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Abstract: The first hitting time of a boundary or threshold by the sample path of a stochastic process is
the central concept of threshold regression models for survival data analysis. Regression functions for
the process and threshold parameters in these models are multivariate combinations of explanatory
variates. The stochastic process under investigation may be a univariate stochastic process or a
multivariate stochastic process. The stochastic processes of interest to us in this report are those
that possess stationary independent increments (i.e., Lévy processes) as well as the Esscher property.
The Esscher transform is a transformation of probability density functions that has applications
in actuarial science, financial engineering, and other fields. Lévy processes with this property are
often encountered in practical applications. Frequently, these applications also involve a ‘cure rate’
fraction because some individuals are susceptible to failure and others not. Cure rates may arise
endogenously from the model alone or exogenously from mixing of distinct statistical populations in
the data set. We show, using both theoretical analysis and case demonstrations, that model estimates
derived from typical survival data may not be able to distinguish between individuals in the cure
rate fraction who are not susceptible to failure and those who may be susceptible to failure but escape
the fate by chance. The ambiguity is aggravated by right censoring of survival times and by minor
misspecifications of the model. Slightly incorrect specifications for regression functions or for the
stochastic process can lead to problems with model identification and estimation. In this situation,
additional guidance for estimating the fraction of non-susceptibles must come from subject matter
expertise or from data types other than survival times, censored or otherwise. The identifiability
issue is confronted directly in threshold regression but is also present when applying other kinds of
models commonly used for survival data analysis. Other methods, however, usually do not provide a
framework for recognizing or dealing with the issue and so the issue is often unintentionally ignored.
The theoretical foundations of this work are set out, which presents new and somewhat surprising
results for the first hitting time distributions of Lévy processes that have the Esscher property.

Keywords: bilateral gamma process; bilateral inverse gaussian process; cure rate; degradation
process; esscher transform; exponential tilt; failure event; failure time; first hitting time; interval
censoring; Lévy process; multidimensional; multivariate; poisson-bernoulli random walk; stationary
independent increments; stochastic process; survival time; threshold regression; wiener process

1. Introduction

Event times for systems and their components are of research interest in many fields
including medicine, engineering, the natural sciences, economics and the social sciences.
These events are important milestones, happenings or outcomes such as deaths, hospital-
izations, divorces, business bankruptcies, engineering failures, and so on. We will use the
generic term ‘failure’ to describe the event and ‘failure time’ or ‘survival time’ to describe
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the time to occurrence of the event. These failure times are often determined by an under-
lying stochastic process reaching a threshold, boundary or critical condition that triggers
the failure event. The failure times are therefore first hitting times or first passage times.
First-hitting-time models for events are ubiquitous in applications across diverse fields.

Study populations are usually a mixture of individuals, such as patients, marriages,
business establishments, medical devices, plants, and the like. An individual in the study
population may be at risk of eventual failure from the specific cause being investigated
in the study. We refer to this type of individual as a susceptible. On the other hand, the
study population may include an individual who is not at risk of failure; an individual we
call a non-suspectible. Those individuals who are susceptible to failure may nevertheless
escape eventual failure. They may avoid failure because their condition strengthens over
time, their exposure to adverse conditions declines, or simple luck may be on their side.
Susceptibles may also avoid failure of the type under study because they experience a
failure event of a different type (often called a competing risk). If the non-susceptibles
in a study population can be identified ahead they would usually not enter the study
or at least be segregated for separate investigation. Often, however, it is not possible to
know in advance (or ever) if a particular individual is truly non-susceptible. In this report,
we are interested in the formulation, estimation and interpretation of survival models
for study populations in diverse application fields that are a mixture of susceptibles and
non-susceptibles who cannot be identified in advance.

We start our investigation by looking carefully at the idea of susceptibility to failure.
We then present a setting for our investigation that involves a wide class of first hitting time
models for study populations of mixed susceptibility. We examine several first hitting time
models in some detail to reveal the underlying mechanisms at work. Our investigation
includes the impact of regression structures on the interpretation of these first hitting time
models, drawing upon the growing body of work on threshold regression. We also consider
the important influences of interval- and right-censoring in survival data analysis. In
the medical literature, we note that the proportion of a study population that will avoid
eventual failure is often referred to as the cured subpopulation and the corresponding
fraction of the study population as the cure rate. We will use this terminology even in
settings where avoiding failure is not usually described as a ‘cure’. Thus, a marriage is
‘cured’ if it does not end in divorce or a business establishment is ‘cured’ if it does not
go bankrupt.

In our study we consider threshold regession applications that involve Lévy processes
having the Esscher property (which is a common circumstance). In these contexts, the
correct sign of the process drift parameter cannot be identified from censored failure data
alone when the study population has some fraction of non-susceptibles. The subject matter
under study or other kinds of data must provide additional information about the fraction
of susceptibles, if any, who might escape failure by chance. Having censored survival
data aggravates the situation. This susceptibility identification challenge can be faced
squarely and analyzed in threshold regression methods. The ambiguity surrounding
the susceptibility fraction originates in the subject matter of the study and therefore is
present irrespective of the method chosen for survival data analysis. Aside from threshold
regression, other methods for survival analysis generally provide no way to recognize or
deal with the issue. As a consequence, the problem usually goes unaddressed when other
methods are used.

2. Exogenous and Endogenous Cure Rates

Consider a univariate stochastic process {D(t), t ≥ 0} with D(0) = 0. Let S denote
the first hitting time of a threshold at d0 > 0 for this process. This first hitting event is the
failure event and S is the failure time or survival time. We assume the study population
has a proportion p of individuals who are at risk of experiencing the event dictated by
this process. As already stated, we refer to these individuals as susceptibles because each
individual may experience failure within the study’s time horizon. The stochastic sample
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paths of susceptibles are assumed to be probabilistically independent. The remaining
proportion 1− p of the study population is assumed to be not susceptible to this kind
of failure because their individual experiences are not governed by stochastic process
{D(t)}. We refer to proportion 1− p as the exogenous cure rate. As an example, a medical
study population may have a subpopulation of individuals who are at risk of contracting a
progressive fatal disease (fraction p) while the remainder of the population are not at risk
(fraction 1− p). As a second example, a study population may have a subpopulation of
individuals who engage in a high-risk sport (say, mountain climbing) and are therefore
exposed to a high-risk sport injury or death while the remainder of the population never
participate in the high-risk sport. The setting just described implies that a randomly chosen
individual from the study population has a mixed susceptibility survival function (s.f.),
which we denote by FR(s), where subscript R reminds us of the reference study population.
This survival function has the following mixture form:

FR(s) = pF(s) + 1− p. (1)

Here p denotes the susceptibility probability with 0 < p ≤ 1 and F(s) is the s.f. of
susceptibles. Our notation suppresses the dependence of s.f. F(s) on model parameters.

