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Abstract: Longitudinal data is encountered frequently in many healthcare research areas to include
the critical care environment. Repeated measures from the same subject are expected to correlate with
each other. Models with binary outcomes are commonly used in this setting. Regression models for
correlated binary outcomes are frequently fit using generalized estimating equations (GEE). The Liang
and Zeger sandwich estimator is often used in GEE to produce unbiased standard error estimation
for regression coefficients in large sample settings, even when the covariance structure is misspecified.
The sandwich estimator performs optimally in balanced designs when the number of participants
is large with few repeated measurements. The sandwich estimator’s asymptotic properties do
not hold in small sample and rare-event settings. Under these conditions, the sandwich estimator
underestimates the variances and is biased downwards. Here, the performance of a modified
sandwich estimator is compared to the traditional Liang-Zeger estimator and alternative forms
proposed by authors Morel, Pan, and Mancl-DeRouen. Each estimator’s performance was assessed
with 95% coverage probabilities for the regression coefficients using simulated data under various
combinations of sample sizes and outcome prevalence values with independence and autoregressive
correlation structures. This research was motivated by investigations involving rare-event outcomes
in intensive care unit settings.

Keywords: sandwich estimator; generalized estimating equation; rare event; finite sample; binary
outcome; correlated outcome; MIMIC; critical care; ICU

1. Introduction and Background

This research follows up and provides new results on the performance of a previously
described modified sandwich estimator [1]. The intention was to address research gaps
and to assess the suitability of this hybrid sandwich estimator, labeled the Rogers and
Stoner estimator, for use with critical care data and to compare it to five other sandwich
estimators. We assess the performance of the Rogers and Stoner estimator at different and
greater degrees of correlation than previously performed. The assessment and comparison
of this estimator to other sandwich estimators was done via simulation and real-world
data. The question motivating our research involves the estimator’s performance during
rare events, expressed as binary outcomes, in the critical care environment.

Longitudinal data is encountered frequently in many healthcare research areas, includ-
ing the intensive care unit (ICU). Repeated measures from the same patient are expected to
correlate with each other. The use of models with binary outcomes is not uncommon in
this setting. Regression models for correlated binary outcomes are commonly fit using a
generalized estimating equations (GEE) methodology. This project employed electronic
health records (EHRs) from the Medical Information Mart for Intensive Care (MIMIC),
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a freely available ICU database that can support the examination of repeated measures
within the critical-care ICU environment.

Available methods for use with independent data, such as logistic regression, are well
known to most researchers. However, if the data is dependent, a method that accounts
for the correlation is required. In situations with repeated or clustered measurements,
researchers can employ GEE with dependent binary outcomes to account for the correlation
within a covariance matrix. The correlation is a function of the covariance among the
repeated or clustered measurements. GEE enables the investigator to specify the covariance
structure based on the expected correlation pattern within the data. Its architecture employs
a robust variance estimator, known as the sandwich estimator, that produces unbiased
variance estimates for the regression coefficients if the sample is of adequate size [2].
The advantage of the sandwich estimator is its estimation of unbiased standard errors,
even when the covariance structure is misspecified. While this property benefits the GEE
framework, the sandwich estimator of variance has some disadvantages.

The theoretical foundations of the sandwich estimator were established by Huber
and expanded upon by White [3,4]. Liang and Zeger popularized the sandwich estimator
by adapting it to GEE [2]. Since that time, the sandwich, or robust estimator, has been a
standard feature of most commercial statistical software packages and has become a staple
of the GEE framework.

The asymptotic nature of the sandwich estimator is associated with problems when
the sample size is small, or the outcome of interest is rare [5,6]. In small sample sizes, the
sandwich estimator is biased downward and underestimates the variability of parameter
estimators, which can lead to erroneous inferences. As a result, GEE Wald tests using the
Liang and Zeger sandwich estimator produce p-values that are too small [6]. Even in large
samples, a rare outcome can produce issues much like the small-sample problem. The
situation is aggravated further when both sample size is finite, and the outcome is rare.

