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Abstract: High-dimensional classification studies have become widespread across various domains.
The large dimensionality, coupled with the possible presence of data contamination, motivates the
use of robust, sparse estimation methods to improve model interpretability and ensure the majority
of observations agree with the underlying parametric model. In this study, we propose a robust and
sparse estimator for logistic regression models, which simultaneously tackles the presence of outliers
and/or irrelevant features. Specifically, we propose the use of L0-constraints and mixed-integer conic
programming techniques to solve the underlying double combinatorial problem in a framework
that allows one to pursue optimality guarantees. We use our proposal to investigate the main
drivers of honey bee (Apis mellifera) loss through the annual winter loss survey data collected by
the Pennsylvania State Beekeepers Association. Previous studies mainly focused on predictive
performance, however our approach produces a more interpretable classification model and provides
evidence for several outlying observations within the survey data. We compare our proposal with
existing heuristic methods and non-robust procedures, demonstrating its effectiveness. In addition
to the application to honey bee loss, we present a simulation study where our proposal outperforms
other methods across most performance measures and settings.

Keywords: classification; logistic slippage model; mixed-integer conic programming; model selection;
honey bee loss; outlier detection; robust estimation

1. Introduction

Logistic regression is widely used to solve classification tasks and provides a
probabilistic relation between a set of covariates (i.e., features, variables or predictors)
and a binary or multi-class response [1,2]. The use of the logistic function can be traced
back to the early 19th century, when it was employed to describe population growth [3].
However, despite its popularity, the classical logistic regression framework based on
maximum likelihood (ML) estimation can suffer from several drawbacks. In this work, we
specifically focus on two key challenges: high dimensionality and data contamination. The
large dimensionality might lead to overfitting or even singularity of the estimates if the
sample size is smaller than the number of features, and this motivates the use of penalized
estimation techniques. Importantly, penalized methods can also promote sparsity of the
estimates in order to improve the interpretability of the model [4]. On the other hand, the
presence of outliers might disrupt classical and non-robust estimation methods leading
to biased estimates and poor predictions. In particular, since the log-odds ratio depends
linearly on the set of covariates included in the model, an adversarial contamination of the
latter might create bad leverage values that break down ML-based approaches [5]. This
motivates the development of robust estimation techniques. Notably, penalized estimation
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and robustness with respect to the presence of outliers are very closely related topics [6–8],
and they have recently also been combined for logistic regression settings [9,10].

In this work, we provide a provably optimal approach to perform simultaneous feature
selection and estimation, as well as outlier detection and exclusion for logistic regression
problems. Here optimality refers to the fact the the global optimum of the underlying
“double” combinatorial problem is indeed achievable and, even if the algorithm is stopped
before convergence, one can obtain optimality guarantees by monitoring the gap between
the best feasible solution and the problem relaxation [11,12]. Specifically, we consider an L0
sparsity assumption on the coefficients [13] and a logistic slippage model for the outlying
observations [14]. We further build upon the work in [7] and rely on L0-constraints to detect
outlying cases and select relevant features. This requires us to solve a double combinatorial
problem, across both the units and the covariates. Importantly, the underlying optimization
can be effectively tackled with state-of-the-art mixed-integer conic programming solvers.
These target a global optimum and, unlike existing heuristic methods, provide optimality
guarantees even if the algorithm is stopped before convergence.

We use our proposal to investigate the main drivers of honey bee (Apis mellifera)
loss during winter (overwintering), which represents the most critical part of the year
in several areas [15–17]. In particular, we use survey data collected by the Pennsylvania
State Beekeepers Association, which include information related to honey bee survival,
stressors and management practices, as well as bio-climatic indexes, topography and land
use information [18]. Previous studies mainly focused on predictive performance and
relied on statistical learning tools such as random forest, which capture relevance but
not effect signs for each feature, and do not account for the possible impact of outlying
cases—making results harder to interpret and potentially less robust. In our analysis, based
on a logistic regression model, we are able to exclude redundant features from the fit
while accounting for potential data contamination through an estimation approach that
simultaneously addresses sparsity and statistical robustness. This provides important
insights on the main drivers of honey bee loss during overwintering—such as the exposure
to pesticides, as well as the average temperature of the driest quarter and the precipitation
level during the warmest quarter. We also show that the data set does indeed contain
outlying observations.

The remainder of the paper is organized as follows. Section 2 provides some background
on existing penalized and robust estimation methods. Section 3 details our proposal and its
algorithmic implementation. This is compared with existing methods through numerical
simulations in Section 4. Our analysis of the drivers of honey bee loss is presented in
Section 5. Final remarks are provided in Section 6.

2. Background

Let X = (x1, . . . , xn)T ∈ Rn×p be an observed design matrix, and y ∈ {−1, 1}n the
corresponding set of binary response classes. The two-class logistic regression model assumes
that the log-odds ratio is a linear function of the covariates

log
(

Pr(yi = 1|xi)

1− Pr(yi = 1|xi)

)
= xT

i β, (1)

where β ∈ Rp are the unknown regression parameters (possibly sparse). We also assume
the presence of an intercept term, so that β = {β0, β1, . . . , βp−1} and X contains only 1’s in
the first column. Thus, for any xi ∈ Rp, it follows from (1) that

Pr(yi = 1|xi) =
exp(xT

i β)

1 + exp(xT
i β)

=
1

1 + exp(−xT
i β)

and
Pr(yi = −1|xi) = 1− Pr(yi = 1|xi) =

1
1 + exp(xT

i β)
.
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Hence, in full generality, the logistic model can be expressed as

Pr(yi|xi) =
1

1 + exp(−yixT
i β)

. (2)

Assuming that yi|xi, for i = 1, . . . , n, follow independent Bernoulli distributions, the
likelihood function associated to (2) is

L(β) =
n

∏
i=1

Pr(yi = 1|xi)
(1+yi)/2 Pr(yi = −1|xi)

(1−yi)/2,

which provides the ML estimator

β̂ = arg min
β

n

∑
i=1

d(xT
i β, yi) (3)

where the deviance is defined as

d(xT
i β, yi) = log

(
1 + exp(−yixT

i β)
)

.