As we are interested later in the behavior of F(s) as s goes to infinity, we use the follow-
ing notation 1− p0 = lims→∞ F(s) = lims→∞ P(S > s) for the relevant limit. Proportion p0
is the fraction of susceptible individuals who would eventually experience failure if process
{D(t)} were allowed to operate indefinitely without competition from other causes of
failure or encountering a study time horizon. Thus, a situation where p0 = 1 is one where
every susceptible individual would eventually experience failure if process {D(t)} goes on
without end. In real applications, of course, a failure time S is often unobservable because
it is right censored by a competing failure event or the end of study follow-up. For some
processes, there is no guarantee that a susceptibile individual will eventually experience
failure, that is, p0 < 1. In this situation, the individual is at risk of failure to a varying
degree over time (i.e., is susceptible) but, in fact, may not experience the failure event,
irrespective of the length of observation. This situation also results in a right-censored
failure time with censoring produced by either a competing failure event or the end of
study follow-up. The practical consequence is that susceptibles and non-susceptibles are
lumped together and indistinguishable when we only know their censored failure times.

To explain and study this phenomenon, we investigate a large collection of stochastic
processes that are widely found in practical applications of threshold regression. Specifi-
cally, we consider stochastic processes {D(t)} known as Lévy processes. The only type of
Lévy process that possesses continuous sample paths is a Wiener process. The sample paths
of all other Lévy processes exhibit jump behavior. As a result, when we speak of the first
hitting time S of a level d0 by a process {D(t)}, we know that the level D(S) at the moment
of hitting the threshold will overshoot d0 by some positive amount, except in two circum-
stances: (1) when {D(t)} is a Wiener process and (2) when {D(t)} is a process with fixed
jump increments and d0 equals a multiple of the increment. We distinguish between cases
where D(S) = d0 (no overshoot) and D(S) > d0 (overshoot) in subsequent developments.

All Lévy processes possess the property of stationary independent increments. We
consider that large subclass of Lévy processes {D(t)} which are (1) bidirectional (i.e., their
sample paths move up and down through time) and (2) possess a cumulant generating
function (c.g.f.) κ(ζ), defined as follows:

ln E{eζ[D(t)]} = tκ(ζ) for all ζ ∈ Z , (2)

where Z is an open interval containing 0. We let δ denote the mean parameter of the
process. The c.g.f. assures the mean parameter exists. We will refer to such a process
{D(t)} with a positive mean parameter δ > 0 as a primal process. Every primal process
has a twin process {D∗(t)}, called its dual process, which follows the same probability law
as {−D(t)}, the negative of the primal process. This dual process has c.g.f κ∗(ζ) = κ(−ζ)
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and mean parameter δ∗ = −δ. Notice that we add an asterisk to identify characteristics
of the dual process. As δ > 0 for the primal process {D(t}), its sample paths tend to
drift toward the failure threshold d0 and the failure event will eventually be observed if
it is not censored, that is, p0 = lims→∞ P(S ≤ s) = 1. In contrast, for the dual process
{D∗(t)} for which δ∗ < 0, the process tends to drift away from the threshold at d0 and
p0∗ = lims→∞ P∗(S ≤ s) < 1. The reversed sign of the dual process transforms its
stochastic behavior from one in which eventual failure is guaranteed to one in which it is
not guaranteed. As we will show, the existence of these twinned processes produces an
identity crisis for interpreting threshold regression models with a cure rate.

We now define the conditional s.f. K(s) = P(S > s|S < ∞). Thus, K(s) is the survival
function for those individuals who eventually will experience failure. For the primal
process, we have F(s) = K(s) because p0 = P(S < ∞) = 1. For the dual process, we have
F∗(s) = p0∗K∗(s) + 1− p0∗ because p0∗ = P∗(S < ∞) < 1. As shown in the Appendix A,
the primal-dual pair of processes {D(t)} and {D∗(t)} have identical conditional survival
functions K(s) and K∗(s) if (1) the primal process possesses the Esscher property and, in
the case of processes that overshoot, (2) the primal process is in equilibrium. We now
briefly define the two properties. The Appendix A provides more technical background
and explanations of the properties.

Esscher Property. The Esscher property holds if the c.g.f. of the primal process has the
form κ(ζ) = κ(−ζ −U), where U is a positive constant defined by

U = − sup{ζ : ζ ∈ Z , ζ < 0, κ(ζ) > 0}. (3)

This property is named for the Esscher transformation of a probability density function.
Mathematically, the transformation is f∗(x) = C(a) exp(ax) f (x) for a constant a and
normalizing constant C(a). In our use of the transformation, we set a = −U so C(−U) = 1.
In this situation, the the original and transformed probability density functions f (x) and
f∗(x) have c.g.f.s of form κ(ζ) and κ(−ζ −U), respectively, with κ(ζ) = κ(−ζ −U).
Equilibrium Property. The equilibrium property holds if the process {D(t)} has been
operating for an extended earlier period and observation of the process starts at a random
moment when the process has an upward crossing of level D = 0. This random moment
is taken as the origin of the time scale (t = 0) and, hence, survival time S is measured
from this moment. The precise mathematical definition of the equilibrium property, which
requires a relaxation of the initial condition D(0) = 0, is set out in the Appendix A.

The presence of identical conditional survival functions under the Esscher and equi-
librium properties gives rise to the identity crisis we anticipated earlier. The fact that
K(s) ≡ K∗(s) provides the following competing representations of the s.f. FR(s) for the
study population under the primal and dual processes.

FR(primal)(s) = pF(s) + (1− p)

= pK(s) + (1− p) for the primal process. (4)

FR(dual)(s) = p∗F∗(s) + (1− p∗)

= p∗[p0∗K∗(s) + (1− p0∗)] + (1− p∗)

= p∗p0∗K∗(s) + (1− p∗p0∗)

= p∗p0∗K(s) + (1− p∗p0∗) for the dual process. (5)

We see from (4) and (5) that the s.f. for the study population is the same mathematical
function of survival time s under the primal and dual processes with the exception that the
apparent susceptibility rate for the dual process is p∗p0∗ whereas its true susceptibility rate
is p∗. The true susceptibility rates for the twinned processes, namely, p and p∗, are different
but cannot be distinguished from survival data alone. Furthermore, with a limited study
horizon and perhaps interruptions from competing events, the observed survival data will
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be right-censored. So, it is only some fraction of the at-risk subpopulation whose failure
times will actually be observed in the study. All others will have censored outcomes.

The proportion 1− p in the primal process and 1− p∗ in the dual process are different
exogenous cure rates. We now refer to probability p∗(1− p0∗) as an endogenous cure rate
for the dual process because it is this fraction of the susceptible population that will not
experience failure under the dual model. The potential presence of both cure rates in the
dual model leads to a combined cure rate for the study population of 1− p∗+ p∗(1− p0∗) =
1− p∗p0∗ . The challenge for survival data analysis that is raised by the mixed susceptibility
models (4) and (5) is the difficulty of distinguishing non-susceptible cases from susceptible
cases that happen to escape failure.

