proportions
(in the presence of under-reported data). Our closed-form algorithm is easy to implement and not
computationally burdensome. We applied our algorithm to a vehicle-accident data example.

Keywords: omnibus test; two-stage sequential test; multiple binomial proportions; over-reported;
under-reported data; miscategorization; doubly sampled framework

1. Introduction

As stated in the Abstract, this paper is the continuation of Rahardja (2020) paper [1].
In regard to counts-and-proportions (categorical) type of data, the topic of interest here is
about miscategorization of categorical data, particularly, binomial outcome data. For exam-
ple, counts of disease/no-disease cancer screening in a hospital, proportions of male/female
vehicle-driver accidents in an insurance company, counts of correct/incorrect audited pay-
ments in an accounting firm, etc. In an ideal (error-free) world, there is no miscategorization.
Then, the simple and straightforward estimators (counts-and-proportions) taught in an
introductory statistics (Stat 101) course can just be applied. However, the fact that in this
imperfect world, errors or flaws (miscategorization) exist and cannot be ignored because
such presence of under-reported or over-reported errors may create severe bias [2,3]. The
fact that such imperfections exist in this world (due to the presence of under-reported or
over-reported errors) is the motivation behind this research: to remedy the bias by incorpo-
rating a doubly sampled framework and to achieve model identifiability. Consequently
(as a brief overview), our objective here is to provide a (bias remedy) method, by using a
doubly sampled framework, in the presence of either under-reported or over-reported data.
In the next paragraphs, we will go over the bibliography and novelty of this research.

In reality, we frequently run into data structure of a binomial output variable and a
nominal input variable with multiple groups or levels, within that nominal input variable.
In the scenario that both the binomial output variable and the nominal input variable
are perfectly counted with no mistake, one can just use the Pearson chi-square statistics
(taught in a Stat 101 course) to test the relationship between the input and output variables.
Nevertheless, there are data cases where the nominal input variable (for example, a patient-
category nominal input variable with g = 3 levels: male/female/pediatric) is categorized
flawlessly with no error, while the binomial/binary output variable (e.g., disease/no-
disease) is categorized using an error-prone classifier. Such error-prone classifier can
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misclassify a disease-free (male/female/pediatric) patient into disease output category and
vice versa. Therefore, the objective is to examine whether there is any relationship between
the nominal input variable (patient-category, with three levels: male/female/pediatric)
and the binomial output variable. In other words, to test if the patient-category matters
(i.e., testing whether the proportions of the three patient-category are the same, hence,
H0: pmale = pfemale = ppediatric) in determining the output (disease-free/not). Among many
past research, Bross in 1954 [2] and Goldberg in 1975 [3] examined that with error-prone
classifier, the bias can be severe, in their case of determining the odds ratio for misclassified
binomial data with two levels (g = 2) of input variables. Subsequently, to adjust for the bias,
a sampling framework is needed to obtain valid estimators.

In the case that an error-free classifier is also accessible for acquiring the binomial
output variable, one can use a doubly sampled framework, pioneered by Tenenbein in
1970 [4], to reach model identifiability and to remedy bias. Here, is how the doubly
sampled framework operates. First, one chooses either an arbitrary subset from the main
data or another new sample. In the former scenario where one chooses an arbitrary subset
from the main data, the error-free classifier is utilized to attain the correct measurement
of the binomial output variable for such subset. In the second scenario, one chooses
another new sample, and utilize both the error-prone and the error-free classifier to attain
the binomial output variable for such new sample. Additionally, one also measures the
nominal input variable for this new sample. To put it another way, the subset or new
sample can contain three categorical variables: a nominal input variable measured with no
error, a miscategorized output variable by the error-prone classifier, and an output variable
measured with no error by the error-free classifier. In both scenarios, we designate the
sample categorized only by the error-prone classifier for the binomial output variable as the
original study and the sample categorized by both the error-prone and error-free classifiers
for the binomial output variable as the validation substudy. Then, we combine the original
study and the validation substudy to be the overall data, where the inferential statistics are
based on.