The optimization problem in (3) is convex, and it admits a unique and finite solution
if and only if the points belonging to each class “overlap” to some degree (i.e., the two
classes are not linearly separable based on predictors information) [19,20]. Otherwise, there
exist infinitely many hyperplanes perfectly separating the data, and the ML estimator is
undetermined. Importantly, in this setting, the ML estimator is consistent and asymptotically
normal as n→ ∞ under weak assumptions [21]. However, unlike ML estimation for linear
regression problems, there is no closed-form solution for (3), and iterative methods such
as the Newton–Raphson algorithm are commonly employed [22], which can be solved
through iteratively reweighted least squares [1,22].

2.1. Penalized Logistic Regression

The ML estimator in (3) does not exist if p > n. Moreover, in the presence of strong
collinearities in the predictor space, even if p < n, the ML estimator might provide unstable
estimates or lead to overfitting (i.e., to estimates with low bias and high variance and
thus poor predictive power). In order to overcome these limitations, penalized estimation
methods based on the L2-penalty have been considered [23,24]. To promote sparse estimates
and improve interpretability, several authors also studied the use of the L1-norm [4,25].
Although this class of “soft” penalization methods is computationally very efficient due to
convexity, it provides biased estimates. Further approaches combine the L1 and L2-norms
in what is known as the elastic net penalty [26]—coupled with an adaptive weighting
strategy to regularize the coefficients [27]. Importantly, under suitable assumptions, this
guarantees that the resulting estimator satisfies the so-called oracle property, meaning that
the probability of selecting the truly active set of covariates (i.e., the ones corresponding to
nonzero coefficients) converges to one, and at the same time the coefficient estimates are
asymptotically normal with the same means and variance structure as if the set of active
features was known a priori [28].

Best subset selection is a traditional “hard” penalization method that approaches
the feature selection problem combinatorially [29]. Ideally, one should compare all
possible fits of a given size, for all possible sizes—say 1 ≤ kp ≤ min(n, p). This was
long considered unfeasible for problems of realistic size p even in the linear regression
setting [22]. Nevertheless, leveraging recent developments in hardware and mixed-integer
programming solvers, [30] proposed the use of L0-constraints on β to efficiently and effectively
solve the underlying best subset logistic regression problem using mixed-integer nonlinear
programming techniques. This extends the approach in [11] for linear regression and relies
on the L0 pseudo-norm, which is defined as ‖β‖0 = ∑j I(β j 6= 0), where I(·) is the
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indicator function. Notably, oracle properties can be established in this setting under
weaker assumptions than other proposals [31].

2.2. Robust Logistic Regression

Outliers may influence the fit, hindering the performance of ML-based estimators and
leading to estimation bias and weaker inference [32]. Multiple outliers are particularly
problematic and difficult to detect since they can create masking (false negative) and
swamping (false positive) effects [33]. Here, as in linear regression, raw (deviance) residuals
can be used to build several regression diagnostics [33–35]. Different approaches have
been introduced to overcome the limitations of classical ML estimation in low-dimensional
settings [5]. For instance, a weighted counterpart of ML estimation was proposed in [36] (see
also [37]), robust M-estimators were developed in [35], and ref. [38] introduced an additional
correction term that provides a robust class of Fisher-consistent M-estimators—see
also [39,40] for bounded influence estimators. Furthermore, an adaptive weighted maximum
likelihood where the estimator efficiency is calibrated in a data-driven way was considered
in [41]. A distributionally robust approach was proposed in [42], which is similar in spirit to
the use of robust optimization in [30] where uncertainty sets have to be taken into account.

The logistic slippage model, which closely resembles the mean-shift outlier model for
linear regression problems [43], was explicitly considered in [14] and leads to the removal
of outliers from the fit. However, since the number and position of outlying cases are
generally unknown, one should in principle compare the exclusion of 0 ≤ kn ≤ n/2
points from the fit (if one is willing to assume that less than half of the data are in fact
contaminated). Building upon high breakdown point estimators and deletion diagnostics,
a forward search procedure based on graphical diagnostic tools that is effective in detecting
masked multiple outliers and highlights the influence of individual observations on the fit
was developed in [44,45]. This approach is robust, computationally cheap and provides a
natural order for the observations according to their agreement with the model.

For high-dimensional settings, the authors in [9] focused on the possible contamination
of the y labeling and proposed L1 penalization methods for reducing the influence of
outliers and performing feature selection. However, this provides a sub-optimal strategy
both for sparse estimation [31] and outlier detection [6]. More recently, the elastic net
penalty has been combined with a trimmed loss function which excludes the kn most
influential observations from the fit [10]. This mimics the least trimmed squares (LTS)
estimator for linear regression [46], and is equivalent to assuming a logistic slippage model.
On the other hand, the trimmed loss function is solved through heuristic methods based on
resampling, and the elastic net penalty in use is sub-optimal in terms of feature selection.