3. Examples of Mixed Susceptibility Models for Lévy Processes

Numerous families of Lévy processes have the Esscher propery and all of these have
potential application as mixed survival models that include a cure rate component. The
Appendix A presents mathematical details for four families of Lévy processes, namely,
Wiener processes, Poisson-Bernoulli random walks, bilateral gamma processes and bilateral
inverse Gaussian processes. We have chosen the Wiener family for detailed development
as a case illustration in order to make the preceding ideas and issues concrete. We start
with a brief overview of threshold regression to provide a context for the case illustration
that follows.

Threshold Regression

Threshold regression refers to a category of regression models and methods for sur-
vival data analysis. The main idea of threshold regression is that a survival or failure time is
often well-described mathematically as the first hitting time of a boundary or threshold by
the sample path of a stochastic process. Regression functions for the process and threshold
parameters in these models are multivariate combinations of explanatory variates. Estima-
tion methods for threshold regression models are well developed and these have found
extensive application. Wiener processes in particular have been widely used in threshold
regression models. See, for example, [1–6]. The book by [7] provides an extensive overview
of both theory and applications. Different variants of threshold regression models and
notation are encountered. A common variant of what we presented earlier considers a
process {Y(t)} which starts at Y(0) = y0 > 0 and has mean drift parameter µ and variance
parameter σ2 > 0. In this variant, the first hitting time S of a threshold at the zero level
of the process defines the survival time. Note the following correspondence between this
notation and our earlier notation: D(t) = y0 −Y(t), d0 = y0, δ = −µ.

For the Wiener process model, the dual process is one with drift away from the
threshold, that is, one where δ∗ = −µ < 0. For the dual model, the probability of eventual
failure is given by:

p0∗ = P∗(S < ∞) = exp(2δ∗d0/σ2) = exp(−2µy0/σ2) for δ∗ = −µ < 0 (6)

Parameter σ2 is usually set equal to 1 because the Wiener model is overparameterized
for survival data. The Esscher property holds for all Wiener processes and, because the
Wiener sample path is continuous, there is no overshoot. Our theory shows that the
conditional survival functions of both the primal and dual processes are identical, i.e.,
K∗(s) ≡ K(s). This conditional s.f. is an inverse Gaussian distribution [7–9].

Case Illustration

In an application of survival model (1), estimates of the model parameters might be
calculated from interval-censored failure data or, more specifically, from right-censored
failure data using maximum likelihood estimation. We assume the sample is a simple
random sample of individuals from the study population. We also assume that the cen-
soring mechanism is independent of whether the individual is susceptible or not and,
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if susceptible, independent of the individual’s failure time. The sample log-likelihood
function for right-censored failure data takes the form:

ln L(θ) = ∑
i∈N1

ln fR(ti) + ∑
i∈N0

ln FR(ti) (7)

where θ = (d0, δ, p, other parameters) is the vector of model parameters to be estimated and
fR is the probability density function (p.d.f.) corresponding to the population s.f. FR. Index
set N1 in (7) includes subjects i who failed at times ti, i ∈ N1, while index set N0 includes
subjects i who were censored by end of follow-up or a competing failure at times ti, i ∈ N0.
Observe in this last case that the censoring time or time horizon may vary from one subject
to the next. Finally, we note that in setting up the estimation problem we use the notation
for the primal model.

We now give an illustration for the Wiener model. The estimation problem described
by log-likelihood expression (7) seems to present nothing new in principle. Yet, a com-
parison of versions (4) and (5) of the population survival functions shows that there is an
unresolved ambiguity. The sign of mean parameter µ = −δ cannot be determined from the
survival data alone. Table 1 shows alternate sets of estimates for model parameters from a
single simulated data set. The simulated study population corresponds to a dual process
with ln(y0) = ln(d0) = 1, µ = −δ∗ = 0.1, and p∗ = 0.9. The sample size is n = 100,000. All
failure times are right censored at 70. The table shows the estimates in columns headed
by the generic notation ln(y0), mu and logit(p). Estimation of the model is done using
a numerical gradient routine in Stata 12. The table shows the log-likelihood value and
parameter estimates for two different sets of starting values.

Table 1. Maximum likelihood estimates of parameters of a mixed susceptibility Wiener model
computed from two estimation runs. Estimates are based on a single simulated right-censored sample
of 100,000 individuals but from estimation runs with different starting values for the numerical
optimization routine. The true parameter values are ln(y0) = 1, µ = −δ∗ = 0.1 and logit p∗ =

ln[0.9/(1− 0.9)] = 2.1972.

Estimation Sample Parameter Estimates
Run Log-Likelihood ln(y0) mu logit(p)

1 −238,975.75 1.003408 0.1035597 2.39924
2 −238,975.75 1.003406 −0.1035566 0.0844234

The two estimation runs in Table 1 produce identical sample log-likelihood values
and almost identical estimates of ln(y0). The parameter estimates for mu and logit(p) differ
sharply. Closer study shows that the estimates match model variants (4) and (5). Estimation
run 1 happens to provide estimates for the dual model in (5) with µ = −δ∗ = 0.1 and
logit p∗ = ln[0.9/(1− 0.9)] = 2.1972. Here, the true value of p0∗ is 0.5806, calculated
from Formula (6). Estimation run 2 happens to provide estimates for the corresponding
primal model. The mu estimate is reversed in sign relative to the dual model and the
logit(p) estimate is actually the estimate of logit(p∗p0), which equals ln{0.9(0.5806)/[1−
0.9(0.5806)]} = 0.09030. The example demonstrates that the sign of mean parameter µ is
not resolvable from censored survival data for this Wiener model. A further implication
is that one cannot know if the estimated cure rate represents a purely non-susceptible
subpopulation (exogenous fraction 1− p∗) or a mixed subpopulation with some fraction
of true non-susceptibles (exogenous fraction 1− p∗) combined with an added fraction of
susceptibles who escaped failure by good fortune (endogenous fraction p∗ − p∗p0∗). The
latter case produces an apparent cure rate of 1− p∗p0∗. For the simulation scenario selected
here, it is the first estimation run that gives correct estimates of the model. An outside
observer, however, cannot know this fact from either the censored survival data set or the
estimates derived from it.
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4. Identifiability Challenge for the Mixed Susceptibility Model

The preceding case illustration, with the results displayed in Table 1, has demonstrated
that the sign of the mean parameter for the threshold regression model cannot be decided
unambiguously in the presence of possible exogenous and endogenous ‘cures’ in the
study population. The sign of the estimated mean parameter depends, by chance, on the
starting point for the maximum likelihood optimization. Because the conditional survival
functions of the primal and dual processes are identical, i.e., K∗(s) ≡ K(s), the survival
data yield different but equally valid sets of estimates in terms of sample likelihood. If
the study population were partitioned into subpopulations (say, subpopulations defined
by age group, sex, marriage status, or other categorical variables) the same problem
arises for each subpopulation, namely, the sign of the estimated mean parameter for
each subpopulation would depend on the starting point for the maximum likelihood
optimization. Independent subject matter knowledge would be needed to decide on the
correct sign for the mean parameter.