When the data is independent, logistic regression models with binary outcomes
underestimate the event’s probability when the outcome is rare [7]. In these situations, Car-
roll et al. reported that the use of logistic regression, coupled with the sandwich estimator,
produced an under-coverage of Wald-type tests [5]. Furthermore, it was predicted that
due to excess variability of the sandwich estimator in rare-event and small sample-size
settings, this condition would result in an under-coverage of the confidence intervals.
Diggle et al. stated, “ . . . the robust approach is usually satisfactory when the data consists
of short, essentially complete, sequences of measurements observed at a common set of
times on many experimental units, and care is taken in the choice of a working covariance
matrix” [8]. As such, the purpose of this study is to showcase our proposed sandwich
estimator along with others that exhibit better performance in these situations than that of
the Liang and Zeger estimator.

2. Method
2.1. Generalized Estimating Equations and the Sandwich Covariance Estimator

Note that Section 2.1 is repeated from our original publication and is included for the
sake of completeness. In general, if Yi is a response variable and Xi is a covariate of interest
for i = 1, . . . . ., K subjects, a regression model can be utilized to describe their relationship.
In the case of longitudinal data, j is the index for the number of observations within a given
subject. The number of repeated measurements on an individual will be represented as ni
with nij being the measurement at the jth interval for the ith subject. Marginal models are
based on quasi-likelihood and are similar in form to the generalized linear model (GLM) in
that a link function (g), is used to specify a mathematical relationship, involving regression
coefficients (β), between a marginal mean response (µij), and one or more independent
variables

(
Xij
)

as indicated in Equation (1).

g(µij) = ηij = XT
ij β (1)
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Regarding the GEE methodology, if µi is a vector of predicted means for the ith
individual and p is the number of regression coefficients, then ∂µi

∂βh
where h = 1, . . . , p will

be used to represent the partial derivatives of the vector of predicted means with respect
to the vector of regression coefficients (β). Then Di is an ni × p matrix of these partial
derivatives and appears as follows:

Di =

 ∂µi1/∂β1 . . . ∂µi1/∂βp
...

. . .
...

∂µini /∂β1 · · · ∂µini /∂βp


The variance (vi) of the dependent variable (yi) in the quasi-likelihood method, just as

it is in GLM, can be expressed as a function (h) of the mean as indicated in Equation (2). Phi
(φ) is a scale parameter estimated from the data and is sometimes referred to as a nuisance
parameter, as it is typically not of primary interest.

vi = φh(µi) (2)

If Yi is used to indicate the ni × 1 vector of outcomes for individual i, then let vi be
the vector of variances for these effects. Let Ai be a diagonal matrix that has taken on the
values of the vector vi. Let α represent the correlation within the clustered measurements
then Ri(α) is the working correlation matrix for these same quantities. In this study, it
is assumed that there is a correlation structure Ri(α) common to all subjects. If Ai is an
ni × ni matrix with the variances of Yij on the diagonal, then let Vi = A1/2

i Ri(α)A
1/2
i /φ

indicate the working covariance matrix for these same measurements; Vi depends on the
correlation structure Ri(α).

In the GEE method, when the dependent variable comes from the exponential family,
the following are the score equations for the regression coefficients (β′s) represented
in Equation (3):

Sh =
K

∑
i=1

∂µi
∂βh

V−1
i (Yi-µi) = 0 where : h = (1, . . . , p) (3)

Liang and Zeger demonstrated that as the number of subjects or clusters (K) increased

in size, that
^
β is a consistent estimator for β [2]. That is, as K− > ∞, K1/2(

^
β−β) is asymp-

totically multivariate Gaussian with zero mean and covariance matrix (VLZ) estimated
as follows.