3. MIProb: Robust Variable Selection under the Logistic Slippage Model

We consider a two-class logistic regression model affected by data contamination
(i.e., outliers) and comprising irrelevant covariates. Specifically, we focus on the logistic
slippage model, where the number, position and strength of the outliers are unknown [14,43].
The main idea is to enforce integer constraints on the number of outlying cases and relevant
features in order to improve the interpretability of the model and its robustness. Now,
we introduce a general formulation that in addition to simultaneous feature selection
and outlier detection encompasses an optional ridge penalty, which can be useful to
tackle strong collinearity structures [26,30], low signal-to-noise ratio regimes [47] and data
perturbations [48]. Thus, we propose to solve the following discrete optimization problem:
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[
β̂, φ̂

]
= arg min

β,φ

n

∑
i=1

d(xT
i β + φi, yi) (4)

s.t. ‖β‖0 ≤ kp (4a)

‖φ‖0 ≤ kn (4b)

‖β‖2 ≤ l. (4c)

Due to the (double) combinatorial nature of the problem, the formulation in (4) is computa-
tionally daunting [49]. Nevertheless, nowadays it can be solved effectively and at times
also efficiently with specialized solvers. Importantly, it relates to the use of a trimmed
loss function as in [10], and it extends the work in [7] for sparse linear regression models
affected by data contamination in the form of mean-shift outliers. However, here the use
of a nonlinear and nonquadratic objective function complicates the matter and requires
special attention.

We also note that (4) can be easily extended to model structured data, such as
hierarchical or group structures. For instance, in Section 5 we enforce the so-called group
sparsity constraints [50] to model categorical features. Moreover, it can be naturally extended
to multinomial logistic regression models along lines similar to those in [38].

3.1. Algorithmic Implementation

The optimization problem in (4) can be formulated as a mixed-integer conic program.
For simplicity, we first consider only the objective function and the L2 ridge-like penalty.
Specifically, including auxiliary variables t1, · · · , tn and r, the objective (4) and the constraint
(4c) can be equivalently reformulated as

min
t,r,β

n

∑
i=1

ti + λr (5)

s.t. ti ≥ log
(
1 + exp

(
−yi(β′xi + φi)

))
(5a)

r ≥ ‖β‖2. (5b)

The constraints in (5a) can be expressed using the exponential cone

Kexp =
{
(x, y, z) ∈ R3 : y exp(x/y) ≤ z

}
,

and provide
exp(−ti) + exp(ui − ti) ≤ 1

where ui = −yi(β′xi + φi). Including auxiliary variables zi1 and zi2 such that zi1 ≥
exp(ui − ti) and zi2 ≥ exp(−ti), it follows that (5a) is equivalent to

(ui − ti, 1, zi1) ∈ Kexp

(−ti, 1, zi2) ∈ Kexp

zi1 + zi2 ≤ 1.

Thus, the proposed mixed-integer conic programming formulation for logistic regression
in (4) (denoted MIProb for simplicity), which provides sparse estimates for β and removes
outliers through φ, is
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min
t,z,r,β,zβ ,φ,zφ

n

∑
i=1

ti + λr (6)

s.t. −Mβ
j zβ

j ≤ β j ≤M
β
j zβ

j (6a)

−Mφ
i zφ

i ≤ φi ≤M
φ
i zφ

i (6b)
p

∑
j=1

zβ
j ≤ kp (6c)

n

∑
i=1

zφ
i ≤ kn (6d)

(ui − ti, 1, zi1) ∈ Kexp

(−ti, 1, zi2) ∈ Kexp

zi1 + zi2 ≤ 1

r ≥ ‖β‖2

zβ
j ∈ {0, 1}, β j ∈ R, j = 1, . . . , p

zφ
i ∈ {0, 1}, φi ∈ R, i = 1, . . . , n.

The big-M bounds Mβ and Mφ in constraints (6a) and (6b) have p and n entries,
respectively, which can be tailored for each β j and φi. These should be wide enough
to include the true regression coefficients and zero-out the effects of the true outliers, but
not so wide as to substantially increase the computational burden.

For instance, an ensemble method based on existing heuristic and robust procedures
to create suitable big-M bounds was considered in [7]. However, a similar approach
is challenging in this framework given a “pool” of openly available robust algorithms
is not available for logistic regression models—unlike in linear regression. Here, we
simply set large, more conservative bounds to maintain accuracy at the cost of computing
time. Extensions of additional heuristics to strengthen these bounds are worth further
investigation, but beyond the scope of this work. The L0-norm constraints (6c) and (6d)
depend on positive integers kp and kn, which control the sparsity level for feature selection
and the trimming level for outlier detection, respectively. As with any selection procedure,
these tuning parameters are key to retain selection and detection accuracy. However, kp
and kn can be treated differently. For the former, any deviation from the true sparsity level
will result in false negatives/positives. For the latter, a common approach [10,45] is to
select an inflated trimming amount (i.e., higher than the true level) to avoid masking and
swamping effects, and then refine the solution to recover efficiency.

Importantly, in this work we use existing specialized solvers (see Section 4) but the
development of a tailored approach could be beneficial. For instance, outer approximation
techniques in mixed-integer nonlinear programming with dynamic constraint generation
were combined in [30], as well as the use of first-order methods, which reduce the
computational burden compared to general-purpose solvers. Extensions of such approaches
to this setting are left for future work.