In typical real-world applications of threshold regression, the mean parameter, thresh-
old and exogenous cure rate fraction are made to depend on linear combinations of covari-
ates through suitable regression link functions. The multivariate regression structures are
rarely sufficiently detailed to define actual subpopulations and are usually misspecified to
some degree. In these practical circumstances, estimation of the model from interval- or
right-censored failure data would almost certainly lead to a unique maximum likelihood
solution without any hint of the identifiability issue. But, our mathematical analysis for
twinned stochastic processes anticipates that the computed threshold regression solution
may have a competing local solution that is a close competitor to the global optimum. This
close competitor would be a twinned process with an estimated mean having the opposite
sign. Moreover, the solution and its twin would be associated with different cure rates.

As just mentioned, the drift parameter δ for our model often has a multivariate
regression structure in threshold regression applications. A common formulation is an
identity link function for δ connecting it to a linear combination of covariates. In this
formulation, δ = zβ where z is a k-component row vector of covariates and β is a matching
column vector of regression coefficients. The leading covariate may be the unit value 1 so
the leading regression coefficient is an intercept term. For a given covariate vector z, the
sign of the regression parameter vector must be reversed in order to reverse the sign of
the drift parameter itself. In other words, δ∗ = zβ∗ = z(−β) = −δ. This is an elementary
mathematical change but it does suggest a way in which subject matter knowledge can
check on the identifiability problem. If the regression vector is estimated from censored
survival data, the investigator might examine the sign of the regression coefficient for
each covariate (and the intercept) to see if the direction of effect is consistent with subject
matter knowledge. Many applications, however, do not offer this opportunity to settle
the ambiguity. Sampling error in estimates may make it unclear if the estimated sign
of the coefficient is reliable. Moreover, the presence of multicollinearity in a regression
model with multiple covariates may make it difficult to judge the directional effect of any
single covariate. An investigator may be inclined to replace the identity link function in
threshold regression with a log-linear link function of form ln δ = zβ so that the estimated
drift is positive. This approach may be adopted because the investigator is confident that
the drift should be towards failure. The strategy may be self-defeating. Although the
mathematical device preserves the anticipated sign of the drift parameter, a substantively
different statistical model is being estimated. The estimated model may be the wrong
model and, in consequence, hides the ambiguity about the direction of drift.

The identifiability issue will not be present if it is known with certainty that the study
population consists totally of susceptible individuals. In this circumstance, it is only the
dual model which has some fraction of the study population that survives indefinitely. In
the threshold regression context, the endogenous cure rate is determined by parameters of
the stochastic process {D(t)}, as illustrated by Formula (6) for the Wiener process. Thus,
no separate regression function should be employed for logit p0∗ in this case.
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The presence of censoring aggravates the identifiabilty issue because the true failure
times for censored individuals are masked. Thus, precise estimates of the susceptibility
rate and the other parameters are not available. In this situation, even available subject
matter knowledge may not be sufficient to untangle p from p∗p0∗ in the primal and dual
models. Of course, small study sample sizes also make the situation more difficult.

The identifiability issue might be resolved practically if the process level of a survivor
is observed at the time of censoring. For example, the extent of deterioration of a knee
joint for a patient with osteoarthritis might be measured at a clinic visit that precedes the
knee’s replacement. The visit censors the replacement, which will be triggered if and when
deterioration reaches a prespecified critical level. In a situation where the process level of a
survivor is observed, the sample log-likelihood function, such as the one presented in (7),
would have the term ∑i∈N0

ln FR(ti) replaced by a sum of log-densities for known process
levels D(ti) = di at censoring times ti for subjects i ∈ N0. This revised likelihood function
will help to infer primal cases for which δ > 0 from dual cases for which δ∗ < 0. See [10]
for a discussion of statistical methods for this kind of data situation for Lévy processes.

5. Multidimensional and Other Complex Extensions

Our investigation of the identifiability challenge arising in mixed susceptibility models
has been framed for a univariate stochastic process because this context provides the
simplest demonstration of the issue. We now present a couple of extensions that illustrate
where and how care may be needed to deal with the issue in multidimensional and other
complex contexts.

Multidimensional stochastic processes are ubiquitous in many fields. Chemometrics
provides an example of an important field that deals with multidimensional processes
and has considerable interest in relation to time trends of complex chemical processes
and their critical thresholds. See [11] for an extensive overview of the methodological
challenges in chemometrics applied to environmental monitoring and [12,13] for specific
application settings in chemometrics that reflect the complexity of data modelling in this
field. Applications in chemometrics and many other fields may concern the first hitting time
of a plane surface by a multidimensional process. When drawing statistical inferences from
high-dimensional data about whether a multidimensional process is moving toward or
away from a critical barrier in these applications, one can encounter the kind of identifiabily
issue being considering in our study here. And when the issue is encountered, it is
likely to be a significant scientific concern. The first hitting time of a plane in a high
dimensional space is a prototypical problem for multivariate stochastic processes. This
kind of application presents an exact analog of our univariate model setup and so our
findings translate immediately to this context. There are many families of multidimensional
processes. Our research has not attempted a general investigation of this interesting
topic. To illustrate the extension, however, we consider an obvious case example, namely,
a multidimensional Wiener process, which is frequently a valid model for real-world
phenomena. To be specific, let D(t) denote a k-dimensional Wiener process operating in a
k-dimensional linear vector space X with D(0) = 0, where 0 is the origin of the space. Let
superscript T denote the transpose of a vector. Consider a plane aTx = c in the X space,
where we let c > 0 so the origin 0 lies outside the plane. Let the plane serve as a barrier
or boundary for the process (i.e., a multidimensional threshold). We denote the projection
of the sample path of the process D(t) onto a normal axis by D(t). The normal axis is a
line directed by a normal vector from the plane through the origin 0. D(t) is a univariate
process that has temporal movements toward or away from the origin in a direction that
is orthogonal to the plane. In this situation, we know D(t) is a Wiener process, with a
mean δ and variance σ2 that can be derived from the mean vector and covariance matrix of
the parent Wiener process D(t). A first hitting time S of the plane occurs if and when the
sample path of D(t) first encounters the plane at distance d0 = c/

√
aTa along the normal

axis. D(t) is a primal process in our terminology if its drift parameter is positive, i.e., if
δ > 0. D(t) also possesses the Esscher property. This application includes the ambiguity of
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mixed susceptibility in relation to first hitting times of the plane if the study population
includes a proportion 1− p of individual cases that are not susceptible to ever reaching
the plane. For other families of multidimensional processes (such as multidimensional
bilateral gamma processes), one would need to verify that the Esscher property holds
for the univariate projection of the process onto a normal axis to the plane through the
process origin.