VLZ = lim
K−>∞

K

(
K

∑
i=1

^
D

T

i
^
V
−1

i
^
Di

)−1{ K

∑
i=1

^
D

T

i
^
V
−1

i

(
Yi-

^
µi

)(
Yi-

^
µi

)T ^
V
−1

i
^
Di

}(
K

∑
i=1

^
D

T

i
^
V
−1

i
^
Di

)−1

(4)

Estimates of the partial derivatives of the vector of predicted means with respect to
the vector of regression coefficients along with the working covariance matrix comprise
VLZ. When estimates of β and α are inserted, VLZ is referred to as the empirical-based, or
robust sandwich, variance matrix.

2.2. Review of Finite Sample Sandwich Estimators

Several approaches to improve the performance of the sandwich estimator over
that of the Liang-Zeger in small sample sizes have been undertaken, including versions
created by Pan, Morel, Mancl, and DeRouen as well as Rogers and Stoner [1,2,9–11].
The Liang and Zeger, Mancl and DeRouen as well as the Rogers and Stoner sandwich
estimators, sometimes will be referred to as Liang-Zeger, Mancl-DeRouen, and Rogers-
Stoner, respectively. We provide a brief overview of these strategies for each approach,
culminating in Table 1, a listing of all sandwich estimators in vector-matrix notation.
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Table 1. The sandwich estimators in vector-matrix notation listed with approach and authors.

Sandwich Estimators

Authors: Liang-Zeger Approach: Standard Sandwich

VLZ =

(
K
∑

i=1

^
D

T

i
^
V
−1

i
^
Di

)−1{
K
∑

i=1

^
D

T

i
^
V
−1

i

(
Yi-

^
µi

)(
Yi-

^
µi

)T ^
V
−1

i
^
Di

}(
K
∑

i=1

^
D

T

i
^
V
−1

i
^
Di

)−1

Author: Pan Approach: Average Covariance

VP =

(
K
∑

i=1

^
D

T

i
^
V
−1

i
^
Di

)−1[
K
∑

i=1

^
D

T

i
^
V
−1

i

{
A1/2

i

(
K
∑

i=1
A−1/2

i

(
Yi-

^
µi

)(
Yi-

^
µi

)T
A−1/2

i /K

)
A1/2

i

}
^
V
−1

i
^
Di

](
K
∑

i=1

^
D

T

i
^
V
−1

i
^
Di

)−1

Authors: Mancl-DeRouen Approach: Bias Correction

VMD =

(
K
∑

i=1

^
D

T

i
^
V
−1

i
^
Di

)−1{
K
∑

i=1

^
D

T

i
^
V
−1

i (I-Hi)
−1(Yi-

^
µi)(Yi-

^
µi)

T(I-HT
i )
−1 ^

V
−1
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^
Di

}(
K
∑

i=1

^
D

T
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^
V
−1

i
^
Di

)−1

where Hi =
^
DiVN

^
D

T

i
^
V

-1

i

Author: Morel Approach: Inflation with Trace

VM_T = VLZ + δ̂nφ̂

(
K
∑

i=1

^
D

T

i
^
V
−1

i
^
Di

)−1

where

δK = min
(

0.5, p
K−p

)
and φ̂ = max

1, trace


(

K
∑

i=1

^
D

T

i
^
V
−1

i
^
Di

)−1{
K
∑

i=1

^
D

T

i
^
V
−1

i cov(Yi)
^
V
−1

i
^
Di

}/p


Author: Morel Approach: Inflation with Trace

VM_T = VLZ + δ̂nφ̂

(
K
∑

i=1

^
D

T

i
^
V
−1

i
^
Di

)−1

where

δK = min
(

0.5, p
K−p

)
and φ̂ = max

1, det


(

K
∑

i=1

^
D
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V
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^
V
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^
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
Authors: Rogers-Stoner Approach: Average Covariance + Inflation with Scaled

Determinant

VRS = VP +
(

p
K−p

)
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)−1

Pan initially noted the superior performance of his modified sandwich estimator with
exchangeable and independence covariance structures for both binary and continuous
outcomes [11]. His improved sandwich estimator utilized the pooled or average covariance-
based upon all subjects. Hardin and Hilbe acknowledged the superiority of the Pan
sandwich estimator over that of the Liang-Zeger in simulation studies [12]. Our prior
simulation work at low values of correlation confirmed their findings, and we sought
to appraise the performance of Pan’s estimator at greater correlation values relative to
the traditional Liang-Zeger as well as sandwich estimators by Rogers-Stoner, Morel, and
Mancl-DeRouen [1].