3.2. Additional Details

In order to achieve good estimates it is essential to tune the sparsity level kp and the
trimming level kn, as well as the ridge-like tuning parameter λ if present, in a data-driven
fashion. For instance, one might consider robust counterparts of information criteria or
cross-validation. In our simulation study, we do not include the L2-constraint and, for a
given trimming level kn, we use a robust version of the Bayesian information criterion (BIC)
similarly to [7]. In symbols, this is BIC = kp ln (n− kn) + ∑n

i=1 d(xT
i β̂, yi), where d(xT

i β̂, yi)
are the final deviances for a given estimator—recall that deviances corresponding to
trimmed points are equal to 0. If an intercept term is included in the model, we force its
selection as an active feature. Other tuning procedures such as cross-validation benefit
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from the use of effective warm-starts to accelerate convergence of the algorithm when
solving over several training and testing sets splits—see [7] for additional details.

The breakdown point (BdP) is the largest fraction of contamination that an estimator can
tolerate before it might provide completely unreliable estimates [51]. It can be formalized
either by replacing good units with outliers or adding outliers to an uncontaminated
dataset. Using a unit-replacement approach, it has been shown that one can break down
(unpenalized) ML estimation by simply removing units belonging to the overlaps among
classes [39,52]. Using unit-addition,

the authors in [53] showed that when severe outliers are added to a non-separable
dataset, ML estimates do not break down due to “explosion” (to infinity), but they can
break down due to “implosion” (to zero). Specifically, the BdP for the ML estimator is
equal to ε∗ML = 2(p− 1)/{n + 2(p− 1)} (which is 0% asymptotically), since the estimates
can implode to zero, adding 2(p− 1) appropriately chosen outliers. Thus, unlike in linear
regression, here one has to take into account not only the explosion of the estimates, but
also their implosion, which is often more difficult to detect.

We leave theoretical derivations concerning our MIProb proposal in (6) to future
work. However, we note that MIProb clearly represents a trimmed likelihood estimator
as a special case, so in this special case it inherits properties such as the high breakdown
point [54,55]. Moreover, these results might be combined with the oracle properties for
feature selection described in [31] in order to obtain a logistic version of the robustly strong
oracle property introduced in [7].

4. Simulation Study

In this section, we use a simulation study to compare the performance of our proposal
with state-of-the-art methods. The simulated data is generated as follows. The first column
of the n × p design matrix X comprises all 1’s (for the model intercept) and we draw
the remaining entries of each row independently from a standard (p− 1)-variate normal
distribution N(0, Ip−1). The values of the p-dimensional coefficient vector β comprise p0
non-zero entries (including the intercept) and p− p0 zeros. The response labels yi ∈ {1,−1},
for i = 1, . . . , n, are generated from Bernoulli distributions with probabilities 1/(1+ e−xT

i β).
Next, without loss of generality, we contaminate the first n0 cases with a logistic slippage
model, adding the scalar mean shifts µX to the active predictors only (excluding the
intercept). In order to generate bad leverage points, we also assign opposite signs to the
labels of each contaminated unit: sign(yi) = − sign(xT

i β).
The simulation scenarios are defined according to the values of the parameters

discussed above. Here, we present results for p0 = 4 active predictors with β j = 3
(without loss of generality, these correspond to the intercept and the last 3 features), sample
size n = 100, increasing dimension p = 20, 50 (low) and 150 (high), n0 = 5 contaminated
units ( i.e., 5% contamination), and mean shifts µX = 10. Each simulation scenario is
replicated q independent times, and random test data, say (y∗, X∗), are generated from the
same simulation scheme, but without any form of contamination.

Different estimators are compared based on: (i) the mean of the negative log-likelihoods
MNLL(β̂) = 1

n ∑n
i=1 d(x∗T

i β̂, y∗i ), i.e., the average of deviances computed on the
uncontaminated test set; (ii) the outlier misclassification rate MR(β̂) = c/n, where c counts
the points of the uncontaminated test set erroneously labeled as outliers; (iii) estimation
accuracy in terms of average mean squared error MSE(β̂) = 1

p ∑
p
j=1 MSE(β̂ j), where for each

β̂ j we decompose MSE(β̂ j) =
1
q ∑

q
i=1(β̂ ji− β j)

2 = (βj− β j)
2 + 1

q ∑
q
i=1(β̂ ji− βj)

2 in squared

bias and variance (here βj =
1
q ∑

q
i=1 β̂ ji) (iv) feature selection accuracy, measured by the false

positive rate FPR(β̂) = |{j ∈ {1, . . . , p} : β̂ j 6= 0 ∧ β j = 0}|/|{j ∈ {1, . . . , p} : β j = 0}| and
the false negative rate FNR(β̂) = |{j ∈ {1, . . . , p} : β̂ j = 0∧ β j 6= 0}|/|{j ∈ {1, . . . , p} : β j 6=
0}|; (v) outlier detection accuracy, which is similarly measured by FPR(φ̂) and FNR(φ̂).