For another extension of interest, we consider the conditions under which the Esscher
property is preserved for stochastic processes formed from mathematical combinations of
component stochastic processes. Again, this research question will not be investigated in
depth here, but we sketch the following result to show the nature of the topic. Consider a
set of k independent Lévy processes Dj(t), j = 1, . . . , k, which each has the Esscher property.
Let D(t) = ∑j ajDj(t) be a linear combination of the k processes, where the aj are scalar
coefficients. If κj(ζ) is the c.g.f. for a unit increment in process Dj(t), j = 1, . . . , k, we know
that the c.g.f. of D(t) is given by φ(ζ) = ∑j κj(ajζ). Moreover, as each component process
satisfies the Esscher property, we have κj(ζ) = κj(−ζ −Uj), j = 1, . . . , k, where Uj denotes
the Esscher transform parameter for process Dj(t), defined by (3). The Esscher property
also implies that κj(ajζ) = κj(−ajζ − ajUj). We now consider the sum ∑j κj(−ajζ − ajUj).
It is evident that if U1 = · · · = Uk = U then we have:

φ(ζ) = ∑
j

κj(ajζ) = ∑
j

κj(−ajζ − ajUj) = ∑
j

κj(−ajζ − ajU)

= ∑
j

κj[aj(−ζ −U)] = φ(−ζ −U). (8)

Thus, process D(t) possesses the Esscher property when all component processes share
the same Esscher transform parameter Uj. Reference to the case-demonstration process
families considered in Appendix A.6 shows the kind of restrictions on the component
process parameters that are implied by requiring that U = Uj for all j. For example, if all
component processes are Wiener processes then the ratio 2δj/σ2

j must be the same for all
component processes. The preceding demonstration shows that the Esscher property is
preserved in this linear combination of component processes even if the components come
from different Lévy process families.

6. Final Remarks

The identifiability issue in this research arises under highly specialized circumstances
and, hence, is an idealized construction. The exacting formulation is used to show the
precise mathematical nature of the problem. Yet, it is clear that even when the exact
conditions are not satisfied perfectly, the ambiguity of mixed susceptibility can still be
present and problematic. Survival functions for first hitting times can be very similar for
processes that might be drifting toward or away from a threshold, even if the generating
process is not a true Levy process or the Esscher property is not quite valid. The situation
reminds us that we may not be able to untangle susceptible from non-susceptible cases in
the ‘cure rate’ fraction of a population based on censored survival data alone.

Our research focuses on explaining the ambiguous composition of the cure rate when
both susceptible and non-susceptiable fractions may be present. We show that the am-
biguity arises precisely when the conditional survival functions for the primal and dual
processes are identical. This research program can be broadened by asking what theoretical
circumstances must hold for identical survival time distributions to arise from different
generating models within the same model class. We created pairs of processes which were
twinned by simple reversal of the sign of a drift parameter. Discovery of more theoreti-
cal circumstances that produce identical survival functions will require an extended and
challenging research program, but the program may produce deep insights and results
that advance mathematical statistics. Natural research questions for the program might in-
clude such questions as: (1) Can identical conditional survival functions be generated from
nonlinear thresholds for some family of univariate processes or non-planar boundaries for
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some family of multidimensional processes? (2) Do generalizations of the Esscher property
exist whereby survival data or censored survival data necessarily produce ambiguous
inferences for model parameters when the models have this property? Much interesting
future work lies ahead.
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Appendix A

Appendix A.1. Preliminary Elements

Consider a bidirectional stochastic process {D(t)} with stationary, independent in-
crements and initial value D(0) = 0. The bidirectional property requires that D(1) have
positive probability of taking both negative and positive values. We also require process
{D(t)} to have a cumulant generating function (c.g.f.) defined on an open interval Z which
includes zero. We denote this c.g.f. by κ(ζ) so, by definition, ln E{exp[ζD(t)]} = tκ(ζ) for
t ≥ 0. These assumptions for process {D(t)} imply that we are considering a subfamily of
Lévy processes.

We let S denote the first hitting time of threshold d0 > 0 by process {D(t)}. Thus,
D(S) ≥ d0 is the process level reached at the hitting time S. The excess V(S) = D(S)− d0
is referred to as the overshoot of the process at the first hitting time. For notational
convenience, we let D denote D(t) for some fixed time t > 0 and V denote V(S) for S = s.
Furthermore, we denote the probability density function (p.d.f.) of D by f (D|t). This p.d.f.
notation reminds us of the conditioning on time t. We denote the conditional p.d.f. of D
given S > t by g(D|t), the p.d.f. of the first hitting time S given S < ∞ by k(s), and the
p.d.f. of V by h(v|s). If the process has no overshoot then V = 0 and we take h(v|s) as a
limiting density function concentrated on 0 (a Dirac delta function).

We will refer to {D(t)} as our primal process and its dual process by {D∗(t)}, where
an asterisk subscript is used to designate properties of the dual process. The dual process
{D∗(t)} has the same probability law as {−D(t)}, that is, {D∗(t)} ∼ {−D(t)}. So {D∗(t)}
has c.g.f. κ∗(ν) = κ(−ν) defined for all ν ∈ Z∗ = −Z . We are interested in the situation
where the primal process {D(t)} has a positive mean parameter δ > 0 so that its dual
process has a negative mean parameter δ∗ = −δ < 0. Sample paths of the primal process
must eventually hit threshold d0 so P(S < ∞) = 1 for its first hitting time S when δ > 0.
Sample paths of the dual process {D∗(t)} are not guaranteed to reach the threshold d0 so
P∗(S < ∞) < 1 for its first hitting time S.

A sample path of the primal process {D(t)} either reaches level D at time t without
hitting threshold d0 during interval (0, t] or it does hit d0 at some time S = s ≤ t and
subsequently travels from D(s) to D in the interval (s, t]. This line of reasoning gives us
the following probability identity connecting the mathematical constituents of this setting:

f (D|t) = P(S > t)g(D|t) + P(S ≤ t)
∫ t

0
k(s)

∫ ∞

d0

h(v|s) f (D− d0 − v|t− s)dvds. (A1)

The corresponding probability identity for the dual process is:

f∗(D|t) = P∗(S > t)g∗(D|t) + P∗(S ≤ t)
∫ t

0
k∗(s)

∫ ∞

0
h∗(v|s) f∗(D− d0 − v|t− s)dvds. (A2)

Here the functions with asterisks are the corresponding entities for the dual process
that are found in (A1) for the primal process.
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Appendix A.2. The Esscher Property

We now narrow the subfamily of stochastic processes of interest and consider primal
processes {D(t)} for which the c.g.f. κ(ζ) has the property:

κ(ζ) = κ(−ζ −U), (A3)

where U > 0 is defined as follows:

U = − sup{ζ : ζ ∈ Z , ζ < 0, κ(ζ) > 0} = inf{ν : ν ∈ Z∗ = −Z , ν > 0, κ(−ν) > 0}. (A4)

Later case demonstrations show that Lévy processes possessing property (A3) form a
large family.

