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Abstract: The bootstrap method is often used for variance estimation in sample surveys with a strati-
fied multistage sampling design. It is typically implemented by producing a set of bootstrap weights
that is made available to users and that accounts for the complexity of the sampling design. The
Rao–Wu–Yue method is often used to produce the required bootstrap weights. It is valid under
stratified with-replacement sampling at the first stage or fixed-size without-replacement sampling
provided the first-stage sampling fractions are negligible. Some surveys use designs that do not satisfy
these conditions. We propose a simple and unified bootstrap method that addresses this limitation of
the Rao–Wu–Yue bootstrap weights. This method is applicable to any multistage sampling design as
long as valid bootstrap weights can be produced for each distinct stage of sampling. Our method is
also applicable to two-phase sampling designs provided that Poisson sampling is used at the second
phase. We use this design to model survey nonresponse and derive bootstrap weights that account
for nonresponse weighting. The properties of our bootstrap method are evaluated in three limited
simulation studies.

Keywords: bootstrap weights; two-stage sampling; multistage sampling; non-negligible sampling
fraction; two-phase sampling; nonresponse

1. Introduction

The bootstrap method is often used for estimating the variance of survey estimates in
Statistics Canada’s social surveys and sometimes in its economic surveys. It is implemented
by producing a set of bootstrap weights that is made available to users along with the
survey data. This implementation of the bootstrap method is convenient for users as they
can typically easily replicate their statistics using the bootstrap weights instead of the
original survey weights.

Most of Statistics Canada’s surveys that implement the bootstrap method have a com-
plex stratified two-stage or three-stage sampling design. The Rao–Wu–Yue bootstrap
weights [1] are often computed in those surveys. The Rao–Wu–Yue bootstrap weights are
applicable when the first-stage sample is drawn with replacement within strata. With-
replacement sampling is never applied in practice; however, the Rao–Wu–Yue method
provides a reasonable approximation for fixed-size without-replacement sampling when
the first-stage sampling fractions are small.

In some multistage surveys, the first-stage sampling fractions may be large in some
strata, and the Rao–Wu–Yue bootstrap weights may lead to substantial overestimation of
the variance of survey estimates. The literature on this topic is mostly limited to the case of
simple random sampling at each stage (e.g., [2–4]). Chaudhuri and Saha [5] considered two-
stage sampling with the Rao–Hartley–Cochran (RHC) method [6] at both stages. Inspired
by [7], Osiewicz and Pérez-Duarte [8] provided bootstrap weights for the case of RHC
sampling at the first stage followed by simple random sampling without replacement at
the second stage.
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In addition to RHC and simple random sampling, Poisson sampling and sampling
without replacement with probability proportional to size are sometimes used in one of the
stages. Beaumont and Patak [9] proposed a general bootstrap method that can be applied to
any design, including multistage sampling designs, as long as joint selection probabilities
can be computed or at least accurately approximated. However, the method is somewhat
complex to implement, as it requires a spectral decomposition, and negative bootstrap
weights may occur. A recent review of bootstrap methods for finite population sampling is
provided in [10].

To our knowledge, there does not appear to exist a simple and general method for
constructing non-negative bootstrap weights in multistage sampling with different sam-
pling methods at each stage. We thus developed a unified bootstrap procedure that is
straightforward to implement to fill this methodological gap. Our procedure can be applied
to any number of stages as long as valid bootstrap weights can be produced for each distinct
stage of sampling.

Our bootstrap procedure is also directly applicable to two-phase sampling designs when
Poisson sampling is used at the second phase. This specific two-phase design can be viewed
as a special case of two-stage sampling where first-stage units contain only one second-stage
unit. It is also a useful design to model survey nonresponse. Our bootstrap procedure can
thus be applied to estimate the variance of nonresponse-weighted estimators. Replication
variance estimation for this specific two-phase design was also considered by [11].

In Section 2, we introduce notation, provide textbook variance estimators for the
double expansion estimator of the population total under two-stage sampling and describe
basic bootstrap concepts for finite populations. A few commonly-used methods of deriving
bootstrap weights for single-stage cluster sampling are briefly reviewed in Section 3 for
different sampling designs. For probability proportional to size without replacement
sampling, we propose a simple heuristic extension of the Rao–Wu–Yue bootstrap weights.

Our bootstrap procedure for two-stage sampling is presented in Section 4. Section 5
considers the special case of two-phase sampling with Poisson sampling at the second
phase, and the application to nonresponse is discussed in Section 6. Section 7 describes
how to apply our bootstrap procedure for multistage sampling using the example of
three-stage sampling. Bootstrap theory for nonlinear estimators is briefly discussed in
Section 8. Section 9 provides the results of three limited simulation studies to evaluate the
performance of our proposed bootstrap methods. Finally, a few concluding remarks are
given in Section 10.

2. Background and Notation

Let us first consider the estimation of the population total

θ = ∑
k∈U

∑
i∈Uk

yki = ∑
k∈U

Yk ,

where U is the population of clusters, Uk is the population of units within cluster k, yki is
the value of variable of interest y for unit i in cluster k and Yk = ∑i∈Uk

yki is the total of
variable y within cluster k.

2.1. Single-Stage Cluster Sampling

At the first stage, a sample of clusters, s, is selected from the population U according
to a probability sampling design. The probability of selecting a given cluster k ∈ U at the
first stage is π1k, and the first-stage design weight of cluster k is defined as w1k = 1/π1k.
The joint probability of selecting clusters k ∈ U and l ∈ U is π1kl . We assume that both
π1k and π1kl are strictly greater than 0 for k ∈ U and l ∈ U. The basic estimator of θ under
single-stage cluster sampling is the simple expansion estimator,

θ̃ = ∑
k∈s

w1kYk .
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It is design-unbiased, i.e., Ep

(
θ̃
)
= θ, where the subscript p indicates that the expectation

is taken with respect to the sampling design. The design variance of θ̃ is given by

V1 = varp

(
θ̃
)
= ∑

k∈U
∑
l∈U

(π1kl − π1kπ1l)(w1kYk)(w1lYl) . (1)

We consider estimators of V1 that takes the following quadratic form:

Ṽ1 = ∑
k∈s

∑
l∈s

∆1kl(w1kYk)(w1lYl) , (2)

where ∆1kl is determined so as to ensure that Ṽ1 is design-unbiased for V1, i.e., Ep

(
Ṽ1

)
= V1.

The typical choice is

∆1kl =
π1kl − π1kπ1l

π1kl
. (3)

Under regularity conditions, this also ensures that Ṽ1 is design-consistent for V1.

2.2. Two-Stage Sampling

At the second stage, a sample sk is drawn from Uk, independently from one selected
cluster k ∈ s to another, using some probability sampling design. The probability of
selecting unit i in sample cluster k is π2ki, and the second-stage design weight of unit i in
sample cluster k is defined as w2ki = 1/π2ki. The joint probability of selecting units i in the
sample cluster k and unit j in the sample cluster l is π2ki,l j.