We use the robust oracle estimator as a benchmark, which is a logistic fit computed
only for the active set of features and only on the uncontaminated units (we used our
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MIP formulation to compute the robust oracle). The following estimators are compared:
(a) enetLTS with α = 1 (i.e., robust Lasso) [10]; (b) MIProb, our robust MIP proposal
without a ridge-like constraint (see Section 3); (c) MIP, the non-robust MIP implementation
performing only feature selection (i.e., as MIProb but using kn = 0); (d) Lasso, the non-robust
L1-penalized loss computed through the glmnet package in R [4]. Robust methods trim the
true number of outliers (kn = n0) , though this does not guarantee exact outlier detection,
and only the sparsity level in the feature space is tuned for each method based on (robust)
information criteria or cross-validation. However, since enetLTS is a heuristic method
that relies on resampling rather than exact trimming, we inflate the trimming proportion
to 20% and then take the re-weighted estimates in order to improve its outlier detection
performance.

Table 1 provides medians and median absolute deviations (MAD) of simulation results
over q = 30 replications. Our proposal substantially outperforms competing methods in
most criteria. In both low (p = 20, 50) and high (p = 150) dimensional settings, the MNLL
and MR of MIProb are closest to values produced by the oracle. In terms of estimation
accuracy, MIProb has the lowest bias, but the non-robust Lasso has distinctly lower variance
than all procedures aside from enetLTS when p = 150. MIProb has very strong feature
selection accuracy with FPR(β̂) and FNR(β̂) equal to 0 in the low-dimensional settings
(p = 20, 50). In the high-dimensional setting, it maintains the lowest false positive rate,
but has a higher false negative rate than enetLTS (though still lower than the non-robust
methods). This motivates the development of more effective tuning strategies as p increases.
On the other hand, enetLTS tends to overselect, since it has FNR(β̂) = 0 in all settings, but
the highest FPR(β̂) across methods. Similar results were found in [7]. Regarding outlier
detection, enetLTS and MIProb produce very similar solutions with FPR and FNR almost
always 0. Thus, both methods are highly effective at detecting contaminated units.

Table 1. Median (MAD in parenthesis) of MNLL, misclassification rate, variance and squared bias for β̂, false positive rate
and false negative rate for feature selection and outlier detection based on 30 simulation replicates.

n p Method MNLL MR var(β̂) bias(β̂)2 FPR(β̂) FNR(β̂) FPR(φ̂) FNR(φ̂)

100 20

Oracle 0.24(0.08) 0.11(0.04) 0.85(0.00) 0.29(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
enetLTS 0.50(0.08) 0.28(0.06) 0.03(0.00) 1.11(0.00) 0.18(0.09) 0.00(0.00) 0.005(0.008) 0.00(0.00)
MIProb 0.27(0.04) 0.11(0.04) 0.01(0.00) 0.46(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
MIP 0.64(0.07) 0.31(0.04) 0.02(0.00) 1.52(0.00) 0.06(0.09) 0.75(0.00) 0.00(0.00) 1.00(0.00)
Lasso 0.62(0.03) 0.29(0.04) 0.005(0.00) 1.52(0.00) 0.00(0.00) 0.75(0.00) 0.00(0.00) 1.00(0.00)

100 50

Oracle 0.22(0.04) 0.09(0.03) 0.10(0.00) 0.02(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
enetLTS 0.51(0.10) 0.27(0.13) 0.02(0.00) 0.45(0.00) 0.12(0.06) 0.00(0.00) 0.00(0.00) 0.00(0.00)
MIProb 0.26(0.04) 0.10(0.02) 0.01(0.00) 0.19(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
MIP 0.69(0.09) 0.37(0.06) 0.02(0.00) 0.63(0.00) 0.04(0.03) 0.75(0.00) 0.00(0.00) 1.00(0.00)
Lasso 0.62(0.02) 0.29(0.03) 0.002(0.00) 0.63(0.00) 0.00(0.00) 0.75(0.00) 0.00(0.00) 1.00(0.00)

100 150

Oracle 0.21(0.05) 0.09(0.03) 0.07(0.00) 0.02(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00) 0.00(0.00)
enetLTS 0.54(0.07) 0.29(0.03) 0.007(0.00) 0.16(0.00) 0.06(0.02) 0.00(0.00) 0.00(0.00) 0.00(0.00)
MIProb 0.34(0.12) 0.16(0.06) 0.03(0.00) 0.08(0.00) 0.00(0.00) 0.25(0.37) 0.00(0.00) 0.00(0.00)
MIP 0.88(0.12) 0.42(0.03) 0.02(0.00) 0.21(0.00) 0.03(0.00) 0.75(0.00) 0.00(0.00) 1.00(0.00)
Lasso 0.62(0.05) 0.30(0.06) 0.002(0.00) 0.21(0.00) 0.007(0.01) 0.75(0.00) 0.00(0.00) 1.00(0.00)

Computational Details

In this section, we discuss further computational details and the tuning approaches for
each procedure. Our proposal, MIProb is computationally more demanding than the other
methods under comparison, including the non-robust MIP. This is natural, given methods
like enetLTS are heuristics and avoid directly solving the full combinatorial problem. As
discussed in more detail in [11,56], a common challenge with MIP formulations is the weak
lower bound produced by the relaxed version of the problem. Thus, while the optimal
solution may have already been found, the majority of computing time may be used to
verify its optimality. For our settings, we set generous stopping criteria where the algorithm
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ends when either a maximum computing time of 40 min (this can be as low as 3 min in
other literature [47]) or an optimality gap of 2.5% (i.e., the relative difference between the
upper and lower bounds) is met. While this maximum time may be hit, especially under
the most challenging scenarios with p = 150, the consistent quality of solutions close to the
oracle (see Table 1) further supports this observation of weak lower bounds. However, for
comparison, enetLTS only takes an average of 14 s. Thus, the use of other warm-starts,
heuristics, etc., to improve lower bounds would be very beneficial for MIP-based feature
selection and outlier detection approaches.