Mancl and DeRouen proposed a bias correction for the covariance of the original

Liang-Zeger sandwich estimator. The bias adjustment subtracts Hi =
^
DiVN

^
D

T

i
^
V
−1

i from
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the nixni identity matrix, in which VN represents the naïve or model-based variance
estimator listed in Equation (5) [9]:

VN = Cov(
^
β) =

(
K

∑
i=1

^
D

T

i
^
V
−1

i
^
Di

)−1

(5)

In his work with logistic regression for complex surveys, Morel proposed a correction
in the Taylor series estimate of the covariance matrix to adjust for bias. This adjustment
involved reintroducing an omitted term of the Taylor series estimate of the covariance
matrix. This omitted term had very little effect on the covariance estimates until the sample
or cluster size was reduced [13]. Morel extended this concept to GEE for the sandwich
estimator. In addition, he inflated this new sandwich estimator with the addition of a scaled
version of the trace [10]. Also, he suggested adding a scaled version of the determinant to
the sandwich estimator, but never realized this alternate version. Our research included
both of Morel’s sandwich estimators with the vector-matrix of the version inflated by
the trace represented in Table 1. Replacing trace with determinant in this vector-matrix
equation results in the alternate version.

Rogers and Stoner proposed a hybrid sandwich estimator that used pooled covari-
ances like Pan’s estimator and the addition of an inflation factor in the form of a scaled
determinant similar to what Morel suggested [1]. The determinant represents the volume
of the variances and covariances of the sandwich estimator [14]. The inflation factor is
represented in Equation (6) and expresses the determinant in terms of the volume, where
N is the total number of observations and p is the number of parameters as described
in Section 2.1.

det
(

ˆSandwich
)
=

(Volume)2

(N − 1)p (6)

The final form of this hybrid sandwich estimator is listed in Table 1, along with the
estimators by Liang-Zeger (1986), Pan (2001), Morel (2001), and Mancl-DeRouen (2003).

3. Prior Simulations and Discoveries

This research follows up prior work, which involved developing the methodology for
and assessing the merits of a modified sandwich estimator for correlated binary outcomes
in finite samples and rare-event data. Simulation studies with low correlation values in
rare-event and finite data samples found this estimator performed better than the Liang-
Zeger, Pan, Morel, and Mancl-DeRouen sandwich estimators. Sample sizes, prevalences,
and covariance structures from these simulation settings are listed in Table 2 [1]. These
simulation environments created coverage probabilities equivalent to a 95% confidence
interval centered around the estimated regression coefficients. We discovered that when
prevalence was lower than 30% and the sample size below 50 subjects, the choice of es-
timator mattered; the Liang-Zeger estimator consistently underestimated the coefficient
variances. The Liang-Zeger estimator was the poorest performer in these settings, while
the Rogers-Stoner and Pan estimators performed well, followed by the two Morel estima-
tors. The Mancl-DeRouen also outperformed the Liang-Zeger sandwich estimator in this
simulation environment. Due to the sandwich estimator’s asymptotic nature, it was not
surprising that at sample sizes of 500 subjects, all sandwich estimators converged to 95%
coverage probabilities.
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Table 2. Prior simulation designs for comparing the performance of the six estimators listed in Table 1.