Again, we assume that π2ki and π2ki,l j are all strictly greater than 0. Due to the above
independence assumption, π2ki,l j = π2kiπ2l j for two units i and j in different clusters. This
assumption is key for the validity of our bootstrap method, but we do not require the
typical invariance assumption in two-stage sampling (see [12], Chapter 4, and [13]).

The double expansion estimator of the population total θ is

θ̂ = ∑
k∈s

w1k ∑
i∈sk

w2kiyki = ∑
k∈s

w1kŶk , (4)

where Ŷk = ∑i∈sk
w2kiyki. It follows from Ep

(
Ŷk
∣∣s) = Yk, k ∈ s, that θ̂ is design-unbiased

for θ. The design variance of θ̂ is given by

varp
(
θ̂
)
= varp

(
θ̃
)
+ Ep

(
∑
k∈s

w2
1kV2k

)
, (5)

where
V2k = varp

(
Ŷk
∣∣s), k ∈ s .

The first term on the right-hand side of (5), V1 = varp(θ̃), is the variance under single-
stage cluster sampling given in (1). The second term, V2 = Ep

(
∑k∈s w2

1kV2k
)
, reflects the

increase in variance due to the second stage of sampling.
The estimator Ṽ1 of V1, given in (2), cannot be used in two-stage sampling because the

cluster totals Yk, k ∈ s, are unknown. Instead, we consider estimators of V1 that take the form:

V̂1 = ∑
k∈s

∑
l∈s

∆1kl
(
w1kŶk

)(
w1lŶl

)
−∑

k∈s
∆1kkw2

1kV̂2k , (6)

where
V̂2k = ∑

i∈sk

∑
j∈sk

∆2ki,kj(w2kiyki)
(

w2kjykj

)
. (7)
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The quantity ∆2ki,kj in (7) is determined so as to ensure that V̂2k, k ∈ s, is conditionally
design-unbiased for V2k = varp

(
Ŷk
∣∣s), i.e., Ep

(
V̂2k
∣∣s) = V2k. The typical choice is

∆2ki,kj =
π2ki,kj − π2kiπ2kj

π2ki,kj
. (8)

The independence assumption at the second stage implies that Ep
(

ŶkŶl
∣∣s) = YkYl for

two different sample clusters k and l. As a result, it is straightforward to show that V̂1 in (6)
is design-unbiased for V1.

A design-unbiased estimator of V2 = Ep
(
∑k∈s w2

1kV2k
)

is simply obtained as

V̂2 = ∑
k∈s

w2
1kV̂2k .

The overall design variance in (5) can thus be estimated by V̂12 = V̂1 + V̂2. Under
regularity conditions, V̂12 is design-consistent for the design variance (5). An alternative
decomposition for V̂12 is V̂12 = V̂alt

1 + V̂alt
2 , where

V̂alt
1 = ∑

k∈s
∑
l∈s

∆1kl
(
w1kŶk

)(
w1lŶl

)
(9)

and
V̂alt

2 = ∑
k∈s

(1− ∆1kk)w2
1kV̂2k . (10)

This alternative decomposition is used to develop our bootstrap methodology in
Section 4. For stratified sampling at the first stage, when all the first-stage sampling fractions
are small, the term V̂alt

2 is typically negligible. In that scenario, it is common practice to
estimate the overall design variance (5) by V̂alt

1 only and assume with-replacement sampling
at the first stage. The Rao–Wu–Yue bootstrap method is based on this simplification.
Although it is valid in many surveys, there are cases where some first-stage sampling
fractions are not small, and V̂alt

2 cannot be neglected.
Using (7), (9) and (10), the overall variance estimator V̂12 can be rewritten as

V̂12 = ∑
k∈s

∑
i∈sk

∑
l∈s

∑
j∈sl

∆12ki,l j(w12kiyki)(w12l jyl j) , (11)

where w12ki = w1kw2ki and

∆12ki,l j = ∆1kl + (1− ∆1kl)∆2ki,l j , (12)

with ∆2ki,l j = 0, for k 6= l, due to the independence assumption at the second stage.
Assuming (3) and (8) are used, Equation (12) can be expressed as

∆12ki,l j =
π12ki,l j − π12kiπ12l j

π12ki,l j
, (13)

where π12ki = π1kπ2ki and π12ki,l j = π1klπ2ki,l j. Expression (11) has a form similar to (2)
for single-stage cluster sampling and is useful for the extension to three-stage sampling
discussed in Section 7.

2.3. Bootstrap Weights and Bootstrap Variance

Let us define the first-stage bootstrap weight for a sample cluster as w∗1k = w1ka1k,
k ∈ s, where a1k is a random bootstrap weight adjustment for cluster k that is intended to
account for the first-stage sampling variability. Section 3 discusses how to generate a1k with
a few examples for some common sampling designs. The second-stage bootstrap weight
for a sample unit i in cluster k is defined as w∗2ki = w2kia2ki, i ∈ sk and k ∈ s, where a2ki is
a random bootstrap weight adjustment for unit i in cluster k that is intended to account for



Stats 2022, 5 343

the second-stage sampling variability. A procedure for generating a2ki will be discussed
in Section 4. The overall bootstrap weight for a sample unit i in cluster k is defined as
w∗12ki = w12kia1ka2ki = w∗1kw∗2ki.

Using the bootstrap weights w∗1k and w∗2ki, we obtain bootstrap versions of the simple
expansion estimator, θ̃ = ∑k∈s w1kYk, and the double expansion estimator θ̂, given in (4), as
θ̃∗ = ∑k∈s w∗1kYk and

θ̂∗ = ∑
k∈s

w∗1k ∑
i∈sk

w∗2kiyki = ∑
k∈s

w∗1kŶ∗k , (14)

respectively, where Ŷ∗k = ∑i∈sk
w∗2kiyki. The bootstrap weights are constructed so that the

bootstrap expectation and variance of θ̃∗ and θ̂∗ are design-unbiased and design-consistent
for the design expectation and variance of θ̃ and θ̂, respectively. Greater detail is given in
Sections 3 and 4.

Suppose now that P̂ is a nonlinear design-weighted estimator of a certain population
parameter P, not necessarily a total, such that, for large samples, Ep

(
P̂− P

)
≈ 0. The

bootstrap version P̂∗ of P̂ is obtained by replacing the first-stage and second-stage design
weights by their corresponding bootstrap weights. Section 8 provides an example where P̂ is
a smooth function of design-weighted estimators of totals. A valid bootstrap method ensures
that, for large samples, E∗

(
P̂∗ − P̂

)
≈ 0 and var∗

(
P̂∗
)
≈ E∗

(
P̂∗ − P̂

)2 is design-consistent for

varp
(

P̂
)
≈ Ep

(
P̂− P

)2, where the subscript * indicates the moments are taken with respect
to the bootstrap mechanism, conditionally on the selected two-stage sample.

