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Abstract: Traditional case–control genetic association studies examine relationships between case–
control status and one or more covariates. It is becoming increasingly common to study secondary
phenotypes and their association with the original covariates. The Orofacial Pain: Prospective
Evaluation and Risk Assessment (OPPERA) project, a study of temporomandibular disorders (TMD),
motivates this work. Numerous measures of interest are collected at enrollment, such as the number
of comorbid pain conditions from which a participant suffers. Examining the potential genetic basis
of these measures is of secondary interest. Assessing these associations is statistically challenging, as
participants do not form a random sample from the population of interest. Standard methods may
be biased and lack coverage and power. We propose a general method for the analysis of arbitrary
phenotypes utilizing inverse probability weighting and bootstrapping for standard error estimation.
The method may be applied to the complicated association tests used in next-generation sequencing
studies, such as analyses of haplotypes with ambiguous phase. Simulation studies show that our
method performs as well as competing methods when they are applicable and yield promising results
for outcome types, such as time-to-event, to which other methods may not apply. The method is
applied to the OPPERA baseline case–control genetic study.

Keywords: bootstrap; case–control studies; inverse-probability weighting; secondary analysis

1. Introduction

Prospective studies are more straightforward and less prone to confounding than other
study designs. However, they may require either extremely long follow-up periods or large
sample sizes, and lack power. For rare diseases in particular, the sample sizes required in a
prospective cohort study to have adequate statistical power to test hypotheses of interest
may be prohibitively large. This can be especially problematic in genetic association studies,
which may cost thousands of dollars per participant just to extract their genetic profiles.
Retrospective case–control studies are more cost effective. The number of case–control
studies focusing on the relationship between genetics and disease outcomes has grown
astronomically in recent years.

It is well-known that when modeling the probability of case status in a case–control
design, logistic regression may be used to model the primary outcome as if the study
were prospective [1]. However, researchers may design studies based on one outcome
and study secondary outcomes simultaneously or subsequently. Without proper care, the
analysis of secondary phenotypes in case–control studies may be problematic. Standard
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unadjusted methods, such as linear and logistic regression, may be biased, inefficient, or
lead to misleading inference. The standard method of unweighted regression on the full
case–control sample and the method of adjusting for case status with an indicator variable
have inflated type I error when the disease is not rare and when the disease is related to
the secondary phenotype [2]. The popular practices of restricting to either cases only or
controls only reduce efficiency and may be subject to bias.

This work arose in consideration with data from the Orofacial Pain: Prospective
Evaluation and Risk Assessment (OPPERA) study [3,4]. The OPPERA study was primarily
designed to identify risk factors for temporomandibular disorders (TMD). In addition to
the cohort of initially TMD-free adults enrolled in the prospective cohort study, people with
examiner-verified chronic TMD were enrolled to create an unmatched case–control study. A
large number of putative risk factors were collected at enrollment [4]. Investigators sought
to explain relationships between TMD and other chronic pain conditions. One putative
risk factor of interest in its own right is the (ordinal) number of comorbid pain conditions
a subject experiences. The genetic information collected may be predictive of comorbid
conditions as well as of TMD.

Some methods have been proposed for analyzing secondary phenotypes in case–
control studies. Subjects from a nested prospective case–control study may be weighted by
the reciprocal of their probability of selection [5]. This stratum-weighted logistic regression
method, also called inverse probability weighting (IPW), achieves the nominal type I error
rate, but it can be less efficient than the standard unadjusted method or the method of
adjusting for case status [2]. (Yet, in light of the fact that the method of adjusting for
case status may have inflated type I error, the lower power of IPW is less alarming.) The
IPW estimator [5] may merit a correction factor for the standard error. Another IPW-
based method was developed for continuous outcomes [6,7] by fitting estimating equations
separately to cases and controls and then combining the estimates to have minimal variance.

Likelihood-based methods have been developed [8,9] that are more powerful than
IPW and can be used for both continuous and binary outcomes. However, the results may
be biased and have inflated size when there is significant interaction between the genotypes
and the original outcome [10,11]. Robust likelihood estimation approaches are provided
for continuous outcomes using bootstrapping under the assumption that the secondary
phenotype can be modeled with homoscedastic regression or the disease is rare [12], as well
as under heteroscedasticity or higher prevalence [13]. Robust sandwich estimators have
been proposed for the variance based on generalized estimating equations (GEE), which
applies to both continuous [2,14] and binary outcomes [2]. A general conditional likelihood-
based method [15] exists for outcomes that utilize standard link functions (identity, logit,
and log), i.e., binary, continuous, and count outcomes.