Total Number of Simulations

Correlation
Structure Prevalence Cluster Sizes Correlation Number of

Simulations

Autoregressive (AR − 1) 0.01, 0.05, 0.10, 0.30, 0.50 20, 30, 50, 100, 500 0.005 25
Autoregressive (AR − 1) 0.10, 0.30, 0.50 20, 30, 50, 100 0.05 12

Compound
Symmetry 0.01, 0.05, 0.10, 0.30, 0.50 20, 30, 50, 100, 500 0.005 25

Compound
Symmetry 0.10, 0.30, 0.50 20, 30, 50, 100 0.05 12

Independent 0.01, 0.05, 0.10, 0.30, 0.50 20, 30, 50, 100, 500 0 25
Total 99

4. Simulations

We followed up on our previous work and assessed the performance of the Rogers-
Stoner estimator at different and greater degrees of correlation than had been done previ-
ously. We compared the performance of the Rogers-Stoner estimator to those developed by
Liang-Zeger Pan, Morel, and Mancl-DeRouen, both in simulations and with real-world
ICU data involving patients diagnosed with opioid poisoning. Again, as in our prior
simulations, we used a balanced design with a single continuous covariate model fit on a
series of simulated datasets having four repeated measures per subject with prevalences
as high as 0.50 and as low as 0.01. The relationship between outcome prevalence and the
correlation among longitudinal measures determined the choice of correlation settings; that
is, the probability of the outcome restricted the range of possible correlation values [6]. Dif-
fering sample sizes, outcome prevalences, and correlations varied as described in Table 3.
The compound symmetry covariance structure was omitted from the simulations, as an
autoregressive structure was deemed more realistic for critical care repeated measures.
The autoregressive correlation structure reflects correlation decay, with increasing inter-
vals of time between measurements, and is considered practical, given the critical care
study design.

Table 3. Simulation design settings for each of the six estimators.

Total Number of Simulations

Correlation
Structure Prevalence Cluster Sizes Correlation Number of

Simulations

Autoregressive (AR − 1) 0.05, 0.10, 0.30, 0.50 20, 30, 40, 60, 80, 100 0.01 24
Autoregressive (AR − 1) 0.05, 0.10, 0.30, 0.50 20, 30, 40, 60, 80, 100 0.10 24
Autoregressive (AR − 1) 0.05, 0.10, 0.30, 0.50 20, 30, 40, 60, 80, 100 0.15 24

Independent 0.01, 0.05, 0.10, 0.30, 0.50 20, 30, 40, 60, 80, 100 0 30
Total 102

Simulated correlated binary data was produced by the R-code library binarySimCLF
developed by Qaqish [15]. The standard deviation and average estimated standard error of
the estimated regression coefficients were documented and recorded for each simulation.
Each simulation configuration in Table 3 was run 1000 times, retaining the average of each
sandwich estimator. True values of β0 and regression coefficient β1 were set to one for
all simulation tests. The single covariate X1 was normally distributed with a variance of
one centered at a mean appropriate to the simulated prevalence π(x) of the outcome. The
relationship between the outcome prevalence and continuous covariate is described by:
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π(x) =
e(β0+β1X1)

1 + e(β0+β1X1)
(7)

Each sandwich estimator’s performance was assessed through 95% coverage probabil-
ities for the regression coefficients. The simulation environment was programmed in the R
version 2.11.1 statistical language [16].

Coverage Probabilities

Performance of the sandwich estimators was assessed through coverage probabilities,
which, as explained in our initial publication, was a better measure of performance than
was the bias for the sandwich estimators. The coverage probability is the proportion of the
time that the interval contained the true value of the regression coefficient. The coverage
probabilities are similar to a confidence interval centered on the estimated regression
coefficients; thus, they are a function of the estimated variance. The estimated variances
for the regression coefficients were extracted from the diagonal of the sandwich estimator

matrix. The simulation environment used the same estimated regression coefficients (
^
β)

for each scenario and was designed to generate coverage probabilities similar to a 95%
confidence interval.

5. Results

Simulation results, in terms of coverage probabilities, are presented for the indepen-
dence covariance structures (Figures 1 and 2) and the autoregressive covariance structures
(Figure 3). Figures are only shown for the β1 regression coefficient due to the similarity
in results between β1 and β0, the intercept. A composite figure is used for simulated
outcome prevalence values of 5% through 10% under 0.01, 0.10, and 0.15 correlation with
an autoregressive covariance structure. A single graph is dedicated to the 1% prevalence
level under an independence structure in order to highlight differences in these extremely
low prevalence conditions.