Except for linear estimators, such as θ̃∗ and θ̂∗, discussed in Sections 3 and 4, re-
spectively, a closed-form expression for the bootstrap variance var∗

(
P̂∗
)

does not exist.
It is generally approximated through Monte Carlo simulations by generating bootstrap
adjustments independently a large number of times, say B. We denote these B replicate
versions of a1k and a2ki by a(b)1k and a(b)2ki , respectively, b = 1, . . . , B. From these B bootstrap
adjustments, we can compute B replicate versions P̂∗(b) of P̂∗, b = 1, . . . , B. The bootstrap
variance, var∗

(
P̂∗
)
, can then be approximated as

var∗
(

P̂∗
)
≈ 1

B

B

∑
b=1

(
P̂∗(b) − P̂

)2
.

In Sections 3–7, we focus on the estimation of the population total θ = ∑k∈U ∑i∈Uk
yki.

Other population parameters are considered in Section 8 and in the simulation study
in Section 9.

3. Bootstrap for Single-Stage Cluster Sampling

We consider distributions for generating the bootstrap adjustments a1k, k ∈ s, that
satisfy the following two conditions:

E∗(a1k) = 1 (15)

and
cov∗(a1k, a1l) = ∆1kl , (16)

for every pair of sample clusters k and l. Conditions (15) and (16) ensure that

E∗
(

θ̃∗ − θ̃
)
= 0 (17)

and
E∗
(

θ̃∗ − θ̃
)2

= var∗
(

θ̃∗
)
= Ṽ1 . (18)

Conditions (17) and (18) are key for the validity of any bootstrap method. They ensure
that the bootstrap expectation and variance of θ̃∗ are design-unbiased and design-consistent
for the design expectation and variance of θ̃, respectively.
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Any distribution can be used to generate bootstrap adjustments a1k as long as con-
ditions (15) and (16) are satisfied. It may also be desirable to ensure that the bootstrap
adjustments are all non-negative leading to non-negative bootstrap weights w∗1k. We pro-
vide below some common expressions of bootstrap weight adjustments that achieve these
objectives for different sampling designs.

3.1. Poisson Sampling

Under Poisson sampling, clusters are selected independently of one another. Assum-
ing (3) is used, we have ∆1kl = 0, k 6= l, and ∆1kk = 1−π1k. Beaumont and Patak [9] studied
several distributions that satisfy conditions (15) and (16), including some that ensured
non-negative bootstrap adjustments a1k. A main conclusion of their simulation study is that
the choice of the distribution does not have a large impact on the properties of the bootstrap
variance estimator as long as heavily-skewed distributions are avoided. We thus propose
to generate a1k, k ∈ s, independently of one another using the gamma distribution with
E∗(a1k) = 1 and var∗(a1k) = 1− π1k. This distribution satisfies conditions (15) and (16),
ensures non-negative values of a1k and is easy to implement.

3.2. Sampling with Replacement with Unequal Probabilities

Suppose that a sample s of size n1 is drawn with replacement from the population U
of size N. At each draw, the population cluster k is chosen with probability p1k and we have
∑k∈U p1k = 1. Note that some population clusters may appear multiple times in the sample
s. In other words, each element of s is one of the n1 draws. Here, we define π1k = n1 p1k
and w1k = π−1

1k . (This is a slight abuse of notation as π1k is not the selection probability of
population cluster k in with-replacement sampling.) The standard variance estimator for
θ̃ = ∑k∈s w1kYk, proposed by [14], can be written in the form (2) with ∆1kl = −(n1 − 1)−1,
k 6= l, and ∆1kk = 1. The Rao–Wu–Yue bootstrap weight adjustment can be used for this
design. It is given by

a1k = 1−
√

m1

n1 − 1
+

√
m1

n1 − 1
n1

m1
m∗1k , (19)

for k ∈ s. The so-called multiplicity m∗1k is the number of times cluster k ∈ s is chosen out of
m1 independent random trials, where each k ∈ s has a constant probability of being chosen
at each trial equal to n1

−1. By observing that the multiplicities m∗1k follow a multinomial
distribution, it is straightforward to show that the bootstrap weight adjustments (19)
satisfy conditions (15) and (16). They are non-negative provided that m1 ≤ n1 − 1. The
typical choice is m1 = n1 − 1. Using this choice, the bootstrap adjustment (19) reduces
to a1k =

n1
n1−1 m∗1k.

If n1 is large and m1 = n1, the bootstrap weight adjustment (19) can be approximated
as a1k ≈ m∗1k. Using a1k = m∗1k is equivalent to applying the original bootstrap method
of [15] for independently and identically distributed observations.

3.3. Simple Random Sampling without Replacement

Suppose now that a simple random sample s of size n1 is drawn without replacement
from the population U of size N. Under this design, it can be easily shown that (3)
reduces to ∆1kl = −(1− f1)/(n1 − 1), k 6= l, and ∆1kk = 1− f1, where f1 = n1N−1 is the
sampling fraction. Rao, Wu and Yue [1] did not provide bootstrap weights for this design.
However, [9] showed that the bootstrap method of [7] can be implemented by using the
following bootstrap weight adjustment:

a1k = 1−

√
m1(1− f1)

n1 − 1
+

√
m1(1− f1)

n1 − 1
n1

m1
m∗1k , (20)

for k ∈ s. Expression (20) is similar to (19) but it incorporates the finite population correction
1− f1. Again, it is straightforward to show that the bootstrap weight adjustments (20) satisfy
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conditions (15) and (16). They are non-negative provided that m1 ≤ (n1 − 1)/(1− f1). The
choice m1 = n1 − 1 dominates in practice.

3.4. Sampling without Replacement with Unequal Probabilities

The case of sampling n1 clusters without replacement with unequal probabilities
is, in general, more difficult to handle as a simple expression, like (19) or (20), does not
exist, and the joint selection probabilities π1kl are often unknown. For the RHC sampling
design, a design-unbiased variance estimator that takes the form (2) is available, and it is
thus possible to construct valid bootstrap weights. The RHC sampling design was first
considered by [7], and an expression for the bootstrap weights is given in [8]. Chaudhuri
and Saha [5] also developed a bootstrap method for the RHC sampling design.

Beaumont and Patak [9] considered a method for generating bootstrap weight adjust-
ments that satisfy (15) and (16) for general sampling designs. Their method requires the
computation of joint selection probabilities or an accurate approximation of these probabilities.
It is somewhat complex to implement and may produce negative bootstrap weights. As
a simple alternative, we suggest below a heuristic extension of the bootstrap adjustment (20):

a1k = 1−

√
m1(1− π1k)

n1 − 1
+

√
m1(1− π1k)

n1 − 1
n1

m1
m∗1k . (21)

The bootstrap adjustment (21) satisfies condition (15) and, if (3) is used, also satisfies
var∗(a1k) = ∆1kk = 1− π1k. However, it does not satisfy (16) entirely since

cov∗(a1k, a1l) = ∆̃1kl = −
√
(1− π1k)(1− π1l)

n1 − 1
, (22)

for k 6= l; the right-hand side of (22) can only be viewed as an approximation of ∆1kl given
in (3). As a result, replacing ∆1kl in (2) with ∆̃1kl does not lead to an exactly design-unbiased
estimator of V1. By equating the right-hand side of (3) to the right-hand side of (22), we
obtain the following approximation of the joint selection probability π1kl , k 6= l:

π1kl ≈ π1kπ1l
(n1 − 1)

(n1 − 1) +
√
(1− π1k)(1− π1l)

. (23)

We note that, if all the selection probabilities π1k are equal to n1N−1, then the right-
hand side of (23) reduces to the joint selection probability under simple random sampling
without replacement and the bootstrap adjustment (21) reduces to (20). The bootstrap
adjustment (21) is also approximately equal to (19) if all the selection probabilities π1k are
small. Note also that the bootstrap adjustment (21) is exactly equal to 1, as expected, for
clusters selected with certainty in the sample.