Additional bootstrap estimates have been proposed for binary outcomes [16]. They
derive non-linear equations relating the logistic regression coefficients to known sample
sizes and prevalence estimates for the primary disease and secondary phenotype, calculate
the unadjusted parameter estimate and standard error, resample parameter estimates from
a normal distribution with that mean and standard error, refine the estimate for each
replication by solving the aforementioned non-linear equations, and use bootstrapping for
confidence intervals. They also adapt their bias correction method to the frequency-matched
case–control study design and extend the IPW method to retrospective case–control studies
using an estimate of primary disease prevalence to calculate weights. These methods have
greater efficiency than the IPW method, but they assume that the secondary phenotype
and covariates are binary and there is no gene–environment interaction [17].

When there is gene–environment interaction, estimation with adaptive weighting
motivated by a Bayesian shrinkage estimator is recommended for when the disease is
rare [10] or common [18]. Joint modeling based on Gaussian copulas for the analysis of
multiple secondary phenotypes in the exponential family has a controlled type I error and
is more powerful than the IPW method [11].
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Existing methods may not be appropriate for all applications. First, the IPW method [5]
may require an adjustment to the standard error and was originally only designed to apply
to binary outcomes. Additional variable types are commonly analyzed in practice. More re-
cent methods have only been explicitly derived and tested for continuous [2,6–9,12,13,15,19],
binary [2,7–9,15,16,19], or count outcomes [7,15]. As far as we know, there are no methods
that have been developed for and applied to secondary phenotypes outside the exponential
family. Time-to-event outcomes, for example, may be of clinical interest, and may be
present in large studies, such as OPPERA. Sequencing studies also utilize more compli-
cated test statistics outside of the exponential family. Additionally, there may be a lack of
user-friendly software for implementation.

In this paper, we propose a method for analyzing secondary phenotypes of general
form in case–control genetic association studies. We advocate using the IPW method [5] for
parameter estimation, but estimating the standard error via bootstrapping. This maintains
the simplicity and intuitiveness of IPW and generalizes it to a wider variety of situations
than previously applied, while providing a valid estimate of the standard error. Our
method can handle arbitrary types of analyses, including time-to-event and non-parametric
methods, as well as logistic regression and linear models, as described in the literature.
Moreover, our method can be easily generalized to outcomes for which no existing method
applies. We describe our methodology in detail in Section 2. Simulations are presented in
Section 3. The method is applied to the OPPERA study in Section 4. We conclude with a
discussion.

2. Proposed Method

Consider a case–control study consisting of n cases and m controls. Let Zi, a p× 1
vector, denote covariate information, Di denote the case–control status (1 = case, 0 = control),
and Yi denote the secondary phenotype for i = 1, . . . , n + m. For example, in the OPPERA
study, Zi denotes the number of copies of the minor allele, Di is an indicator of whether
participant i is a chronic case of TMD, and Yi is the ordinal number (0, 1, 2+) of comorbid
pain conditions for participant i. (In general, Yi can take other forms, as described below.) If
one were to ignore the case–control study design and consider the data as a random sample
from the population, then one would use standard methodology to study the relationship
between Y = (Y1, . . . , Yn+m)′ and Z = (Z1, . . . , Zn+m)′. The log-likelihood is denoted
under the assumption of random sampling as l(θ|Yi, Zi) where θ is a q× 1 vector of model
parameters of interest.

In our proposed method, parameter estimates (θ̂) are generated using the IPW method
of [5]. IPW simply weights standard analyses appropriately to account for the over-
sampling of cases. Specifically, in a prospective (nested) case–control study, if we denote
fca as the sampling fraction for cases and fco as the sampling fraction for controls, we use
wi = 1 as the weight for cases and wi =

fca
fco

as the weight for controls. For retrospective
case–control studies, the weights may be estimated as in [16] by wi = 1 for cases and
wi =

n(1−pe)
mpe

for controls, where pe is the estimated prevalence of cases in the population.
We may write wi(Di) = Di + (1− Di)wi.

The weighted log-likelihood is the weighted sum of the log-likelihood of each observation

lW(θ|Y, Z, D) =
m+n

∑
i=1

wi(Di)l(θ|Yi, Zi), (1)

where l(θ|Yi, Zi) = log[ f (Yi|Zi)] if Y is continuous with pdf f (Yi|Zi),
or l(θ|Yi, Zi) = log[P(Yi|Zi)] if Y is discrete with pmf P(Yi|Zi)].