There are a lot of bibliography for g equals 1 or 2 (but not for g ≥ 3). When g = 1
and only over-reported or under-reported data exists, Moors et al. in 2000 [5] proposed a
one-sided exact confidence interval and Boese et al. in 2006 [6] devised several likelihood-
based confidence intervals (CIs) for the proportion parameter. Moreover, Raats and Moors
in 2003 [7] and Lee and Byun in 2008 [8] considered Bayesian credible intervals for the
proportion parameter. When g = 1 and both over-reported and under-reported data exist,
Raats and Moors in 2003 [7] obtained both an exact confidence interval and a Bayesian
credible set for the proportion parameter while Lee in 2013 [9] offered a Bayesian approach.
When g = 2 with only over-reported or under-reported data, Rahardja et al. derived both
Bayesian in 2019 [10] and Likelihood-Based inference in 2019 [11] for the difference of
two proportion parameters. For g = 2 with both over-reported and under-reported data,
Prescott and Garthwaite in 2002 [12] offered Bayesian credible interval; while Morrissey and
Spiegelman in 1999 [13] presented likelihood-based confidence intervals for the odds ratio.

Usually, we encounter both over-reported and under-reported data at the same time.
However, occasionally data also exist for only over-reported or only under-reported.
From the existing bibliography, the statistical methods derivation and the correspond-
ing computing-algorithm developments are different and cannot be used automatically
for either type of misclassifications. Hence, it is necessary to specifically derive different
method for each type of misclassification. To date, the bibliography only presented methods
for g = 1 with only one error type (over-/under-reported only); g = 1 for both error types;
g = 2 with only one error type (over-/under-reported only); g = 2 for both error types;
moreover, all their algorithms are non-closed form (except, in all the aforementioned Ra-
hardja et al. [10,11] papers, where algorithms were closed-form) and hence, their algorithms
encountered a lot of computational difficulties, hard to reproduce, and computationally
very burdensome.



Stats 2022, 5 410

Therefore, in light of novelty, in this article, we propose two likelihood-based (two
Wald-type Omnibus Testing: naïve and modified) methods to analyze data obtained via
a doubly sampled framework for g ≥ 3. Without loss of generality (WLOG), here we
limit the scope of our omnibus testing methods to only one error type (under-reported
or over-reported only) data. Again, the objective is to test the relationship between the
nominal input variable (with multiple levels or groups) and the binomial output variable.
Equivalently, this objective translates into H0: p1 = p2 = . . . = pg, or testing the equality of
the multiple binomial proportions among g groups (i.e., the equality of the levels of this
nominal input variable). If the proportions are not significantly different, i.e., H0 is not
rejected, then there is no relationship between the nominal input variable and the binomial
output variable. Vice versa, if H0 is rejected, then there is relationship. The rest of the
article is managed (described) this way. In Section 2 we lay down the data structure. In
Section 3 we formulate two omnibus tests (Wald-type) statistics to test the relationship
between the two variables (input and output). In Section 4, as an example, we demonstrate
our two omnibus tests by employing real data. In Section 5 we assess the Type I error rates
and power of the tests via simulations. Finally, in Section 6, we present the conclusion,
limitations, and future research.

2. Data Structure

In this section, we consider multiple-sample binomial data with only under-reported
data obtained using a doubly sampled framework. Since there has been various discussion
and methods proposed in the literature, for g = 1 and g = 2, here we provide a description
of the kind of data structure that has been discussed (see Table 1 for such data structure
under consideration) and generalized it to g ≥ 3 scenario.

Table 1. Data for group i.

Study Error-Free Classifier
Error-Prone Classifier

0 1 Total

Validation 0 ni00 ni01 ni0·
1 NA ni11 ni11

Total ni00 ni·1 ni
Original NA yi xi mi

NA: Not Available.

As previously mentioned in Section 1, for each of the g groups, the overall data
structure is composed of two independent datasets: the original study and the validation
substudy. Due to economic viability, one only utilizes the perfect classifier in the validation
substudy; while using the imperfect classifier in both the original and validation studies.
We exhibit the summary counts in both the original and the validation studies for the data
structure in Table 1. We let the size of observations mi and ni in both the original and the
validation studies, for each group i (i = 1, . . . , g), respectively. We then define Ni = mi + ni
be the total number of units for group i.

In the original study, we define xi and yi be the numbers of positive and negative
classifications in group i using the error-prone classifier. In the validation study (for
i = 1, . . . , g, j = 0, 1, and k = 0, 1), we denote nijk as the sample size in group i classified as j
and k using the error-free and the error-prone classifiers, respectively.