A drawback of the bootstrap adjustment (21) is that the bootstrap version of n1,
n∗1 = ∑k∈s a1k, is random and not necessarily equal to the fixed sample size n1. This can be
dealt with by calibrating the bootstrap adjustment (21) so as to ensure that the calibrated
bootstrap adjustments acal

1k satisfy ∑k∈s acal
1k = n1. An alternative to (21) is thus

acal
1k = a1k

n1

∑l∈s a1l
, (24)

with a1k given in (21). Note that clusters selected with certainty, if any, should be excluded
from this calibration and keep their bootstrap adjustment of 1. Both (21) and (24) yield
non-negative bootstrap adjustments when m1 ≤ n1 − 1 and are easy to implement. This
simplicity comes at the expense of losing the strict design-unbiasedness property of the
resulting variance estimator.

It is beyond the scope of this paper to rigorously assess the quality of the approximation
(23) and the bootstrap adjustments (21) and (24). However, these bootstrap adjustments
are evaluated in a limited simulation study in Section 9.1. Our simulation study shows
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that the bootstrap adjustment (21) alone leads to substantial overestimation of the design
variance but yields small biases if it is modified by the calibration adjustment (24). In [16],
and recently in [17], bootstrap methods were proposed for without-replacement sampling
with probability proportional to size that could be used as an alternative to (24).

3.5. Stratified Sampling

All the above sampling designs are typically applied within strata, and sampling is done
independently from one stratum to another. The extension of the above bootstrap methods
to stratified sampling is straightforward. It only suffices to generate the bootstrap weight
adjustments independently from one stratum to another using the appropriate method.

4. Bootstrap for Two-Stage Sampling

First, bootstrap adjustments a1k, k ∈ s, that satisfy conditions (15) and (16) given in
Section 3, are generated. The objective is then to generate a2ki for all sample units so as to
ensure that

E∗
(
θ̂∗ − θ̂

)
= 0 (25)

and
E∗
(
θ̂∗ − θ̂

)2
= var∗

(
θ̂∗
)
= V̂12 = V̂alt

1 + V̂alt
2 , (26)

where θ̂∗ is given in (14). We assume that the adjustments a2ki are generated independently
from a1k, k ∈ s and that E∗(a2ki) = 1. This ensures that condition (25) is satisfied. If we
further assume that a2ki, i ∈ sk, are generated independently from one cluster k ∈ s to
another, then it is straightforward to show that

var∗
(
θ̂∗
)
= V̂alt

1 + ∑
k∈s

w2
1k(1 + ∆1kk) ∑

i∈sk

∑
j∈sk

cov∗(a2ki, a2kj)(w2kiyki)(w2kjykj).

As a result, conditions (25) and (26) are satisfied if

E∗(a2ki) = 1 (27)

and
cov∗

(
a2ki, a2kj

)
=

1− ∆1kk
1 + ∆1kk

∆2ki,kj . (28)

There are many possible ways of generating a2ki, i ∈ sk, that satisfy conditions (27)
and (28) for each k ∈ s. We propose generating the second-stage bootstrap adjustments as

a2ki = 1−

√
1− ∆1kk
1 + ∆1kk

+

√
1− ∆1kk
1 + ∆1kk

ã2ki , (29)

where ã2ki, i ∈ sk, are preliminary second-stage bootstrap adjustments, generated indepen-
dently from one cluster k ∈ s to another, that satisfy

E∗(ã2ki) = 1 (30)

and
cov∗

(
ã2ki, ã2kj

)
= ∆2ki,kj . (31)

The methods described in Section 3.1, Section 3.2, Section 3.3, Section 3.4, which satisfy
conditions (15) and (16), can be adapted in a straightforward manner to generate ã2ki, i ∈ sk,
that satisfy conditions (30) and (31). For instance, if Poisson sampling is used at the second
stage along with Equation (8), then ã2ki, i ∈ sk, can be generated independently of one
another using the gamma distribution with E∗(ã2ki) = 1 and var∗(ã2ki) = 1− π2ki. In
Section 9.2, we provide an expression for ã2ki under simple random sampling without
replacement at the second stage.
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Three remarks are in order: (i) the bootstrap adjustment a2ki in (29) is computable
only if −1 < ∆1kk ≤ 1; (ii) the bootstrap adjustment a2ki is non-negative when ã2ki is non-
negative and ∆1kk ≥ 0; and (iii) if (3) is used, 0 ≤ ∆1kk = 1− π1k < 1, and the bootstrap
adjustment (29) can be rewritten as

a2ki = 1−
√

π1k
2− π1k

+

√
π1k

2− π1k
ã2ki . (32)

It is non-negative provided that ã2ki ≥ 0. The bootstrap adjustments (29) or (32) satisfy
conditions (27) and (28).

We can also show that

cov∗

(
∑
k∈s

w∗1kXk, θ̂∗
)

= ∑
k∈s

∑
l∈s

∆1kl(w1kXk)
(
w1lŶl

)
, (33)

where Xk = ∑i∈Uk
xki is the total of a certain variable x within cluster k. The right-hand side

of (33) is a design-unbiased and design-consistent estimator of covp
(
∑k∈s w1kXk, θ̂

)
. The

property (33) is required for estimators that involve sums over first-stage and second-stage
sample units (see Section 8). The nonresponse-adjusted estimator discussed in Section 6 is
a special case that involves sums over first-phase and second-phase sample units.

Our bootstrap method can be summarized using the following steps:

Step 1: Generate first-stage bootstrap adjustments a1k, k ∈ s, that satisfy conditions (15) and (16).
Step 2: Generate preliminary second-stage bootstrap adjustments ã2ki, i ∈ sk, indepen-

dently from one cluster k ∈ s to another, that satisfy conditions (30) and (31).
Step 3: Compute the second-stage bootstrap adjustments a2ki, i ∈ sk, using (29) or (32)

for each k ∈ s.
Step 4: Compute the first-stage bootstrap weights w∗1k = w1ka1k, k ∈ s and, for each k ∈ s,

the overall bootstrap weights w∗12ki = w12kia1ka2ki, i ∈ sk.