As a simple example, suppose Yi is continuous, and let Z̃i = (1, Z′i)
′ add an column

of ones to the covariate information in Zi. Then, in the setting of random sampling,
Yi = α′Z̃i + εi, E(Yi) = α′Z̃i, and Var(Yi) = εi ∼ N(0, σ2) would comprise the underlying
unweighted linear model with parameter θ = (α, σ2), where α is a (p + 1)× 1 vector and
σ2 ≥ 0 is a non-zero constant scalar.
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In the case–control setting discussed in this paper, a weighted linear model could be
utilized to estimate θ = (α, σ2) with log-likelihood according to Equation (2):

lW(θ|Y, Z, D) =
m+n

∑
i=1

log[ f (Yi|Zi, Di)] =
m+n

∑
i=1

wi(Di)

[
− log(2πσ2)

2
− (Yi − α′Z̃i)

2

2σ2

]
. (2)

If Yi is binary with covariate Z̃i = (1, Z′i)
′, then under random sampling, one could use

a standard logistic regression model, log[ P(Yi=1)
1−P(Yi=1) ] = α′Z̃i, where α has length p + 1. For

the case–control setting, one would typically use weighted logistic regression to estimate
θ = α, with

lW(θ|Y, Z, D) =
m+n

∑
i=1

log[P(Yi = 1|Zi, Di)] =
m+n

∑
i=1

wi(Di){Yiα
′Z̃i − log[1 + exp(α′Z̃i)]}. (3)

If Yi is ordinal with K levels, denoted (1, 2, . . . , K), then under random sampling, one
may use a proportional odds model with cumulative logits [20] to estimate θ = (ζ, β),
where ζ = (ζ1, . . . , ζK−1) denotes intercepts, and

log
[

P(Yi ≤ k)
1− P(Yi ≤ k)

]
= ζk + β′Zi = β′Zi +

K−1

∑
j=1

ζ j I(j = k), (4)

for k = 1, . . . , K− 1, leading to cumulative probabilities,

P(Yi ≤ k|Zi) =
exp(ζk + β′Zi)

1 + exp(ζk + β′Zi)
=

exp[β′Zi + ∑K−1
j=1 ζ j I(j = k)]

1 + exp[β′Zi + ∑K−1
j=1 ζ j I(j = k)]

. (5)

The cumulative probabilities from (5) may be used to calculate individual probabilities
into the likelihood, where

P(Yi = 1|Zi) = P(Yi ≤ 1|Zi),
P(Yi = k|Zi) = P(Yi ≤ k|Zi)− P(Yi ≤ k− 1|Zi) for k = 2, . . . , K− 1, and
P(Yi = K|Zi) = 1−∑K−1

k=1 P(Yi = k|Zi).
Then the weighted likelihood under case–control sampling is:

lW(θ|Y, Z, D) =
m+n

∑
i=1

log[P(Yi|Zi, Di)] =
m+n

∑
i=1

wi(Di) log[P(Yi = k|Zi)]. (6)

If (Yi, ∆i) is a (possibly censored) time-to-event outcome with failure time Ti and cen-
soring time Ci, Yi = min(Ti, Ci) and ∆i = I(Ti < Ci), then one may use a Cox proportional
hazards model [21] for the estimation of θ = β

λTi (t|Zi) = λ0(t) exp(β′Zi) (7)

with weighted log-partial-likelihood given by

lW(Y|Z, D) =
m+n

∑
i=1

wi(Di)∆i{β′Zi − log[
m+n

∑
l=1

wl(Dl)I(Yi < Yl) exp(β′Zl)]}. (8)

We propose the use of bootstrapping to estimate the standard error of the estimate
of interest, se(θ̂), in any of the aforementioned scenarios. We select R samples from the
empirical distribution of the original data. For each bootstrap replication, we apply the
IPW method described above. Specifically, let (D, Y, Z) denote the data with empirical cdf
f , and let (D∗r , Y∗r , Z∗r ) denote bootstrap replications for r = 1, . . . , R. The first step is to
fit a model to (D∗r , Y∗r , Z∗r ) using the weighted log likelihood (1) for each replication. The
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variance of the parameter estimate θ̂ is given by the estimated variance of the R bootstrap
parameter estimates of θ. Confidence intervals may be generated by the percentile method,
bias-corrected and accelerated (BCa) method, approximate bootstrap confidence interval
(ABC) method, bootstrap-t, or a normal approximation [22,23]. Standard software, such as
the boot package in R [24,25], can easily generate these estimates.