The property κ(ζ) = κ(−ζ −U) implies that:

exp[tκ(ζ)] =
∫ ∞

−∞
exp(ζD) f (D|t)dD =

∫ ∞

−∞
exp[(−ζ −U)D] f (D|t)dD

=
∫ ∞

−∞
exp(−ζD) exp(−UD) f (D|t)dD, (A5)

where we recall that f (D|t) denotes the p.d.f. of D = D(t). For the dual process {D∗(t)},
we use (A5) to obtain:

exp[tκ∗(ν)] =
∫ ∞

−∞
exp(νD) f∗(D|t)dD = exp[tκ(−ν)]

=
∫ ∞

−∞
exp(νD) exp(−UD) f (D|t)dD, (A6)

Equation (A6) shows that the dual p.d.f. is the following exponentially tilted version
of the p.d.f. for the primal process:

f∗(D|t) = exp(−UD) f (D|t) (A7)

A transformation of a p.d.f. p(x) into a second p.d.f. of form p(x|a) = C(a) exp(ax)p(x),
where C(a) is a normalizing constant, is known as an Esscher transform. The transforma-
tion found early application in actuarial science and more recently in financial engineering
and simulation sampling methods [14–16]. The property κ(ζ) = κ(−ζ −U) can be seen
from (A7) to imply an Esscher transform of f (D|t) with transform parameter a = −U.
This particular choice of a ensures that normalizing constant C(a) equals 1 so the trans-
formed function f∗(D|t) is itself a probability density function. Because of this connection
to the Esscher transform, we refer to this property for our stochastic processes as the
Esscher property.

Appendix A.3. Evaluating Bundles of Sample Paths

The Esscher property provides Lévy processes with a remarkable feature. This feature
is apparent if we consider discrete versions of the sample paths of our processes. Let
D0, D1, . . . , Dk be a sequence of levels of a sample path corresponding to ordered time
points τ0 = 0 < τ1 < · · · < τk = τ of the process {D(t)}. Here Di = D(τi) with D0 = 0
and Dk = D(τ). Thus, the path experiences probabilistically independent increments of
∆Di = Di − Di−1 during time increments ∆τi = τi − τi−1, for i = 1, . . . , k. We note that
the partition of the path from the origin to D(τ) at time τ can be as fine as desired for the
analysis at hand.

With the Esscher property, the probability densities of the primal and dual processes
for any path increment i are related as follows:

f (i)(∆Di|∆τi) = eU∆Di f (i)∗ (∆Di|∆τi), (A8)
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where f (i)(∆Di|∆τi) and f (i)∗ (∆Di|∆τi) denote the respective probability densities. It fol-
lows then that the probability densities of any given sample path J from 0 at time 0 to D(τ)
at time τ for the primal and dual processes are related by:

f (J|τ) =
k

∏
i=1

f (i)(∆Di|∆τi) =
k

∏
i=1

eU∆Di f (i)∗ (∆Di|∆τi)

= eU ∑i ∆Di
k

∏
i=1

f (i)∗ (∆Di|∆τi) = eUD(τ) f∗(J|τ), (A9)

where f (J|τ) and f∗(J|τ) denote the respective probability densities for path J. The rela-
tionship in (A9) shows that the probability densities of the primal and dual processes for
any path J under the Esscher property are proportional, with the multiplier exp[UD(τ)]
being determined only by the cumulative vertical distance D(τ) travelled by the sample
path J.

The result in (A9) provides a mechanism for evaluating probabilities of different
bundles or sets of sample paths for a stochastic process observed over a given time interval
(0, t]. The mechanism visualizes discrete simulations of many sample paths for the process
using a fixed partition of the time interval (0, t]. In particular, we consider the simulation
of a set J of independent sample paths from the primal process where f (J|t) denotes
the probability density of a path J ∈ J . If we are interested in estimating the probability
of experiencing a simulated sample path that meets a specified condition C then we sort
through set J and keep only sample paths that meet the condition, resulting in a subset
that we can denote by J C ⊆ J . The probability density for this subset is therefore
∑J∈J C

f (J|t).
We can exploit the correspondence of path densities in (A9) to evaluate the relation-

ships between corresponding terms in the probability identities (A1) and (A2). P.d.f. f (D|t),
for example, is the probability density for the primal process of the set of sample paths that
connect the origin to D = D(t) at time t, which we now denote by P . Using (A9), we then
have the following link between f (D|t) and f∗(D|t) for the primal and dual processes.

f (D|t) = ∑
P∈P

f (P|t) = ∑
P∈P

eUD f∗(P|t) = eUD ∑
P∈P

f∗(P|t) = eUD f∗(D|t) (A10)

Next we consider the subset of P that contains sample paths that do not cross the
threshold d0 in the interval (0, t]. We denote this subset by P0 ⊆ P . Using (A9), we have
the following link between the conditional p.d.f.s g(D|t) and g∗(D|t) for the primal and
dual processes.

P(S > t)g(D|t) = ∑
P∈P 0

f (P|t) = ∑
P∈P 0

eUD f∗(P|t)

= eUD ∑
P∈P 0

f∗(P|t) = P∗(S > t)eUDg∗(D|t) (A11)

Note that probabilities P(S > t) and P∗(S > t) must be included to adjust for the
condition that the first hitting time lies beyond t.

The density functions in the rightmost terms of (A1) and (A2) arise from sample paths
that cross the threshold d0 in the interval (0, t]. The correspondence of these primal and
dual densities is established as follows. Let subset P (s,v) ⊆ P −P0 consist of paths that
first cross the threshold d0 at a specified time s in the interval (0, t], experience an overshoot
of v, and then proceed to level D = D(t) at time t. So, again using (A9), we have the
following equation:
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P(S ≤ t)k(s)h(v|s) f (D− d0 − v|t− s) = ∑
P∈P (s,v)

f (P|t) = ∑
P∈P (s,v)

eUD f∗(P|t)

= eUD ∑
P∈P (s,v)

f∗(P|t) = P∗(S ≤ t)k∗(s)eUDh∗(v|s) f∗(D− d0 − v|t− s). (A12)

The distribution of process increment D − D(s) = D − d0 − v does not depend on
D(s) for either the primal or dual processes. Therefore, when we integrate both sides of
(A12) with respect to D− D(s), the following integrals evaluate to 1:∫ ∞

−∞
f [D−D(s)|t− s]d[D−D(s)] =

∫ ∞

−∞
eU[D−D(s)] f∗[D−D(s)|t− s]d[D−D(s)] = 1. (A13)

Using this result, Equation (A12) reduces to:

P(S ≤ t)k(s)h(v|s) = P∗(S ≤ t)k∗(s)eU(d0+v)h∗(v|s). (A14)

Of particular interest is the limit of (A14) if we now let t go to infinity. As a first hitting
is inevitable for the primal process, we have P(S < ∞) = 1. For the dual process, a first
hitting may not occur in finite time so the limiting probability P∗(S < ∞) will be less than
1. Equation (A14) therefore reduces to:

k(s)h(v|s) = P∗(S < ∞)k∗(s)eU(d0+v)h∗(v|s). (A15)

To proceed further, we will now separate processes according to whether they over-
shoot threshold d0 or not when their sample paths first exit the threshold.