The above steps are repeated independently B times. Bootstrap variance estimates can
then be computed, as described in Section 2.3, using the bootstrap weights obtained in step
4. Note that standard bootstrap methods for single-stage sampling can be used to obtain
bootstrap adjustments in steps 1 and 2. This is discussed in Section 3 for the first-stage
bootstrap adjustments in step 1. Preliminary second-stage bootstrap adjustments in step 2
can be obtained similarly.

5. Bootstrap for Two-Phase Sampling with Poisson Sampling at the Second Phase

In the next two sections, we consider, in greater detail, the case where all the population
clusters are of size 1. Due to the independence assumption at the second stage, this special
case of two-stage sampling is usually called two-phase sampling with Poisson sampling at
the second phase. For the single unit i in population cluster k, we thus have yki = Yk ≡ yk.
The selection of a unit i at the second stage (or phase) is equivalent to the selection of its
cluster k, and we can write π2ki = π2k, w2ki = w2k and w12ki = w12k = w1kw2k. Assuming (8)
is used, we can also write ∆2ki,ki = 1− π2ki = 1− π2k. The estimated cluster total Ŷk can
be written as Ŷk = I2kw2kyk, where I2k = 1 if the unit in cluster k is selected at the second
phase and I2k = 0, otherwise. We denote by s2, the set of clusters (or units) selected at the
second phase, i.e., the set of units k ∈ s such that I2k = 1. The double expansion estimator
(4) reduces to θ̂ = ∑k∈s2

w1k
π2k

yk. The estimated variance (7) becomes

V̂2k = I2k(1− π2k)(w2kyk)
2 .

The alternative variance estimators V̂alt
1 and V̂alt

2 , given in (9) and (10), become

V̂alt
1 = ∑

k∈s2

∑
l∈s2

∆1kl(w12kyk)(w12lyl) (34)
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and
V̂alt

2 = ∑
k∈s2

(1− ∆1kk)(1− π2k)(w12kyk)
2 , (35)

respectively. The bootstrap procedure in Section 4 can still be applied. With the modified
notation in this section, it becomes:

Step 1: Generate first-stage (first-phase) bootstrap adjustments a1k, k ∈ s, that satisfy
conditions (15) and (16).

Step 2: Generate preliminary second-stage (second-phase) bootstrap adjustments ã2k, k ∈ s2,
independently of one another so as to satisfy E∗(ã2k) = 1 and var∗(ã2k) = 1− π2k.
We suggest using the gamma distribution.

Step 3: Compute the second-stage (second-phase) bootstrap adjustments a2k, k ∈ s2,
using (29) or (32) with ã2ki and a2ki replaced with ã2k and a2k, respectively.

Step 4: Compute the first-stage (first-phase) bootstrap weights w∗1k = w1ka1k, k ∈ s and
the overall bootstrap weights w∗12k = w12ka1ka2k, k ∈ s2.

The application of these four steps ensures that conditions (25) and (26) are satisfied
with V̂alt

1 and V̂alt
2 given in (34) and (35), respectively. The bootstrap estimator θ̂∗ involved

in these conditions can be expressed as θ̂∗ = ∑k∈s2
w∗1k

a2k
π2k

yk.

6. Application to Nonresponse

Nonresponse is often viewed as a second phase of sampling, and it is typically as-
sumed that sample units respond independently of one another. Poisson sampling is thus
a useful model to handle nonresponse. However, the response probability π2k, k ∈ s2,
is unknown. We assume that a consistent estimator π̂2k of π2k can be obtained under
a specified nonresponse model. The bootstrap procedure of Section 5 can still be used but
var∗(ã2k) = 1− π2k in step 2 must be replaced with var∗(ã2k) = 1− π̂2k. Condition (25)
remains satisfied, and we can show that

var∗
(
θ̂∗
)
= V̂alt

1 + V̂alt
2 − ∑

k∈s2

(1− ∆1kk)(π̂2k − π2k)(w12kyk)
2 ,

where V̂alt
1 and V̂alt

2 are given in (34) and (35), respectively. Condition (26) is thus asymptot-
ically satisfied provided that π̂2k − π2k = op(1).

The linear double expansion estimator θ̂ = ∑k∈s2
w1k
π2k

yk of the population total θ cannot
be used in the context of nonresponse because π2k is unknown. It can be replaced with π̂2k
to obtain the nonresponse-adjusted estimator θ̂NA = ∑k∈s2

w1k
π̂2k

yk. The bootstrap version of

the nonresponse-adjusted estimator θ̂NA is θ̂∗NA = ∑k∈s2
w∗1k

a2k
π̂∗2k

yk = ∑k∈s2
w∗NA,kyk, where

w∗NA,k = w∗1k
a2k
π̂∗2k

is the bootstrap nonresponse-adjusted weight for unit k ∈ s2 and π̂∗2k is the
bootstrap version of π̂2k.

In Section 6.1, we provide two examples of response probability models with their
associated estimators π̂2k and π̂∗2k. An alternative replication method was proposed by [11].
This is discussed in Section 6.2.

6.1. Examples

Uniform model
In the uniform model, the unknown response probability π2k is assumed to be constant,

i.e., π2k = π2, k ∈ s. It can be estimated by the design-weighted response rate

π̂2 =
∑k∈s2

w1k

∑k∈s w1k
, (36)



Stats 2022, 5 349

provided that the design weight w1k does not explain the response indicator I2k. The
bootstrap version of π̂2 in (36) is

π̂∗2 =
∑k∈s2

w1ka1ka2k

∑k∈s w1ka1k
. (37)

Unweighted versions of (36) and (37), obtained by omitting the design weight w1k in
the above two equations, are also used in practice.

The uniform model is usually assumed to hold within response homogeneous groups
so that π2k = π2h for all sample units k ∈ s that fall into group h, h = 1, . . . , H, where H is
the number of groups. The response rates (36) and (37) are then computed separately for
each group so as to obtain π̂2h and π̂∗2h, h = 1, . . . , H.

Logistic model
Suppose now that the unknown response probability π2k can be modelled using the

logistic function π2k(α) =
[
1 + exp

(
−xT

k α
)]−1, where xk is a vector of auxiliary variables

available for all k ∈ s and α is a vector of unknown model parameters. The estimator α̂ of α
can be obtained by solving for α in the design-weighted (or pseudo) maximum likelihood
estimating equation

∑
k∈s

w1k[I2k − π2k(α)]xk = 0 , (38)

provided that the design weight w1k does not explain I2k after conditioning on xk. The
response probability can then be estimated as π̂2k = π2k(α̂). The bootstrap version of (38) is

∑
k∈s

w∗1k[a2k I2k − π2k(α)]xk = 0 . (39)

Solving (39) for α yields α̂∗ and the bootstrap version of π̂2k is π̂∗2k = π2k(α̂
∗). When

xk = 1, k ∈ s, the logistic model reduces to the uniform model.