3. Simulation Study
3.1. General Setup

We simulated data under the framework in [8]. In order to have n cases and m controls,
we generated ns =

3 max(m,n)
pe

observations. This ensured there would be enough cases and
controls in each dataset. For all subjects in this superset, i = 1, . . . , ns, we assume that
the relationship between case–control status, Di, the number of copies of the minor allele,
Zi, and the secondary phenotype, Yi, is given by a logistic regression model based on the
genetic profile and secondary phenotype. The distribution of each type of outcome and
corresponding specific form of the logistic regression model are given in Sections 3.2–3.4
for binary, ordinal, and time-to-event outcomes, respectively. Each equation specifies that
the probability of being a case of the primary disease (rather than a control) depends on
the status of the genetic profile and the secondary phenotype. The inheritance model is
assumed to be additive. We assumed a minor allele frequency of 30% and an estimated
prevalence of D of 10% to approximate the 8.6% prevalence of TMD in the OPPERA
prospective cohort study [26].

Finally, for each simulation run, we extracted the first n cases and m controls from
the superset of ns to comprise the simulated case–control dataset of size m + n. For each
method and scenario, we estimated the value of the parameter relating to the secondary
phenotype and the number of copies of the minor allele. (This was the log-odds ratio or
log-hazard ratio depending on the type of outcome.) Average bias, empirical coverage,
and average confidence interval width were compared between our method, and the naive
methods that restrict to cases, restrict to controls, or adjust for case–control status using an
indicator variable. We also compared the performance of the IPW with the GEE method
of [2] when applicable, i.e., for continuous outcomes. All simulation types included 1000
datasets each with n = 1000 cases and m = 1000 controls. In each case, the average bias
was estimated using the difference between the mean of the 1000 parameter estimates and
the true parameter value. Analogously, the average confidence interval width produced by
each method is equal to the average difference between the upper and lower confidence
limits among the 1000 scenarios. Similarly, we calculated the empirical coverage probability
produced by each method using the proportion of the 1000 simulations for which the true
parameter value is contained in the confidence interval.

3.2. Continuous Phenotypes

For continuous secondary phenotypes, we assume a standard linear model with
normally distributed errors, εi ∼ N(0, σ2),

Yi = β0 + β1Zi + εi, (9)

where Zi is defined in Section 3.1, and case status is defined by

logit[P(Di = 1|Yi, Zi)] = γ0 + γ1Zi + γ2Yi. (10)

Our simulations included the parameters β0 = 0, β1 = −0.12,−0.5,−1,−2 and
γ1 = log(2), log(3), log(5), log(10), γ2 = log(2) and σ2 = 1.

In order to keep the prevalence approximately constant, we set the value of γ0 sepa-
rately for each simulation, according to

γ̂0 = log
[

pe exp(−X̃)

1− pe

]
, (11)
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where
X̃ = γ1Z̄ + γ2Ȳ, (12)

pe = 0.1, and Z̄ = 1
ns

∑ns
i=1 Zi and Ȳ = 1

ns
∑ns

i=1 Yi are the averages of the i = 1, . . . , ns. Zi
and Yi values.

The parameter of interest was β1. Considering continuous outcomes facilitated the
comparison of the IPW with the GEE method of [2].

Simulations with continuous outcomes yielded the following results. In all scenarios,
our method had negligible bias and coverage rate near 95%, as desired. Performance in
terms of bias, coverage, and confidence interval width was comparable to that of [2]. The
bootstrapping IPW method had comparable bias to the method of [2] and less bias than all
other methods. Details are found in Table 1. This shows that when competing methods are
applicable, our method does at least as well as, if not better than the competitors.

3.3. Ordinal Phenotypes

We tested four scenarios for ordinal phenotypes with 3 levels. For simplicity, we will
denote these as Yi = 0, Yi = 1 and Yi = 2. In general, we generated the ordinal outcomes
with the following probabilities

p0 = P(Yi = 0) = exp(ζ0 + βZi)/(1 + exp(ζ0 + βZi)),

p1 = P(Yi = 1) = exp(ζ1 + βZi)/(1 + exp(ζ1 + βZi))− p0,

p2 = P(Yi = 2) = 1− p1 − p0.