We also found that the computational burden of MIProb varies vastly based on the
tuning parameter kp. In our numerical experiments, computing time decreases as more
features are selected, especially for kp > p0. For instance, we considered other simulation
scenarios not reported here, including one with a lower sample size n = 50 and thus a
higher contamination percentage. We observed the pattern in Figure 1 where the average
computing time is much higher for lower values of kp, but rapidly decreasing after the
“elbow” occurring around kp = p0. This could be due to the outlier detection portion of the
problem being more difficult when some of the relevant features are not included. Recall
that our simulations add mean shift contamination only to the relevant features; when
some are missing, it is more challenging to detect contaminated units.

Figure 1. Average computing times across various feature sparsity levels kp in simulated data
following the data generation approach described above with n = 50, p = 7, p0 = 4, and kn = 5.
Bars represent ±1 standard deviations over 5 simulation replicates.

Regarding tuning, we utilized different approaches for each procedure as appropriate.
The oracle operates on uncontaminated units and relevant features only, and requires no
tuning. EnetLTS is tuned with cross-validation through the enetLTS package in R following
the default settings with 5 folds [57]. For our proposal, MIProb, we used a robust version of
BIC as described in Section 3.2, selecting the kp corresponding to the minimum. Similarly,
MIP is tuned based on the traditional BIC (without trimming incorporated). Finally, the
non-robust Lasso is tuned through 10-fold cross-validation in the glmnet package. We note
that MIProb and MIP are implemented in Julia 1.3.1 to interact with the Mosek solver
through its JuMP package. MIProb and enetLTS utilize 24 cores per replication through
their multi-thread options.

5. Investigating Overwintering Honey Bee Loss in Pennsylvania

Pollinators play a vital role supporting critical natural and agricultural ecosystem
functions. Specifically, honey bees (Apis mellifera) are of great economic importance and
play a primary role in pollination services [58,59]. The added value of honey bees
pollination for the crops produced in the United States (in terms of higher yield and
quality of the product) is annually estimated around 15–20 billion dollars [58,60], and
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according to the Pennsylvania Beekeepers Association, their yearly contribution has
an estimated value of 60 million dollars in the state of Pennsylvania alone; see https:
//pastatebeekeepers.org/pdf/ValueofhoneybeesinPA3.pdf (accessed on 15 July 2021).
Yet the decline of the honey bee populations is a widespread phenomenon around the
globe [61–65]. Major threats for honey bees include habitat fragmentation and loss,
mites [66,67], parasites and diseases [68], pesticides [69], climate change [70], extreme
weather conditions, the introduction of alien species [71], as well as the interactions between
these factor [72]. Moreover, the overwintering period is often a major contributor to honey
bee loss [15,16,73,74]. We thus focus on honey bee winter survival.

In the United States, beekeepers suffered an average 45.5% overwinter colony loss
between 2020 and 2021 [75]. This figure was 41.2% in the state of Pennsylvania for the same
overwintering period; see https://beeinformed.org/2021/06/21/united-states-honey-bee-
colony-losses-2020-2021-preliminary-results/ (accessed on 15 July 2021). In both cases, this
was an increase compared to the previous year, when the reported losses were 43.7% and
36.6% for the United States and Pennsylvania, respectively [76]. In recent years the trend of
overwintering loss for Pennsylvania is comparable to the one at the national level, making
it an interesting case study. Thus, in the following we analyze overwintering survey data
for Pennsylvania covering the years 2016–2019.

5.1. Model Formulation and Data

Focusing on the state of Pennsylvania, honey bee winter survival was recently
investigated in [18] based on winter loss survey data provided by the Pennsylvania State
Beekeepers Association. The data cover three winter periods (2016–2017, 2017–2018, and
2018–2019), and the main goals of the analysis were to assess the importance of weather,
topography, land use, and management factors on overwintering mortality, and to predict
survival given current weather conditions and projected changes in climate. The authors
utilized a random forest classifier to model overwintering survival. Importantly, they also
controlled for the treatment of varroa mites (Varroa destructor) at both apiary and colony
levels, since this represents a key factor in describing honey bee survival—all untreated
colonies were excluded from the dataset. Their main findings suggest that growing degree
days (see Table 2) and precipitations in the warmest quarter of the preceding year were
the most important predictors, followed by precipitations in the wettest quarter, as well
as maximum temperature in the warmest month. These results highlight the strong
association between weather events and overwintering survival of honey bees.

The data set used in our analysis is extracted from the Supplementary Information
published in [18]—see Table 2 for a description of the variables included into our model.

Since observations in the original data set represent colonies that may belong to
the same apiary, we aggregated the data to obtain unique apiary information. This is
particularly important in order to reduce dependence across observations, and leads to
a sample of n = 257 apiaries from 1429 colonies (in the absence of publicly available
geo-localized information, apiary identification was made possible through the features
“bioc02” and “slope”).