6.2. The Kim-Yu Method

Kim and Yu [11] proposed a replication variance estimation method for two-phase
sampling with Poisson sampling at the second phase. Their method is not applicable to
the double expansion estimator but can be used with reweighted estimators, such as the
nonresponse-adjusted estimator discussed above under the uniform model. Using the notation
of our paper, the second-phase bootstrap adjustments proposed by [11] are given by

a2k = 1 + (δk − p)bk , k ∈ s2 , (40)

where δk follows a Bernoulli distribution with probability p and

bk =

√
π1k(1− π̂2k)√

p(1− p)
.

The adjustments (40) proposed by [11] can be rewritten as

a2k = 1−
√

π1k +
√

π1k ã2k , (41)

where

ã2k = 1 +
√

1− π̂2k
(δk − p)√
p(1− p)

has a mean equal to 1 and a variance equal to 1− π̂2k.
The second-phase adjustment (41) is similar but not identical to our proposed ad-

justments. It would be identical to the adjustment (32) if
√

π1k in (41) were replaced
with

√
π1k/(2− π1k). The adjustment (41) is expected to lead to overestimation of the

variance. However, our simulation study in Section 9.3 shows that the overestimation
remains moderate.
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7. Bootstrap for Multistage Sampling

Designs with more than two stages of sampling are sometimes used in practice. For
these multistage sampling designs, our bootstrap procedure in Section 4 can be applied
repeatedly to generate bootstrap adjustments for each additional stage. First, bootstrap
weight adjustments are generated for the first two stages of sampling. Then, the first
two stages are viewed as a single stage, bootstrap weight adjustments for the third stage
are generated and so on.

We provide below greater detail on our bootstrap procedure for three-stage sampling.
To simplify the notation in this section, the first two stages are combined into a single stage
so that the subscript k refers to second-stage units and the subscript i refers to third-stage
units. As a result, s denotes the sample of second-stage units, and sk denotes the sample of
third-stage units within the selected second-stage unit k. Using this revised notation, π12ki
and the weight w12ki, defined in Section 2.2, and ∆12ki,l j, given in (12), are now written π12k,
w12k and ∆12kl , respectively.

For three-stage sampling, our bootstrap method can be summarized using the follow-
ing steps:

Step 1: Generate combined first-stage and second-stage bootstrap adjustments a12k, k ∈ s,
that satisfy E∗(a12k) = 1 and cov∗(a12k, a12l) = ∆12kl . The bootstrap procedure in
Section 4 can be used to generate a12k, k ∈ s, as the product of the first-stage and
second-stage bootstrap adjustments.

Step 2: Generate preliminary third-stage bootstrap adjustments ã3ki, i ∈ sk, indepen-
dently from one second-stage unit k ∈ s to another, that satisfy E∗(ã3ki) = 1
and cov∗

(
ã3ki, ã3kj

)
= ∆3ki,kj, where ∆3ki,kj is determined similarly to ∆2ki,kj

in Section 2.2.
Step 3: Compute the third-stage bootstrap adjustments a3ki, i ∈ sk, similarly to (29), using

a3ki = 1−

√
1− ∆12kk
1 + ∆12kk

+

√
1− ∆12kk
1 + ∆12kk

ã3ki ,

for each second-stage unit k ∈ s. Note that ∆12kk = 1−π12k if ∆12kl can be written
in the form (13).

Step 4: Compute the overall bootstrap weights w∗123ki = w123kia12ka3ki, for each i ∈ sk and
k ∈ s, where w123ki = w12kw3ki, w3ki = π−1

3ki and π3ki is the probability of selecting
unit i ∈ sk at the third stage.

8. Bootstrap for Nonlinear Estimators

In Section 4, we developed the theory for the linear double expansion estimator (4)
and proposed random bootstrap weights that satisfy conditions (25) and (26). In practice,
nonlinear estimators are often used. The nonresponse-adjusted estimator in Section 6 is
an example. The bootstrap continues to be valid for nonlinear estimators under certain
regularity conditions.

We provide below, through linearization techniques, an informal justification of the
validity of the bootstrap method for nonlinear estimators that can be written as smooth
functions of totals. A more formal justification is given in [18] for simple random sampling
without replacement at the first stage with negligible first-stage sampling fractions. Justifi-
cation of the bootstrap method for nonlinear estimators that are implicitly defined through
estimating equations is discussed in [9,19]. The latter provides a rigorous treatment of this
topic. Greater detail on the theory of bootstrap can be found in [20].

Suppose that we are interested in estimating the design variance of the nonlinear
estimator P̂ = g

(
T̃x, T̂y

)
, where the function g is a smooth function, T̃x = ∑k∈s w1kXk,

Xk = ∑i∈Uk
xki,

T̂y = ∑
k∈s

w1k ∑
i∈sk

w2kiyki ,
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and xki and yki are vectors for unit i in cluster k. Under regularity conditions, the estimator
P̂ is design-consistent for the population parameter P = g

(
Tx, Ty

)
, where Tx = ∑k∈U Xk,

Ty = ∑k∈U Yk and Yk = ∑i∈Uk
yki. The bootstrap version of P̂ is P̂∗ = g

(
T̃
∗
x, T̂∗y

)
, where

T̃
∗
x = ∑k∈s w∗1kXk and

T̂∗y = ∑
k∈s

w∗1k ∑
i∈sk

w∗2kiyki .

Using a first-order Taylor linearization, the sampling error P̂− P can be approximated as

P̂− P ≈
[
hT

x
(
Tx, Ty

)](
T̃x − Tx

)
+
[
hT

y
(
Tx, Ty

)](
T̂y − Ty

)
, (42)

where hx(c, d) = ∂g(c, d)/∂c and hy(c, d) = ∂g(c, d)/∂d. Using (42), the design variance of
P̂ is approximated as

varp
(

P̂
)
≈ hT

x
(
Tx, Ty

)[
varp

(
T̃x

)]
hx
(
Tx, Ty

)
+hT

y
(
Tx, Ty

)[
varp

(
T̂y
)]

hy
(
Tx, Ty

)
+2hT

x
(
Tx, Ty

)[
covp

(
T̃x, T̂y

)]
hy
(
Tx, Ty

)
.

(43)

Similarly, we can again use a first-order Taylor linearization to approximate the boot-
strap error P̂∗ − P̂ as

P̂∗ − P̂ ≈
[
hT

x

(
T̃x, T̂y

)](
T̃
∗
x − T̃x

)
+
[
hT

y

(
T̃x, T̂y

)](
T̂∗y − T̂y

)
. (44)

From (44), the bootstrap variance of P̂∗ is approximated as

var∗
(

P̂∗
)
≈ hT

x

(
T̃x, T̂y

)[
var∗

(
T̃
∗
x

)]
hx

(
T̃x, T̂y

)
+hT

y

(
T̃x, T̂y

)[
var∗

(
T̂∗y
)]

hy

(
T̃x, T̂y

)
+2hT

x

(
T̃x, T̂y

)[
cov∗

(
T̃
∗
x , T̂∗y

)]
hy

(
T̃x, T̂y

)
.