For all subjects, i = 1, . . . , m+ n, we assume that the relationship between case–control
status, Di, the number of minor allele copies, Zi, and the secondary phenotype, Yi, is given
by the following logistic regression model

logit[P(Di = 1|Yi, Zi)] = γ0 + γ1Zi + γ2a I(Yi = 1) + γ2b I(Yi = 2), (13)

where

Ȳ = γ2a(
∑m+n

i=1 I(Yi = 1)
m + n

) + γ2b(
∑m+n

i=1 I(Yi = 2)
m + n

) (14)

is used to define the average outcome in Equation (12) and thus the value of γ0 in (11).
For the four scenarios, we used the following parameters:

1. β = 0.5, ζ0 = 1.5, ζ1 = 2.5, and γ1 = γ2a = γ2b = log(2)
2. β = 1, ζ0 = 0, ζ1 = 1, and γ1 = γ2a = γ2b = log(2)
3. β = 0.75, ζ0 = 1, ζ1 = 2, and γ1 = γ2a = γ2b = log(2)
4. β = 0.5, ζ0 = 1.5, ζ1 = 2.5, γ1 = γ2a = log(2), and γ2b = log(3).

Our weighted bootstrap method has less bias than all other methods. Using controls
only yielded close but lower coverage in scenarios 1, 2, and 4, and identical coverage
in scenario 3. However, this finding may be an artifact of the relatively low simulated
prevalence of cases and may not be replicated for higher population case rates. None of the
other methods have adequate coverage for these ordinal simulations. Results are given in
Table 2.
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Table 1. Results of simulations for intermediate continuous phenotypes.

Parameters β1 = −0.12 β1 = −0.12 β1 = −0.12 β1 = −0.12 β1 = −0.5 β1 = −1 β1 = −2
γ1 = log(2) γ1 = log(3) γ1 = log(5) γ1 = log(10) γ1 = log(2) γ1 = log(2) γ1 = log(2)

Bias Cover Bias Cover Bias Cover Bias Cover Bias Cover Bias Cover Bias Cover

LM −0.044 0.728 0.059 0.577 0.061 0.532 0.048 0.666 0.028 0.883 0 0.944 −0.058 0.643
LM, controls only −0.039 0.875 −0.073 0.698 −0.108 0.444 −0.151 0.206 −0.022 0.926 −0.002 0.939 0.037 0.892
LM, cases only −0.056 0.761 −0.099 0.394 −0.166 0.06 −0.256 0 −0.028 0.911 0.002 0.949 0.061 0.794
LM adjusted for case status 0.048 0.696 −0.088 0.235 −0.14 0.021 −0.208 0 −0.025 0.877 0 0.945 0.047 0.736
Monsees −0.002 0.950 −0.001 0.951 0.001 0.948 0.001 0.949 0.001 0.952 −0.001 0.938 −0.003 0.949
Bootstrap −0.002 0.950 −0.001 0.956 0.001 0.944 0.001 0.946 0.001 0.950 −0.001 0.937 −0.003 0.944

CI Width (Valid Methods Only)

Monsees 0.164 0.160 0.155 0.148 0.166 0.167 0.168
Bootstrap 0.162 0.160 0.154 0.147 0.165 0.167 0.168

LM = Linear Model.
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Table 2. Results of simulations for intermediate ordinal phenotypes.

Method Result

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Bias Coverage Bias Coverage Bias Coverage Bias Coverage

Naive −0.054 0.909 −0.068 0.836 −0.053 0.910 −0.069 0.871
Controls only 0.075 0.937 0.051 0.937 0.063 0.948 0.093 0.933
Cases only 0.805 0 −0.815 0 0.226 0 0.903 0
Adjusted for case status 0.057 0.904 0.027 0.937 0.054 0.913 0.101 0.824
Bootstrap 0.020 0.943 0.006 0.944 0.015 0.948 0.015 0.951

CI Width (Valid Methods Only)

Bootstrap 0.519 0.399 0.477 0.512

3.4. Time-to-Event Phenotypes

Survival outcomes were generated as in [27] with exponential failure and censoring
times. The failure time Ti satisfies Equation (7) where λ0(t) = 1 for all t, β = −1 and Zi is
the number of copies of the minor allele. The censoring time was exponential with shape
parameter 2. The parameter of interest was β and the outcome of interest was (Yi, ∆i) where
Yi = min(Ti, Ci) and ∆i = I(Ti < Ci). This yielded about 84% censoring. High censoring
was used in simulations to parallel findings in the application of interest, the OPPERA
study [26].