Here, we have more notations to define. For the jth unit in the ith group, while
i = 1, . . . , g and j = 1, . . . , Ni, we designate Fij and Tij as the binomial output variables
for the error-prone and error-free classifiers, respectively. Note that both Fij and Tij are
observable for all units in both the original and the validation studies, while Tij is only
observable units in the validation substudy. If the result is positive by the error-prone
classifier, we mark Fij = 1; else, Fij = 0. Likewise, we mark Tij = 1 if the result is truly positive
using the error-free classifier; else, Tij = 0. Clearly, misclassification occurs when Fij 6= Tij.

Next, we mark the parameters for group i as follows. Again, in this article, WLOG we
consider under-reported data only, since the same formulation generality will apply (to over-
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reported only), as well. We let the true proportion parameters of interest be pi = Pr(Tij = 1),
the proportion parameters of the error-prone classifier be πi = Pr(Fij = 1), and the false
positive rates of the error-prone classifier be ϕi = Pr(Fij = 1

∣∣Tij = 0) for i = 1, 2, . . . , g.
Note that πi is not an additional unique parameter because it is obtainable by using all
other parameters. In particular, using the law of total probability, we have

πi = Pr(Tij = 1)Pr(Fij = 1
∣∣Tij = 1) + Pr(Tij = 0)Pr(Fij = 1

∣∣Tij = 0) = pi + qi ϕi, (1)

where qi = 1 − pi. In relation to the summary counts arranged in Table 1, we exhibit the
associated cell probabilities in Table 2.

Table 2. Cell probabilities for group i.

Study Error-Free Classifier
Error-Prone Classifier

0 1 Total

Validation 0 qi (1 − ϕi) qi ϕi qi
1 NA pi pi

Original NA 1 − πi πi 1
NA: Not Available.

Our goal is to test the relationship between the categorical (nominal) input variable
and the (binomial) output variable. In other words, whether the levels within the (nomi-
nal) input variable matters (testing equal proportions), in predicting the binomial output
variable. In particular, the statistical hypotheses of interest can be written as

H0 : p1 = p2 = . . . = pg vs. H1 : at least one pair is not equal. (2)

Again, this goal translates into testing the equality of the multiple binomial proportions
among g groups (i.e., if the proportions are not significantly different, or H0 is not rejected,
then there is no relationship between the categorical (nominal) input variable and the
binomial output; and vice versa, if H0 is rejected, then there is association).

3. Methods

In this section we aim to derive two (omnibus) statistical tests for testing the hypotheses
in Expression (2). We begin with estimating the Maximum Likelihood Estimator (MLE)
along with its asymptotic variance-covariance matrix for every single one of the parameters
based on the full-likelihood function. Next, we acquire two chi-square tests for testing the
Expression (2) where the second test is essentially an improved version of the first test.

3.1. The Maximum Likelihood Estimator (MLE)

We display the data structure under consideration in Table 1. For group i, the observed
counts (ni00, ni01, ni11) from the validation substudy have a Trinomial distribution with
total size ni and associated probabilities displayed in an upper right 2 × 2 submatrix in
Table 2, i.e.,

(ni00, ni01, ni11) |pi, ϕi ∼ Trinomial[ni, (qi(1− ϕi), qi ϕi, pi)].

Note that Multinomial Distribution [14] is the generalization of Binomial [15] dis-
tribution. Trinomial Distribution [16] is another special case of Multinomial Distribu-
tion [14]. Moreover, the observed counts (xi, yi) in the original study have the following
binomial distribution:

(xi, yi) |pi, ϕi ∼ Bin[mi, (πi, 1− πi)].
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Since (ni00, ni01, ni11) and (xi, yi) are independent for group i and these cell counts are
independent across groups, up to a constant, the full-likelihood function is

L(η) =
g

∏
i=1

{
[qi(1− ϕi)]

ni00 [qi ϕi]
ni01 pi

ni11 π
xi
i (1− πi)

yi
}

, (3)

where η =
(

p1, ϕ1, . . . , pg, ϕg
)

is the parameter vector.
Directly maximizing (3) with respect to η is not straightforward. Instead of using

numerical methods or non-closed form algorithm (which have been the historical challenges
in the bibliography), we use a reparameterization of η and derive a closed-form solution.
Specifically, we newly introduce

λi =
pi
πi

. (4)

Then, we introduce the new set of parameters to be a vector γ =
(
λ1, π1, . . . , λg, πg

)
.

Via Expression (3), the full log likelihood function in γ is

l(γ) =
g

∑
i=1

[ni11 log λi + ni01 log(1− λi)+ (xi + ni•1) log πi + (yi + ni00) log(1− πi)].