(45)

The right-hand side of (45) is design-consistent for the right-hand side of (43) pro-
vided that T̃x, T̂y, var∗

(
T̃
∗
x

)
, var∗

(
T̂∗y
)

and cov∗
(

T̃
∗
x , T̂∗y

)
are design-consistent for Tx, Ty,

varp

(
T̃x

)
, varp

(
T̂y
)

and covp

(
T̃x, T̂y

)
, respectively. Conditions (15), (16), (27) and (28)

are key to obtain a valid bootstrap method. They ensure that var∗
(

T̃
∗
x

)
, var∗

(
T̂∗y
)

and

cov∗
(

T̃
∗
x , T̂∗y

)
are identical to standard textbook estimators of varp

(
T̃x

)
, varp

(
T̂y
)

and

covp

(
T̃x, T̂y

)
, respectively.

9. Simulation Studies

We conducted three simulation studies to evaluate our proposed bootstrap methods
under three different sampling designs. First, our population for the simulation studies was
taken from 50 clusters of the Canadian Health Measures Survey (CHMS). We considered
two variables of interest from the CHMS: Body Mass Index (BMI) and Height. The CHMS
aims to collect important health information through a household interview and direct
physical measures and is based on a stratified three-stage sampling design. Greater detail
on the CHMS can be found at: https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=
getSurvey&SDDS=5071 (accessed on 28 January 2022).

From this population, we generated R = 10, 000 samples using one of the three
sampling designs described in Section 9.1, Section 9.2, Section 9.3. Suppose that P̂r is

https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=5071
https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=5071


Stats 2022, 5 352

a weighted estimate of a certain population parameter P for the rth generated sample. The
design variance of the estimator P̂, varp

(
P̂
)
, is approximated by the Monte Carlo variance

VMC =
1
R

R

∑
r=1

(
P̂r − P

)2 .

Then, for each of the R samples, 1000 sets of bootstrap weights were generated using
one of the methods discussed in Section 3, Section 4, Section 5, Section 6, and the bootstrap
variance was obtained as described at the end of Section 2.3. Let us denote by vboot

r , the
bootstrap variance estimate for the rth sample for any given sampling design and bootstrap
method. The percent Monte Carlo Relative Bias (RB) of the bootstrap variance estimator is
defined as

RB =
1
R

R

∑
r=1

er ,

and its percent Monte Carlo Relative Root Mean Square Error (RRMSE) is defined as

RRMSE =

√√√√ 1
R

R

∑
r=1

e2
r ,

where er =
(vboot

r −VMC)
VMC

× 100% is the percent relative error. We evaluated bootstrap methods
for the three sampling designs described in Section 9.1, Section 9.2, Section 9.3 by comparing
their RBs and RRMSEs. The SAS code used to obtain our simulation results is available
upon request from the authors.

9.1. Single-Stage Cluster Sampling without Replacement with Unequal Probabilities

The objective of this simulation study is to evaluate the accuracy of the bootstrap
adjustments (21) and (24) under single-stage cluster sampling without replacement with
probability proportional to size.

From our population of N = 50 clusters, we generated R = 10, 000 samples using
sequential Poisson sampling [21], where the size measure is the cluster size. We considered
two sample sizes: n1 = 10 and n1 = 30. The sampling fraction is 0.20 for n1 = 10 and 0.60
for n1 = 30. We compared the RB and RRMSE of different bootstrap methods of estimating
the design variance of the expansion estimator θ̃ = ∑k∈s w1kYk for two variables of interest:
BMI and Height. Table 1 describes the five methods we considered in this simulation study
to obtain bootstrap weight adjustments a1k, k ∈ s.

Table 1. Bootstrap methods for single-stage cluster sampling.

Method Description

RWY Bootstrap adjustment (19) obtained under with-replacement
sampling with m1 = n1 − 1 as proposed in [1].

SRS-RWY Bootstrap adjustment (20) obtained under simple random sampling
without replacement.

PPS-RWY Proposed bootstrap adjustment (21) for sampling without
replacement with probability proportional to size.

PPS-RWY-CAL
Proposed bootstrap adjustment (21) for sampling without

replacement with probability proportional to size modified by the
calibration adjustment (24).

POI-CAL
Bootstrap adjustment under Poisson sampling, using the gamma

distribution discussed in Section 3.1, modified by the
calibration adjustment (24).
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Relative biases are provided in Table 2. As expected, the RWY method shows large
positive biases, especially for the largest sampling fraction, as it is valid under with-
replacement sampling. The SRS-RWY method is surprisingly not overly poor in terms
of bias, except for the variable BMI and n1 = 30, where the RB is not small (34.6%). The
PPS-RWY method shows very large biases, whereas PPS-RWY-CAL is the best method in
terms of bias.

Table 2. The percent relative biases of the bootstrap variance estimators.

Method
BMI Height

n1=10 n1=30 n1=10 n1=30

RWY 31.2 236.4 25.1 145.8

SRS-RWY 4.9 34.6 0.1 −1.7

PPS-RWY 127.7 4288.6 1847.8 68,959.1

PPS-RWY-CAL 1.0 1.5 −0.2 −1.9

POI-CAL −15.8 −2.1 −17.3 −6.3

In other words, it appears that modifying the bootstrap adjustment (21) by the cal-
ibration adjustment (24) is effective for taking into account the unknown joint selection
probabilities and the fixed sample size. The POI-CAL method is also effective, although
it shows negative RBs, especially for the smallest sample size. The POI-CAL method is
sometimes used in practice for its simplicity.

Table 3 gives the RRMSEs. Both RWY and PPS-RWY show large RRMSEs due to their
large biases. The other three methods are comparable, perhaps with a small advantage
for POI-CAL.

Table 3. The percent relative root mean square errors of the bootstrap variance estimators.

Method
BMI Height

n1=10 n1=30 n1=10 n1=30

RWY 64.0 243.4 56.0 152.3

SRS-RWY 45.0 41.6 40.1 17.7

PPS-RWY 161.4 4335.6 2021.1 69,700.3

PPS-RWY-CAL 44.2 30.0 41.8 24.9

POI-CAL 39.9 28.8 38.5 24.8

Overall, the proposed PPS-RWY-CAL method offers a good compromise in terms
of both bias and mean square error. The POI-CAL method is an interesting alternative,
especially for larger sample sizes.

9.2. Two-Stage Sampling with Poisson Sampling at the First Stage and Simple Random Sampling
at the Second Stage

The objective of this second simulation study is to evaluate the accuracy of the boot-
strap adjustment (32) under a two-stage sampling design. At the first stage, Poisson
sampling was used to select a sample of clusters, with probability proportional to cluster
size, among the N = 50 population clusters. We considered two values of the expected
sample size: Ep(n1) = 10 and Ep(n1) = 30. For each of the selected clusters at the first
stage, a second-stage sample of 10 units was selected using simple random sampling
without replacement.