We created a binary response taking the proportion of survived colonies per apiary,
and assigning the label 1 if such a mean is greater than 0.8, and the label −1 if it is smaller
than 0.6. These thresholds are motivated by the “average” winter colony loss rate described
above and they allow us to study the most “extreme” behavior (significantly higher or lower
losses); they also provide a balanced labeling for the response variable. The remaining
observations are completely removed from the data set in use and thus decreasing the
sample size to n = 216.

https://pastatebeekeepers.org/pdf/Valueofhoney beesinPA3.pdf
https://pastatebeekeepers.org/pdf/Valueofhoney beesinPA3.pdf
https://beeinformed.org/2021/06/21/united-states-honey-bee-colony-losses-2020-2021-preliminary-results/
https://beeinformed.org/2021/06/21/united-states-honey-bee-colony-losses-2020-2021-preliminary-results/


Stats 2021, 4 675

Table 2. Description of the features included in our logistic model formulation to describe honey bee overwintering
survival. See [18] for details. The bioc# variables refer to bioclimatic variables of the WorldClim database; see https:
//www.worldclim.org/data/bioclim.html (accessed on 15 July 2021).

Variable Description

1 survival Binary survival response at the apiary level
2 bee2 Winter total precipitation
3 bee4 Winter days with maximum temperature above 16 °C and precipitation below 3 mm
4 gdd Growing degree days (base 5 °C) as the accumulation of average daily temperatures
5 dd rain Days between rain events > 0.25 mm
6 bioc02 Mean diurnal temperature range
7 bioc04 Temperature seasonality
8 bioc08 Mean temperature of the wettest Quarter
9 bioc09 Mean temperature of the driest quarter

10 bioc18 Precipitation of the warmest quarter
11 bioc19 Precipitation of the coldest quarter
12 slope Terrain slope
13 sol rad Potential incident solar radiation, 21 December
14 pcurv Profile curvature
15 tcurv Terrain curvature
16 TWI Topographic wetness index
17 EW East/West orientation of slope
18 ITL Distance-weighted insect toxic load
19 col nov Number of colonies in November
20 exp 1–2 Beekeeper years of experience between 1 and 2 (binary variable)
21 exp 2–5 Beekeeper years of experience between 2 and 5 (binary variable)
22 exp < 1 Beekeeper years of experience less than 1 (binary variable)
23 exp > 10 Beekeeper years of experience greater than 10 (binary variable)

We compared the same procedures considered in our simulation study (see Section 4)
without introducing a ridge-like penalty for any of the methods. Relatedly, we did not use
all features in the original study, which presented sizable collinearities. In particular, for
each pair of features with an absolute pair-wise correlation above 0.7, we computed the
mean absolute correlation of each feature against all the others and removed the one with
the largest mean absolute correlation from our pool.

Each column of the design matrix X (excluding the intercept and categorical factors)
was standardized to have zero median and median absolute deviation (MAD) equal to
the average MAD across columns (standardization does not affect our proposal and each
of the other approaches included in our comparison performs its own standardization as
needed). Importantly, for MIP and MIProb we introduced group sparsity constraints [50] to
tackle the categorical feature “beekeepers’ experience”; the reference category is “between
5 and 10 years” and all coefficients for the dummy variables are included or excluded from
the fit together.

5.2. Results

We randomly split the data into training and test sets, encompassing 100 and 116 points,
respectively. For robust methods, we fix the trimming proportion at 10% after exploring
a range of values suitable for the nature of the problem, and only tune the sparsity level.
Figure 2 compares the balanced accuracy, defined as (sensitivity+specificity)/2, on the test set
across different methods Here sensitivity is defined as (# true positives)/(# true positives +
# true negatives) and specificity is defined as (# true negatives)/(# true negatives + # false
positives). While this is a function of the sparsity level imposed on MIP and MIProb, for
enetLTS and Lasso we show the mean values across eight repetitions due to the intrinsic
randomness induced by cross-validation methods (horizontal dashed lines). Here MIP and
MIProb are quite comparable and generally outperform competing methods, although we
notice a drop in predictive performance for MIProb if the sparsity level kp ≥ 9—which
is likely a result of overfitting due to data trimming compared to MIP. Based on these

https://www.worldclim.org/data/bioclim.html
https://www.worldclim.org/data/bioclim.html


Stats 2021, 4 676

findings, in the following we present the results based on kp = 8 (including the intercept),
where the balanced accuracy for both methods is very close to their maximum.

Table 3 displays the features selected by each method on the training set. We focus on
the interpretation of the signs of the estimated coefficients, represented as green (positive)
and red (negative) cells, respectively. The estimates provided by MIProb are in line with
the findings of the original study [18]. Specifically, MIProb estimates a positive association
between honey bee survival and “bee2” (winter total precipitation), “gdd” (growing degree
days), “EW” (East/West orientation of slope) and “ITL” (distance-weighted insect toxic
load, see [77]). This suggests that the impact of precipitations and the accumulation of
average daily temperatures (gdd), which influence the growth of crops, have an overall
positive effect on honey bee survival. In contrast, MIProb estimates a negative association
between honey bee survival and “bioc09” (mean temperature of the driest quarter), “bioc18”
(precipitation of the warmest quarter), “tcurv” (terrain curvature) and “TWI” (topographic
wetness index). This highlights once more the major impact of weather predictors, as
well as topographic factors and humidity levels. Notably, beekeepers’ experience was not
selected as a relevant feature by MIProb, which further supports the findings in [18].