The corresponding score vector has the following form:(
n111

λ1
− n101

1− λ1
,

x1 + n1•1
π1

− y1 + n100

1− π1
, . . . ,

ng11

λg
−

ng01

1− λg
,

xg + ng•1
πg

−
yg + ng00

1− πg

)
. (5)

By setting the above score vector to 0, we obtain the MLE for γ as a vector λ̂i =
ni11/ni•1 and π̂i = (xi + ni•1)/Ni. By solving Expressions (1) and (4) and applying the
invariance property of MLE, the MLE for the vector η is p̂i = π̂iλ̂i and ϕ̂i = (1− λ̂i)π̂i/q̂i.

Using Expression (5), the expected Fisher information matrix I(γ) is computed as a
diagonal matrix with the following diagonal elements:(

n1π1

λ1(1− λ1)
,

N1

π1(1− π1)
, . . . ,

ngπg

λg(1− λg)
,

Ng

πg(1− πg)

)
.

We can inspect that the regularity conditions are fulfilled for this model. Hence, the
MLE γ̂ =

(
λ̂1, π̂1, . . . , λ̂g, π̂g

)
has an asymptotic multivariate normal distribution with

mean γ and covariance matrix I−1(γ), which is a diagonal matrix with the following
diagonal elements:(

λ1(1− λ1)

n1π1
,

π1(1− π1)

N1
, . . . ,

λg(1− λg)

ngπg
,

πg(1− πg)

Ng

)
.

Hence, asymptotically, we have

V(λ̂i) = λi(1− λi)/(niπi) and V(π̂i) = πi(1− πi)/Ni.

Moreover, λ̂1, π̂1, . . . , λ̂g, π̂g are asymptotically independent.
Since p̂i = π̂iλ̂i and λ̂i, π̂i are asymptotically independent, using the Delta method,

the variance of p̂i can be written as follows:

σ2
i =

πiλi(1− λi)

ni
+

λi
2πi(1− πi)

Ni
.

A consistent estimator of σ2
i is

σ̂2
i =

π̂iλ̂i(1− λ̂i)

ni
+

λ̂i
2π̂i(1− π̂i)

Ni
.
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3.2. The Two Chi-Square Tests

Here, we present two chi-square tests: the naïve Wald test and the modified Wald test,
where the second test is essentially an improved version of the first test. The hypotheses in
Expression (2) are equivalent to

H(1)
0 : Cp = 0 vs. H(1)

1 : Not H(1)
0 , (6)

where C =

 1 −1 0 · · · 0
· · · · · · · · · · · · · · ·
1 0 0 · · · −1

 and p =
(

p1, . . . , pg
)
.

3.2.1. Naïve Wald (nWald) Test

Under Expressions (2) or (6), asymptotically, we have

T1 = (Cp̂)T
(

C Σ̂ CT
)−1

(Cp̂) ∼ χ2
g−1,

where p̂ =
(

p̂1, . . . , p̂g
)

and Σ̂ = diag(σ̂2
1 , . . . , σ̂2

g). Hence, we reject the null hypothesis
in Expressions (2) or (6) at Type I error level α if T1 > χ2

g−1,1−α/2, where χ2
g−1,1−α/2 is the

(1− α/2) quantile of the chi-square distribution with g− 1 degrees of freedom. Note that
we derive T1 by applying a naïve Wald test procedure and therefore we name it as a naïve
Wald (nWald) test. Such tests are known to be liberal and tend to have Type I error rates
above the nominal level.

3.2.2. Modified Wald (mWald) Test

To better refine the naïve Wald test, we utilize si = logit(pi). The MLE for si is ŝi = logit( p̂i).
Since the range of si is the real line, the asymptotic distribution of ŝi is better approximated
by a normal distribution than that of p̂i. Subsequently, in what follows we will construct a
test based on ŝi. By the Delta method, we have τ2

i ≡ V(ŝi) = σ2
i /[pi(1− pi)]

2. A consistent
estimator for τi

2 is τ̂2
i = σ̂2

i /[ p̂i(1− p̂i)]
2.

We note that the hypotheses in Expression (2) are also equivalent to

H(2)
0 : Cs = 0 vs. H(2)

1 : Not H(2)
0 , (7)

where s =
(
s1, . . . , sg

)
. Now, because under Expressions (2) or (7), asymptotically, we have

T2 = (Cŝ)T
(

C Ω̂ CT
)−1

(Cŝ) ∼ χ2
g−1,

where ŝ =
(
ŝ1, . . . , ŝg

)
and Ω̂ = diag(τ̂2

1 , . . . , τ̂2
g ).