This process was repeated R = 10, 000 times. For each of the 10,000 samples, we
computed double expansion estimates θ̂ = ∑k∈s ∑i∈sk

w1kw2kiyki of the population total for
the variables BMI and Height. We also computed weighted estimates of the population
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median for these variables using the methodology implemented in the procedure Univariate
of SAS for weighted percentiles.

We considered two bootstrap methods for estimating design variances: (i) the RWY
method described in Table 1 and (ii) the proposed method described in Section 4. In our
proposed method, we generated first-stage bootstrap adjustments using the gamma distri-
bution described in Section 3.1. Then, we generated preliminary second-stage bootstrap
adjustments within each selected cluster k ∈ s by applying the method in Section 3.3 for
simple random sampling without replacement, i.e., we used

ã2ki = 1−

√
m2k(1− f2k)

n2k − 1
+

√
m2k(1− f2k)

n2k − 1
n2k
m2k

m∗2ki ,

where n2k is the number of units selected in cluster k, f2k is the sampling fraction in cluster
k, m∗2ki is the number of times sample unit i in cluster k is chosen out of m2k = n2k − 1
independent random trials, where each sample unit i in cluster k has a constant probability
of being chosen at each trial equal to n2k

−1. Finally, we computed second-stage bootstrap
adjustments using Equation (32).

Table 4 provides RBs for both the RWY bootstrap method and the proposed method,
whereas the RRMSEs are given in Table 5. The RWY method leads to significant negative
biases for the estimation of population totals because it does not account for the random
sample size at the first stage due to Poisson sampling. As expected, the proposed method
shows small biases and smaller RRMSEs compared with the RWY method.

Table 4. The percent relative biases of the bootstrap variance estimators.

Method
Population
Parameter

BMI Height

Ep(n1)=10 Ep(n1)=30 Ep(n1)=10 Ep(n1)=30

RWY Total −98.8 −97.2 −99.7 −99.3

Proposed Total −1.8 1.3 0.71 4.3

RWY Median 14.6 24.7 21.5 12.8

Proposed Median −2.9 10.0 3.8 6.8

Table 5. The percent relative root mean square errors of the bootstrap variance estimators.

Method
Population
Parameter

BMI Height

Ep(n1)=10 Ep(n1)=30 Ep(n1)=10 Ep(n1)=30

RWY Total 98.8 97.2 99.7 99.3

Proposed Total 29.1 16.6 28.9 17.5

RWY Median 88.3 58.6 126.4 50.6

Proposed Median 65.9 42.9 87.6 41.1

Estimators of population means or medians are typically less affected by random
sample sizes than estimators of population totals. As a result, the RWY method shows
moderate positive biases for the estimation of population medians due to the non-negligible
first-stage sampling fractions. Again, the proposed method shows smaller biases and
RRMSEs than the RWY method.

These results are not surprising since the RWY method is not intended for Poisson
sampling and/or non-negligible first-stage sampling fractions. It remains a useful method
in many practical scenarios. This simulation study simply illustrates that the sampling
design must be properly taken into account when choosing a bootstrap method.
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9.3. Two-Phase Sampling with Simple Random Sampling at the First Phase and Nonresponse at the
Second Phase

The objective of this last simulation study is to evaluate our bootstrap procedure in
Sections 5 and 6 under two-phase sampling with nonresponse at the second phase. Our
population for the variable BMI is a random subset of all the units in the 50 population
clusters that were used in Sections 9.1 and 9.2. This gave a total of 6227 population units.
The population for the variable Height was constructed similarly by selecting a random
subset of all the units in the same 50 clusters, which resulted in 6439 units.

For both populations, simple random sampling without replacement was used to
select a first-phase sample with a sampling fraction of 0.5. From the first-phase sample
units, nonresponse was then generated using Bernoulli sampling with probability 0.05
(uniform nonresponse). This process was again repeated R = 10, 000 times. For each of the
10,000 samples, we computed nonresponse-adjusted estimates θ̂NA = ∑k∈s2

w1k
π̂2

yk of the
population total for the variables BMI and Height, where the estimated probability π̂2 is
given in (36).

We considered two bootstrap methods for estimating design variances: (i) the Kim–Yu
method described in Section 6.2 with p = 0.5 and (ii) the proposed method described in
Sections 5 and 6. In our proposed method, we generated first-phase bootstrap adjustments
using Equation (20) in Section 3.3. Then, we generated preliminary second-phase bootstrap
adjustments using the gamma distribution with mean 1 and variance 1− π̂2 and computed
the second-phase bootstrap adjustments using (32) as described in step (3) of Section 5. In both
methods, the bootstrap version of θ̂NA is θ̂∗NA = ∑k∈s2

w∗1k
a2k
π̂∗2

yk, where π̂∗2 is given in (37).
Table 6 provides RBs and RRMSEs for both bootstrap methods. The Kim–Yu method

shows a moderate positive bias for both variables whereas the proposed method has
a negligible bias, albeit negative. The larger RRMSEs of the Kim–Yu method can be
explained by its larger bias.

Table 6. The percent RBs and percent RRMSEs of the bootstrap variance estimators.

Method
RB RRMSE

BMI Height BMI Height

Kim–Yu 22.8 23.0 30.6 29.2

Proposed −2.6 −2.4 16.4 14.4

10. Concluding Remarks

We developed a simple and unified method for producing non-negative bootstrap
weights that can be applied to any multistage sampling design provided that valid bootstrap
weights can be produced for each distinct stage of sampling. This is not a major limitation in
practice as most bootstrap methods for single-stage sampling can be implemented through the
computation of bootstrap weights, including the pseudo-population method (see [9,10,16,22]).

We provided a few expressions for bootstrap weights under different single-stage
sampling designs, including probability proportional to size without replacement sampling.
For this design, we proposed a simple heuristic extension of the Rao–Wu–Yue bootstrap
weights that performed well in our empirical investigations.

We assumed that the selection and joint selection probabilities were strictly greater
than 0 at each stage, which excludes systematic sampling in one of the stages. For systematic
sampling, the usual practical solution is to approximate this design with stratified simple
random sampling without replacement, where strata are formed based on the order of the
population units in the sampling frame.

Our bootstrap method for multistage sampling can be used even when first-stage
sampling fractions are not small—unlike the commonly used Rao–Wu–Yue bootstrap
weights. The results of simulation studies indicate that our method has good properties in
terms of bias and mean square error.
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As indicated in the introduction, there are alternatives bootstrap methods for some
specific multistage sampling designs, such as simple random sampling without replacement
at each stage. Although we did not investigate these methods, we do not expect our
bootstrap method to have necessarily better (or worse) statistical properties. They are all
valid methods that correctly track the first two design moments of estimators. The main
appeal of our method is its simplicity and generality; it can be applied to most multistage
sampling designs used in practice through a simple formula that combines the bootstrap
weights at each distinct stage of sampling.

Our bootstrap method is also directly applicable to two-phase sampling designs when
Poisson sampling is used at the second phase; it can thus handle nonresponse weighting.
More research is required for general two-phase or multi-phase sampling designs.
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