The case status was similar to Equation (10) for continuous outcomes, but instead
depended on the true failure time rather than the observed time as follows

logit[P(Di = 1|Zi, Ti)] = γ0 + γ1Zi + γ2Ti. (15)

The value of γ0 was set by Equation (11) with X̃ defined by Equation (12) and X̄ and
Ȳ defined as in Section 3.2. We used γ1 = γ2 = log(2).

For time-to-event outcomes, our method retained empirical coverage around 95% and
had less bias than all other methods. None of the other methods have adequate coverage,
except the method that adjusts for case status. However, the latter method was overly
conservative. See Table 3 for details. Other methods do not apply for this type of outcome.
Consequently, no comparison was made.

Table 3. Results of simulations for intermediate time-to-event phenotypes.

Method Bias Coverage

Naive −0.457 0.006
Controls only 0.272 0.396
Cases only −0.800 0.225
Adjusted for case status 0.091 1.000
Bootstrap −0.017 0.944

CI Width (Valid Methods Only)

Bootstrap 0.439

4. Data Application

We applied the method to the baseline case–control genetic study within OPPERA. The
prospective cohort study consisted of 3263 healthy TMD-free volunteers and 186 volunteers
determined at baseline to have TMD. All 186 cases were retained and 1633 controls were
randomly selected for the baseline case–control study.

The covariates of interest were 2924 SNPs collected in a genetic association study of
3037 participants [28,29]. The outcome was the number of co-morbid conditions, cate-
gorized as either zero, one, or more than one co-morbid condition. Upon enrollment in
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OPPERA, participants self-reported by checking experience with a list of 20 conditions on
the Comprehensive Pain and Symptom Questionnaire (CPSQ). Examples of chronic pain
conditions include arthritis, fibromyalgia, irritable bowel syndrome, include chronic pelvic
pain, among others. All cases and 1626 controls filled out the CPSQ, [30]. Combining these
yielded 166 cases and 1435 controls with information available on both their history of
comorbid conditions and their genetic profiles. Recruited from 4 study sites and ranging
from 18 to 44 years in age, these 1601 individuals comprise the proceeding analysis. For
more details of the OPPERA study design, see [3,4,28,30].

For each SNP with less than 5% missing values, we fit a proportional odds model to
the data, adjusting for study site, age, gender, and two racial eigenvectors calculated as
described in [29].

We collected the p-values and created Q–Q plots of the negative logarithm of the
p-values for the standard unweighted method and for our weighted bootstrapping method.
The plots indicate that neither method found any SNPs that were significantly asso-
ciated with comorbid pain conditions after adjusting for multiple comparisons. See
Figures 1 and 2.
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Figure 1. Q–Q plot for the unweighted method.
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Figure 2. Q–Q plot for the weighted bootstrap method.

5. Discussion

Our proposed method for the analysis of intermediate phenotypes in case–control
studies of genetic data is simple and easily implemented in standard software. The simula-
tion results indicate that it is approximately unbiased, and has comparable coverage and
confidence interval width to the method of IPW with GEE [2]. Under situations in which
the retrospective likelihood-based method [8] is applicable, their method should be more
powerful than our proposed method.

Our method is general enough to allow for the analysis of multiple outcomes simul-
taneously and of outcomes for which previous methodology may not be applicable. This
generality allowed the analysis of the phenotype of interest from OPPERA applied in
this manuscript, namely the number of comorbid pain conditions. Although two prior
methods mention potential extensions to count data [7,15], such extensions have not been
explicitly demonstrated, and thus their relative performance remains unknown. Currently,
our method is the only known viable way to evaluate secondary time-to-event outcomes
in case–control studies. In addition, multiple outcomes could be analyzed using standard
multivariate methods but weighting each observation as described in this paper, and boot-
strapping to estimate the standard error. More importantly, the method can be applied
to complicated test statistics where there is no existing formula for the standard error,
such as the many test statistics employed in sequencing studies. We expect the methods
to perform well for different case to control ratios when the sample sizes for cases and
controls are sufficient. We also expect the methods to perform well with multiple but a
relatively small number of markers compared with the sample size when sample sizes
for cases and controls are sufficient. In situations where the number of genetic markers
exceeds the sample size, our methods may not be applicable. It is worth noting that our
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procedure is computationally non-trivial due to the use of bootstrapping, but the runtime is
reasonable for modern computers. For 1000 runs of the survival scenario with 100 bootstrap
replications, for instance, the output of proc.time was 773.288, or about 13 minutes of total
elapsed time, with an average of 0.77 seconds per run using 100 bootstrap replications.
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