We reject the null hypothesis in Expressions (2) or (7) at Type I error level α if
T2 > χ2

g−1,1−α/2. Such testing method is called the modified Wald (mWald) test.

4. Example

To demonstrate the two Omnibus tests (nWald and mWald) derived in Section 3 of this
manuscript (as the First Part/Stage of our Two-Stage Sequential Test), here (for example-
continuity purpose), we apply the same vehicle-accident data published by Hochberg
in 1977 [17] and demonstrated by Rahardja in 2020 [1] as the Second Part/Stage of our
Two-Stage Sequential Testing development.

To recap, the narrative of such vehicle-accident data [1,17] is as follows. There are
two classifiers for categorizing accidents into two [output] categories: with injuries (=1)
or without injuries (=0). Our error-prone classifier is the police classifier which is prone
to error. The other error-free classifier (gold standard) is the non-police classifier which
does not miscategorize (e.g., hospital records of injury examination and vehicle-insurance
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company examination). The original study is based on police reports on vehicle accidents
in North Carolina in 1974. The validation substudy is based on accidents that occurred in
North Carolina during an unspecified short period in early 1975. The vehicle-accident data
are displayed in Table 3.

Table 3. Vehicle accident data.

Group Study Error-Free
Classifier

Error-Prone
Classifier

0 1

A (Male and High Vehicle Damage) Validation 0 369 NA
1 75 132

Original NA 19,631 7329

B (Female and High Vehicle Damage) Validation 0 123 NA
1 61 87

Original NA 7692 4004

C (Male and Low Vehicle Damage) Validation 0 529 NA
1 59 39

Original NA 25,542 1886

D (Female and Low Vehicle Damage) Validation 0 249 NA
1 43 30

Original NA 12,461 1539
NA: Not Available.

In such vehicle-accident example [1,17], the objective is to contrast the probability of
injury among four (4) groups: Male and High vehicle damage (A), Female and High vehicle
damage (B), Male and Low vehicle damage (C), and Female and Low vehicle damage (D).
Again, for example and continuity with Rahardja’s manuscript in 2020 [1], we adopt the
same Hochberg vehicle-accident data published in 1977 [17] as displayed in Table 3.

Recall that from Expression (2), the null hypothesis in this context is to test if the
chance of injuries among the four (4) accident groups are equal. Using the two (omnibus)
tests developed in Section 3, the probabilities of injury for the four groups are obtained as
p1 = 0.175, p2 = 0.204, p3 = 0.028, and p4 = 0.046. The chi-square statistics and p-values for
testing the equality of the four proportions are nWald (T1 = 220.67, p-value < 0.0001) and
mWald (T2 = 143.98, p-value < 0.0001). Since the p-value are less than 0.05 (hence, at the
5% level of significance), we conclude that the vehicle-accident study provided enough
statistical evidence in support of an association/relationship between the output (injure
risks) and the (nominal) input variable (with four-level of category: A = Male and High
vehicle damage, B = Female and High vehicle damage, C = Male and Low vehicle damage,
and D = Female and Low vehicle damage) because those risks of injuries (p1 = 0.175,
p2 = 0.204, p3 = 0.028, and p4 = 0.046) are significantly different among those four groups (A,
B, C, D). In other words, the four category as levels of input variable matters in predicting
the injury risks (4-category). Since there were statistically significant differences among
the four-level of input variable, then it is necessary to proceed to the Second Part/Stage (of
the Two-Stage Sequential Testing Procedures) to determine which pair(s) contributes the
proportions difference. In addition to the numeric version of results described above (in
terms of test statistics, p-value, and probabilities of injuries), it is also evidenced from the
graphical version of results graphed in Figure 1—visually, the height (probabilities) of the
histogram showed significant different among the four accident groups (A, B, C, D). As
anticipated, both the numeric and graphical versions of results are consistent in showing
that there are significant different among the four accident groups. Such results concluded
the First Part/Stage testing (of the Two-Stage Sequential Testing Procedure). Next, one can
proceed to the Second Part/Stage testing.
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Figure 1. Probability (risk or chance of injury) versus the 4 Accident Groups (A, B, C, D).