Appendix A.4. First Hitting Times without Overshoot

Lévy processes that do not overshoot a threshold are of two types, namely, Wiener
processes or processes with fixed jump increments where d0 is a multiple of that fixed
increment. With no overshoot, Equation (A15) simplifies as follows because random
variable V(S) equals 0 with probability 1.

k(s) = P∗(S < ∞)k∗(s)eUd0) for all s > 0. (A16)

As k(s) and k∗(s) are both p.d.f.s and P∗(S < ∞) and eUd0 are both constants, it follows
necessarily that k(s) ≡ k∗(s) and P∗(S < ∞) = e−Ud0 in order to maintain the equality in
(A16). Thus, the identity K(s) ≡ K∗(s) is assured for all processes without overshoot.

Appendix A.5. First Hitting Times with Overshoot

We next consider bidirectional Lévy processes with jump components that do over-
shoot thresholds. To deal with these processes, we reformulate the first hitting time of the
process. Instead of having primal process {D(t)} start at the origin with D(0) = 0, we let
the process operate until it encounters its first positive level and shift the time origin to that
position. We denote this initial positive level by V1 so D(0) = V1. To proceed, we return
to a discrete version of the sample path for the re-scaled process {D(t)} and consider a
partition of time interval [0, τ], with equally spaced time points τ0 = 0 < τ1 < · · · < τk = τ
where τi = i∆τ and ∆τ = τ/k. Let the successive levels Di, i = 0, 1, . . . , k, correspond
to Di = D(τi), so D0 = D(0) = V1 and Dk = D(τ). We then consider the successive
maxima Mj = maxi≤j Di of the process, which starts with M1 = V1. We define the suc-
cessive increments in the maxima by ∆Mj = Mj −Mj−1, j = 2, . . . , k. Now we keep only
positive increments ∆Mj, discarding all ∆Mj that are zero. These positive increments are
necessarily independent and identically distributed. The increments mark out the vertical
advance of the partitioned primal process from starting level V1 toward the failure thresh-
old at d0. We re-index the successive positive increments and denote them by Rn = ∆Mj,
n = 2, . . . , m, where ∆Mj is the nth positive increment in the sequence. It is evident that the



Stats 2022, 5 185

set {V1, R2, . . . , Rm} is a sequence of m renewal intervals for a delayed renewal process [17].
The delay V1 in the process is, in effect, the overshoot of the zero-axis by the process in its
first passage to that level.

Building on this formulation as a delayed renewal process, we denote the s.f. of the
successive renewal intervals R2, . . . , Rm by H(r). Next, we assume that the delayed renewal
process is, in fact, in equilibrium so M1 = V1 is a random draw from the equilibrium c.d.f.:

HE(v) =
∫ v

0
H(r)dr/µ (A17)

where µ denotes the mean of s.f. H(r). Parameter µ is the mean vertical advance of the
process whenever a positive advance occurs. With the assumption that the renewal process
is in equilibrium, it follows therefore that HE(v) is also the c.d.f. of the overshoot that will
be experienced when the primal process crosses threshold d0. Moreover, the equilibrium
condition implies that the overshoot c.d.f. HE(v) will be independent of the first hitting
time S of threshold d0.

Finally, we consider the corresponding dual process {D∗(t)} which, of course, is also
bidirectional with a jump component. The preceding line of development for constructing
an equilibrium renewal process for advances toward the failure threshold at d0 can be
applied to the dual process. For the dual process, we denote the s.f. of the renewal interval
by H∗(r) and the equilibrium c.d.f. for overshoot by HE∗(v).

We return now to Equation (A14) and rearrange it into a product of ratios for matched
terms as follows: {

1
eUd0 P∗(S < ∞)

}{
k(s)
k∗(s)

}{
h(v|s)

eUvh∗(v|s)

}
= 1, (A18)

It can be seen that only the rightmost ratio on the left side of Equation (A18) contains
terms that are functions of overshoot v. It follows therefore that this ratio cannot depend
on v although it may depend on survival time s. Denoting this rightmost ratio by Q(s),
we have:

Q(s) =
h(v|s)

eUvh∗(v|s)
. (A19)

Now, however, we can add that if the primal process and dual processes are in equilib-
rium then the densities in (A19) do not depend on s and, hence, Q(s) equals some constant
Q for all s. In this case, the two density functions in the ratio are those corresponding to
c.d.f.s HE(v) and HE∗(v), which we denote by hE(v) and hE∗(v), respectively. Moreover,
in this same equilibrium condition, it follows that the density functions k(s) and k∗(s) for
the survival time S of the primal and dual processes must be identical. Thus, the identity
K(s) ≡ K∗(s) is assured for all bidirectional Lévy processes with overshoot, provided
survival time is measured from a time point where the process is in equilibrium. As a final
consequence, we see that constant Q = eUd0 P∗(S < ∞) so the probability that S is finite
is given by P∗(S < ∞) = Qe−Ud0 . When the primal process has no overshoot, we have
from (A19) that Q(s) = Q = 1 for all s and, hence, the probability that S is finite is given by
P∗(S < ∞) = e−Ud0 , a result we saw earlier.

An implication of adopting the equilibrium formulation for the overshoot case is that
the first hitting time of d0 will be immediate if V1 ≥ d0. In other words, if the initial process
maximum M1 = V1 falls above threshold d0 then S = 0 and failure occurs at the outset. The
survival function therefore has a probability mass at zero equal to P(S = 0) = P(V1 ≥ d0).

Appendix A.6. Case Demonstrations

We now present case demonstrations of stochastic process families in which the primal
and dual processes have the same survival distributions. We begin by looking at two
families whose sample paths do not exhibit overshoot. We then consider an additional two
families that do exhibit overshoot.
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Cases with No Overshoot

Wiener Process

As the primal process, consider a Wiener process {D(t)} with mean parameter δ > 0
and variance parameter σ2. Let t = 1 so D(1) = D. The p.d.f. of D is:

f (D) =
1√

2πσ2
exp[−(D− δ)2/2σ2] (A20)

The c.g.f. for the process is:

κ(ζ) = δζ + σ2ζ2/2 (A21)

which is defined for all real numbers ζ. As Wiener sample paths are continuous, we have
no overshoot.

For dual process {D∗(t)}, κ∗(ν) = κ(−ν) and δ∗ = −δ. Also, U = inf{ν : ν >
0, κ∗(ν) > 0} = − sup{ζ : ζ < 0, κ(ζ) > 0} = 2δ/σ2 so:

P∗(S < ∞) = exp(−Ud0) = exp(−2d0δ/σ2). (A22)

It also can be verified that κ(ζ) = κ(−ζ −U) so the Esscher property holds.
The first hitting time S of the primal and dual processes has the following inverse

Gaussian c.g.f.:

φ(ξ) = −d0κ−1(−ξ) =
d0δ

σ2

[
1−

(
1− 2σ2ξ

δ2

)1/2]
(A23)

Poisson-Bernoulli Random Walk

As the primal process, consider a Poisson-Bernoulli random walk {D(t)} defined by
the following doubly stochastic process. Bernoulli events occur according to a Poisson
process with rate parameter λ and each Bernoulli event is either an up-step of +1 with
probability p or a down-step of −1 with probability 1− p. Assume the event outcomes
occur in a mutually independent fashion. We take the threshold d0 to be a natural number
so there is no overshoot. The process therefore takes the following form:

D(t) = 2B[N(t)]− N(t). (A24)

Here {N(t)} denotes the Poisson process and {B[N(t)]} denotes the binomial process
for the number of up-step outcomes among the N(t) Bernoulli trials occurring during time
interval (0, t].