Table 3. Features selected by Lasso, MIP, enetLTS and MIProb (robust MIP) on a training set encompassing 100 points.
Green and red cells indicate estimated coefficients with positive and negative signs, respectively. White cells indicate
non-selected features.

interc. bee2 bee4 gdd dd rain bioc02 bioc04 bioc08 bioc09 bioc18 bioc19 slope
Lasso
MIP
enetLTS
MIProb

sol rad pcurv tcurv TWI EW ITL col nov exp 1–2 exp 2–5 exp < 1 exp > 10
Lasso
MIP
enetLTS
MIProb
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Figure 2. Balanced accuracy computed on a test set encompassing 126 points, as a function of the
sparsity level kn for MIP and MIProb (using a 10% trimming for the latter). The average balanced
accuracy over 8 repetitions is shown also for Lasso and enetLTS.

Considering the other procedures, enetLTS appears to produce denser solutions (this
was also observed in the simulations in Section 4), excluding only three features from
the fit, and the non-robust Lasso appears to produce sparser solutions, selecting only
three features—which is indeed due to the presence of outliers. This is supported by
the fact that a Lasso fit after the exclusion of the outliers detected by MIProb provides
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richer solutions, corresponding to clearer minima of the cross-validation error, where
approximately 10 features are selected and several of these are shared with MIProb (data
not shown). MIP uses the same sparsity level of MIProb but selects a different set of
features, which is again due to the presence of outliers (e.g., it selects “bioc02” and the
dummies related to beekeepers’ experience).

Figure 3 compares Pearson residuals for MIProb and MIP estimators. The outlying
cases detected by MIProb, which are highlighted in red, deviate substantially from the
remaining observations and are undetected by the non-robust MIP algorithm. Moreover,
focusing on the set of features selected by MIProb, Figure 4 compares the boxplots of
outliers selected by MIProb against the remaining non-outlying cases. We notice that the
two distributions are indeed quite different for variables such as “bee2”, “gdd”, “EW” and
“ITL”. This provides further evidence that the data set contains some outlying cases which
significantly differ from the rest of the points.
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Figure 3. Pearson residuals for MIProb and MIP. Outlying cases detected by MIProb are highlighted in
red. Horizontal red lines represent the 0.0125 and 0.9875 quantiles of the standard normal distribution.
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Figure 4. Box plots comparing the values assumed by the features selected by MIProb contrasting
outlying and non-outlying case. The values of each feature are scaled to have zero median and MAD
equal to the average MAD across columns.

6. Discussion

We propose a discrete approach based on L0-constraints to simultaneously perform
feature selection and multiple outlier detection for logistic regression models. This is
important since modern (binary) classification studies often encompass a large number of
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features, which tends to increase the probability of data contamination. Outliers need to
be detected and treated appropriately, since they can hinder classical estimation methods.
Specifically, we focus on the logistic slippage model, which leads to the exclusion (or
trimming) of the most influential cases from the fit, and a “strong” sparsity assumption on
the coefficients. To solve such a double combinatorial problem, we rely on state-of-the-art
solvers for mixed-integer conic programming which, unlike existing heuristic methods
for robust and sparse logistic regression, provide guarantees of optimality even if the
algorithm is stopped before convergence. Our proposal, MIProb, provides robust and
sparse estimates with an optional ridge-like penalization term.

MIProb, outperforms existing methods in our simulation study. It provides sparser
solutions with lower false positive and negative rates for both feature selection and outlier
detection while maintaining stronger predictive power under most settings. Moreover,
MIProb performs very well in our honey bee overwintering survival application. Based
on three years of publicly available data from Pennsylvania beekeepers, it outperforms
existing heuristic methods in terms of predictive power, robustness and sparsity of the
estimates, and it produces results consistent with previous studies [18]. In particular, we
found that weather variables appear to be strong contributors. Winter total precipitation
and growing degree days are positively associated with honey bee survival, while the
mean temperature of the driest quarter and the precipitation of the warmest quarter show
a negative association. Moreover, our results indicate that the lower the exposure to
pesticide (i.e., as their distance increases) the higher honey bee survival is. These findings
are important in order to understand the main drivers of honey bee loss and highlight the
importance of multi-source data to study and predict honey bee overwintering survival.

Our work can be extended in several directions. We are exploring additional and more
complex simulation settings (e.g., higher dimensionality, collinear features, etc.). We did not
experiment with the ridge-like penalty in the current paper, but this is an important tool and
requires further investigation. However, computing time is currently the main bottleneck
to more extensive exploration. Thus, in the future , we plan to consider additional modeling
strategies that can reduce the computational burden. For instance, developing more
suitable big-M bounds and using outer approximation techniques with dynamic constraint
generation and first-order techniques as in [30]. We are also exploring more efficient tuning
strategies for the sparsity and trimming levels, as well as the ridge-like parameter, if
present. Utilizing approaches such as warm-starts or integrated cross-validation [56] can
substantially reduce the computational burden for subsequent runs of the MIP algorithm,
and allow better tuning. If the trimming level for MIProb is inflated, a re-weighting
approach may also be included in order to increase the efficiency of the estimator as in [10],
as well as approaches based on the forward search [45]. However, larger trimming levels
might increase the computational burden, and the procedure does not take into account
the feature selection process. Thus, the forward search might be combined with diagnostic
methods that simultaneously study the effect of outliers and features [78]. Moreover, the
theoretical properties of our procedure require further investigation, and its extension to
other generalized linear models such as Poisson or multinomial regressions is of great
interest.

Source code for the implementation of our procedure and to replicate our simulation
and application results is openly available at https://github.com/LucaIns/SFSOD_logreg
(accessed on 29 July 2021).
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