Note again that such Second Part/Stage testing (of the Two-Stage Sequential Testing
Procedures) was already completed/demonstrated by Rahardja in 2020 manuscript [1];
and as a summary recap, those significant differences came from the following pairs: AC,
AD, BC, and BD.

5. Simulation

In this Simulation Section, we would like to mention that there is no software pack-
age and/or library package readily available for such methodology developed above (in
Section 3) because generally, the methodology was developed first, before the software
package. Then, typically, after a decade or more, when the method developed has be-
come popular then commercial/non-commercial software companies or individuals start
building software package and/or library package; not the reverse. Hence, we resorted to
writing our own manual coding via R software [18] version 4.1.2. Since the methodologies
or algorithm developed above (in Section 3) are closed-form (unlike those non-closed
form algorithms formerly developed in all the previous literature reviews), it does not
require much/intensive computing resource. Consequently, we can merely utilize a regular
laptop/desktop computer. In other words, parallel super computers are not necessary.
Here, we use a regular computer with the following specifications: Dual Core Processor
of 4GB RAM CPU and a hard drive storage of 1TB; and each case of the simulations we
describe below only takes about 2 min to run.

Simulations were performed to evaluate and contrast the performance of nWald and
mWald tests under varying cases using empirical Type I error rate. A two-sided nominal-
level Type I error rate of α = 0.1 was used for a selection of g = 3 levels. Even though
not required by the two tests, for the sake of simplifying the simulation and display of
results, equal sample sizes N1 = N2 = N3 = N, substudy sample sizes n1 = n2 = n3 = n, and
false-positive (over-reported) rates ϕ1 = ϕ2 = ϕ3 = ϕ were utilized in simulations. For each
simulation configuration, we generated K = 10,000 datasets.

5.1. Type I Error Rate

First, the performance of these two tests was investigated in terms of Type-I error rate
by differing the total sample sizes. In these simulations, we assumed:

1. False positive rate ϕ = 0.1;
2. Ratio of validation sample size versus the total sample size r = n/N = 0.2;
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3. Total sample sizes N = 100, 200, 300, 400, 500, 600;
4. True proportion parameters of interest p = 0.1 and p = 0.5.

The upper two panels in Figure 2 display the graphs of Type I error rate of both tests
versus N for p = 0.1 and p = 0.5, respectively. On the upper-left panel (p = 0.1), binomial
distributions are skewed; hence are not sufficiently well-behaved (because the distribution
is not symmetric but skewed). Hence, in this scenario, the two tests are not anticipated
to behave/carry-out well for (relatively) small samples. Nevertheless, the mWald test is
conservative (as the graph showed close-to-nominal, in this case, type I error rate of 10%
horizontal line) for all sample sizes studied. Both tests have close-to-nominal Type I error
rates when the sample size N is greater than 300 (i.e., as the sample size larger than 300,
the graph approaches to the nominal/horizontal line, asymptotically). On the contrary,
it is well-known that on the upper-right panel (p = 0.5), binomial distributions are quite
symmetric around their means and therefore we anticipate both tests to behave/carry-out
well in this scenario. It is not surprising that the upper right panel of Figure 2 shows that
both tests have close-to-nominal Type I error rates in any case of the sample sizes (i.e.,
both graphs approach to the nominal level or the horizontal line, in all sample sizes on the
graph). The Type I error rate of the mWald test is consistently better than that of the nWald
test (because the graphs consistently showed that the mWald have smaller Type I error
rates, across all sample size studied).
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Second, we examine the performance of the two tests in terms of Type-I error by
varying p. In these simulations, the following are assumed:

1. False positive rate ϕ = 0.1;
2. Ratio of validation sample size versus the total sample size r = n/N = 0.2;
3. Total sample sizes N = 200 and 500;
4. True proportion parameters of interest p = 0.1, 0.2, 0.3, 0.4, 0.5.

The lower two panels of Figure 2 graph the Type-I error rate of both tests versus p. On
the lower-left panel (N = 200), the graph showed that the mWald test (dashed-line curve)
reaches nominal level of the Type-I error rate (which is the horizontal line) when p > 0.2
(as shown on the x-axis), while the nWald test (solid-line curve) attains nominal level of
the Type-I error rate when p > 0.4. On the lower-right panel (N = 500), the mWald test
reaches nominal level of the Type-I error rate for all p, while the nWald test attains nominal
level of the Type-I error rate when p > 0.2. We note that via manually coding [18] using R
version 4.1.2 software with the above specified computer machine, it took 2.069883 min to
produce the simulations displayed in Figure 2.