The probability function of D(1) = D for this process is evaluated by expanding the
probability product P[B = b|N(1) = n]P[N(1) = n] and then summing over all pairs (b, n)
for which d = 2b− n, taking account of the condition that b = 0, . . . , n for n = 0, 1, . . .. The
result is the following form, which involves a tractable infinite series:

P(D = d) =
[
(pI(d≥0)(1− p)I(d<0)

]|d|
λ|d| exp(−λ)

∞

∑
j=0

λ2j[2p(1− p)]j

j!(j + |d|)! , (A25)

where I(·) denotes an indicator function. A little mathematics gives the following c.g.f. for
the process {D(t)}:

κ(ζ) = λ
[

peζ + (1− p)e−ζ − 1
]
, (A26)

which is defined for all real numbers ζ. The mean parameter is easily evaluated from this
c.g.f. as δ = (2p− 1)λ. To ensure a positive mean parameter, we set p > 1/2.



Stats 2022, 5 187

The dual process {D∗(t)} is obtained by simply interchanging p and 1− p, that is, by
letting p∗ = 1− p < 1/2. Again, for {D∗(t)}, κ∗(ν) = κ(−ν), the process mean is δ∗ = −δ <
0, and U = inf{ν : ν > 0, κ∗(ν) > 0} = − sup{ζ : ζ < 0, κ(ζ) > 0} = ln[p/(1− p)] so:

P∗(S < ∞) = exp(−Ud0) = [(1− p)/p]d0 where p > 1/2. (A27)

It also can be verified with a little algebra that the stochastic process {D(t)} has the
Esscher property.

The first hitting time S of the primal and dual processes has the following c.g.f.:

φ(ξ) = −d0κ−1(−ξ) = −d0 ln

[
(λ− ξ)−

√
(λ− ξ)2 − 4λ2 p(1− p)

2λp

]
, (A28)

Cases with Overshoot

For both cases with overshoot, we consider bilateral processes that are created by
taking the difference of independent monotonically non-decreasing jump processes with
stationary independent increments.

Bilateral Gamma Process

As the primal process, consider a bilateral gamma process {D(t)}, defined as the
difference between two independent gamma processes {G1(t)} and {G2(t)}, as follows:

D(t) = G1(t)− G2(t). (A29)

In the most general case, the processes may have different positive shape parameters
αi, i = 1, 2, and different positive scale parameters βi, i = 1, 2. This process has attracted
some interest in financial mathematics [18]. The general bilateral gamma process has c.g.f.:

κ(ζ) = α1 ln
(

β1

β1 − ζ

)
+ α2 ln

(
β2

β2 + ζ

)
, where ζ ∈ Z = (−β2, β1). (A30)

The process mean is δ = (α1/β1)− (α2/β2).
Equal shape parameters. The special case in which the component processes {G1(t)}

and {G2(t)} share the same shape parameter, say, α1 = α2 = α, provides a family of
processes {D(t)} for which δ = α(β2 − β1)/β1β2 > 0 if β2 > β1. The c.g.f. in (A30)
simplifies to:

κ(ζ) = α ln
[

β1β2

(β1 − ζ)(β2 + ζ)

]
(A31)

It can be verified that the Esscher property κ(ζ) = κ(−ζ −U) holds in this case with
U = β2 − β1. For this equal-shape case, a little algebra shows that the p.d.f. of D(1) = D
takes the following form:

f (D) =
(β1β2)

α

Γ(α)2 exp(−β1D)
∫ ∞

max(0,−D)
[(u(D + u)]α−1 exp[−(β1 + β2)u]du. (A32)

It is noteworthy that the integral in (A32) depends parametrically only on α and
β1 + β2.

Equal scale parameters. The counterpart of the equal-shape case is the equal-scale case
in which the component processes {G1(t)} and {G2(t)} share the same scale parameter, say,
β1 = β2 = β. In this case, the family of processes {D(t)} have mean δ = (α1 − α2)/β > 0
if α1 > α2. The c.g.f. in (A30) simplifies to:

κ(ζ) = α1 ln
(

β

β− ζ

)
+ α2 ln

(
β

β + ζ

)
, (A33)
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Quantity U is the positive root (0 < U < β) of the following equation:

κ(−U) = α1 ln
(

β

β + U

)
+ α2 ln

(
β

β−U

)
= 0. (A34)

For this equal-scale case, however, the Esscher property κ(ζ) = κ(−ζ −U) does not
hold. We therefore do not pursue it further.

Bilateral Inverse Gaussian Process

As the primal process, consider a bilateral inverse Gaussian process {D(t)}, defined as
the difference between two independent inverse Gaussian processes {H1(t)} and {H2(t)},
as follows:

D(t) = H1(t)− H2(t). (A35)

In the most general case, the processes may have different positive scale parameters
ηi, i = 1, 2, and different positive shape parameters νi, i = 1, 2. The general bilateral inverse
Gaussian process has c.g.f.:

κ(ζ) =
1
ν1

[
η1 − (η2

1 − 2ν1ζ)1/2)
]
+

1
ν2

[
η2 − (η2

2 + 2ν2ζ)1/2)
]

for ζ ∈ Z = (− η2
2

2ν2
,

η2
1

2ν1
). (A36)

Equal shape parameters. The special case in which the component processes {H1(t)} and
{H2(t)} share the same shape parameter, say, ν1 = ν2 = ν, provides a family of processes
{D(t)} for which δ = (η2 − η1)/(η1η2) > 0 if η2 > η1. The c.g.f. in (A36) simplifies to:

κ(ζ) =
1
ν

{[
η1 − (η2

1 − 2νζ)1/2)
]
+
[
η2 − (η2

2 + 2νζ)1/2)
]}

. (A37)

It can be verified that the Esscher property κ(ζ) = κ(−ζ −U) holds in this case with
U = (η2

2 − η2
1)/(2ν).

Equal scale parameters. The counterpart of the equal-shape case is the equal-scale case in
which the component processes {H1(t)} and {H2(t)} share the same scale parameter, say,
η1 = η2 = η. In this case, the family of processes {D(t)} have mean δ = 0 and, hence, do
not fall into the class of processes that interest us here. Equation κ(ζ) = 0 has only a single
root at 0 in the interval ζ ∈ Z so the Esscher property does not hold.
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