Third, we also evaluate the Type-I error rate of the two tests by varying r. In the
simulations, the following are the specifications.

1. False positive rate ϕ = 0.1.
2. Ratio of substudy sample size versus the total sample size r = n/N = 0.1, 0.2, . . . , 0.5.
3. Total sample sizes N = 200 and 500.
4. True proportion parameters of interest p = 0.2.

In the upper two panels of Figure 3, we graph Type I error rate of both omnibus tests
versus r for N = 200 and N = 500, subsequently. When N = 200, the upper left panel of
Figure 3 demonstrates that the nWald test (solid-line curve) has inflated Type-I error rates
for all r (since the solid-line curve are way above the nominal/horizontal line), especially
when r is small. The nWald test has better coverage as r increases. On the contrary, the
mWald test has close-to-nominal levels for all the r values studied here (since the dashed-
line curve are very close to the horizonal line). Similar observations can be made for N = 500
with both tests having better Type-I error rates.

Forth and finally, we assess the Type-I error rate of the two tests by varying ϕ. In the
simulations, below are the specifications:

1. False positive rate ϕ = 0.1, 0.2, . . . , 0.5.
2. Ratio of substudy sample size versus the total sample size r = n/N = 0.2.
3. Total sample sizes N = 200 and 500.
4. True proportion parameters of interest p = 0.2.

The lower two panels in Figure 3 graph Type-I error rate of both tests versus ϕ for
N = 200 and 500, respectively. For both N, the lower two panels of Figure 3 demonstrate
that the nWald test has inflated Type-I error rates (because the solid-line curve are inflated
above the horizontal line), while the mWald test has close-to-nominal levels for all the ϕ
values studied here (because the dashed-line curve almost overlapped the horizontal line).
The values of ϕ do not affect the Type-I error rates for both tests and both N (because both
curves are quite flat across all studied values of ϕ, as shown in the graph). Note that the
above computer machine took 1.548624 min using R version 4.1.2 software [18] to run the
simulations displayed in Figure 3.
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5.2. Power

We also examine the power of the two tests. In these simulations, we choose
the following.

1. False-positive rate ϕ = 0.1.
2. Ratio of substudy sample size versus the total sample size r = n/N = 0.2, 0.4.
3. Total sample sizes N = 100, 150, . . . , 400.
4. True proportion parameters of interest p = (0.1, 0.2, 0.3) and p = (0.4, 0.5, 0.6).

The upper two panels of Figure 4 graph the power of both tests versus N for p = (0.1,
0.2, 0.3); the lower two panels graph the power of both tests versus N for p = (0.4, 0.5, 0.6).
Note that theoretically, binomial distribution sufficiently well behaved when p close to 0.5
(i.e., “fair-coin” behavior) and not sufficiently well behaved when p is further away from
0.5—this is why we selected such contrasted selections of p = (0.1, 0.2, 0.3) and p = (0.4,
0.5, 0.6). For both sets of p and both r values, the nWald test is uniformly more powerful
than the mWald test (as shown on the graph that the solid-line curve uniformly lay above
the dashed-line curve), especially when the sample size is small. For larger sample sizes,
both tests have similar powers. However, note that when sample size is small, the nWald
test inflates the Type-I error rate and, therefore, should be not be used; therefore, the
power comparison is not meaningful in these cases. Additionally, note that with the above
computer machine specifications, the processing time in R software [18] is 1.904431 min for
the simulation results displayed in Figure 4.
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6. Summary Discussion, Limitations and Future Research

The summary is as follows. In this manuscript, we considered testing the relation-
ship between a nominal input variable (with multiple levels or groups) and a binomial
output variable in doubly sampled framework with under-reported data. We begin with
deriving closed-form formulas for the MLE of all the parameters via reparameterization.
Subsequently, we constructed two omnibus tests (nWald test and mWald test) by applying
the Wald test procedures.

As example to demonstrate the procedures, both tests were applied to the same vehicle-
accident dataset used in the Rahardja (2020) paper [1], first introduced by Hochberg in
1977 [17]. Note that to be deemed valid, in general, most statistical methodologies devel-
oped and published historically in the bibliography are derived based on the Asymptotic
(Large-Sample) Theory. This is why in the standard university-level introductory statistics
(Stat 101) course, as the general rule-of-thumb and simplified case, students are taught
that large sample was defined as big as 30 samples. Therefore, as anticipated, by Asymp-
totic (Large-Sample) Theory, the two omnibus tests yielded similar results due to their
large-sample size nature of Hochberg (1977) vehicle-accident dataset [17].

Note also that in the case of small sample situations, for examples, in the Biology field,
or in a Pilot Study of typical drug developments, where practitioners often encounter small
sample, then the results should be noted with precautions. Meaning, if the results from the
omnibus test and/or MCP test are not significant, it does not necessarily mean that it is
truly not significant; it could be due to insufficient (small) sample size. Such precaution
should be included/noted in the labeling or study report. Then, more information needs
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to be consulted with the subject matter experts (SME) in the field of study, for the final
direction of decision making for such small-sample (biology or pilot) study. For example,
whether making the decision of “Go/No-Go”; in other words, whether proceeding/not, to
next phase (large sample) study, by spending more funds to recruit more patients/sample
(with such noted risk or precaution); or terminate the study since it is not promising, etc.

Simulation studies were performed to assess the empirical Type I error rate of both
tests under various simulation configurations. Since the two tests were developed based
on large-sample theories, both methods were anticipated to implement well under large
samples. Such anticipation was affirmed since the resulting Type I error rates were close to
the nominal level for large samples. When sample size is relatively small and p is close to 0
or 1, the nWald test resulted in a lot more inflated Type I error rate while the mWald test
preserved the Type I error rate. Hence, the mWald test is recommended over nWald test.

The limitations are as follows. When sample size is afforded at relatively small size,
p is close to 0 or 1, even in larger samples, both methods still suffer from inflation of
type I error rate due to: not only asymptotic approximation, but also both tests can be
conservative, i.e., slow to reject the null hypothesis (Figure 2). In the standard/built-in
statistical software packages such as R, SAS, etc., there is the use of continuity adjustment
in chi-square test which is most useful for small sample sizes, to prevent overestimation of
statistical significance for small data. The formula is chiefly used when at least one cell of
the table has an expected count smaller than five (5). Unfortunately, such correction may
tend to overcorrect. This use of the continuity adjustment is somewhat controversial and
can result in an overly conservative result that cause the chi-square test fails to reject the
null hypothesis when it should (i.e., too conservative), for small sample size.

Finally, in this manuscript, as the first part of a two-stage sequential test (with over-
reported data), we have contributed the development of two omnibus tests (first-stage),
to test the statistical hypothesis in expression (2), with an easy-to-implement, closed-form
algorithm. Indeed, due to our closed-form algorithm via reparameterization, we were able
to derive such omnibus tests for g ≥ 3 scenario with the under-report (or WLOG, over-
report), which was the reason why previously other researchers were not able to derive such
scenario. If such test in expression (2) is not rejected then we declare there is no proportion
difference among the g groups. Otherwise, if the test is rejected, then we may want to
proceed to the second stage (of the two-stage sequential test) to find-out which pair(s)
contributes the difference. In such case, Rahardja pairwise comparison method developed
in 2020 [1], which also known as Pairwise Multiple Comparison Procedures (MCP) with
over-reported adjustment incorporated via doubly sampled framework, can further be
applied. Note also that without incorporating any misclassification (under-reported or
over-reported) into the statistical model, such MCP tests are just the standard/classical
procedures in the literature review, as prescribed by Hsu in 1996 [19], Edwards and Hsu in
1983 [20], Hsu and Edwards in 1983 [21], and Hsu in 1982 [22]. Moreover, for the future
research, one can add multiple covariates (with multiple levels, too) as the input variables,
into considerations—in the presence of under-reported or over-reported (output) data.
Examples of such multiple-level (input) covariates may be: age category (below 25, 25–40,
40–60, above 60), height category, body-mass-index category, drinking category (never,
sometimes, often), etc.

7. Conclusions

In conclusion, we have completed a Two-Stage Sequential Testing development (for
multiple binomial proportions using doubly sampled framework with only under-reported
or over-reported data). In this manuscript, we derived two Omnibus Tests with the under-
reported or over-reported only. Such Omnibus Tests function as the First-Stage of the
Two-Stage Sequential Test. Additionally, the Pairwise-MCP Test was already developed
by Rahardja in 2020 [1] and function as the Second-Stage of the Two-Stage Sequential Test
(with the over-reported or under-reported).
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