Simulations under an independence covariance structure for 50%–5% outcome preva-
lences illustrate the differences in coverage probability performance among the six sand-
wich estimators in Figure 1. At 50% outcome prevalence, the Liang-Zeger maintains a
roughly 95% coverage probability until 20 subjects, where it falls slightly lower than 95%.
The remaining sandwich estimators also maintain a 95% coverage probability until 40 and
30 subjects, where they slightly overestimate the variances generating coverage probabili-
ties larger than 95%. At 20 subjects, the Mancl-DeRouen, Pan, and both Morel estimators
clearly are on the 95% coverage probability line, while the Rogers-Stoner is slightly above
the 95% mark. The results under 30% mirror those under the 50% outcome prevalence, but
to a lesser degree.

The 10% outcome prevalence shows that the Rogers-Stoner estimator maintains close
to a 95% coverage probability, while the Pan, Mancl-DeRouen, and both Morel estimators
marginally underestimate the variances; the coverage probabilities of the Liang-Zeger are
well below the other five estimators at 20 subjects. Examining these sandwich estimators
under the 5% outcome prevalence gives similar results until 30 and 20 subjects when all of
the estimators are clearly below 95% coverage probabilities. At 20 subjects, the Liang-Zeger
has declined to an 86.9% coverage probability, while the Rogers-Stoner estimator falls
to 92.4%.
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Simulations under an independence covariance structure with a 1% outcome preva-
lence, shown in Figure 2, highlighted the coverage probability deficiencies under low
prevalence settings for all sandwich estimators. The simulations indicated that even at
100 subjects, all estimators failed to achieve a 95% coverage probability, but the Pan and
Rogers-Stoner estimators remained above 90%, while the Liang-Zeger had the poorest per-
formance. The Liang-Zeger, or traditional sandwich estimator, demonstrated the greatest
drop in coverage probabilities as the sample size decreased. At 20 subjects, the Liang-Zeger
estimator’s coverage probabilities fell to under 60%, which is far below the other sandwich
estimators. The coverage probabilities of the Mancl-DeRouen estimator also continued
to decline as the sample size decreased, but it clearly outperformed the Liang-Zeger es-
timator. The Pan and Rogers-Stoner estimators’ performance was roughly steady from
80 to 40 subjects, but dropped slightly at 30, improving marginally at 20 subjects. We saw a
similar performance from the two Morel estimators, but these lagged behind the Pan and
Rogers-Stoner sandwich estimators.
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Rogers-Stoner estimators remained above 90%, while the Liang-Zeger had the poorest 
performance. The Liang-Zeger, or traditional sandwich estimator, demonstrated the 
greatest drop in coverage probabilities as the sample size decreased. At 20 subjects, the 
Liang-Zeger estimator’s coverage probabilities fell to under 60%, which is far below the 
other sandwich estimators. The coverage probabilities of the Mancl-DeRouen estimator 
also continued to decline as the sample size decreased, but it clearly outperformed the 
Liang-Zeger estimator. The Pan and Rogers-Stoner estimators’ performance was roughly 

Figure 3. Coverage probabilities when estimating the regression coefficient β1 under a simulated autoregressive covariance
structure for 5% through 10% prevalence values, with 0.01, 0.10, and 0.15 levels of correlation.
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At outcome prevalences of 50% and 30%, under an autoregressive covariance structure,
the estimators clustered around the 95% coverage probability line, except at 20 subjects
(not shown). The Rogers-Stoner slightly overestimated the variances, although it varied
slightly with the degree of correlation, while the Liang-Zeger clearly dipped below the
95% line. Performance of the sandwich estimators under an autoregressive correlation
structure at 5% and 10% outcome prevalence is given in Figure 3. It is not surprising that
at the low correlation of 0.01, the estimators mirrored their performances in Figure 1 for
the independence covariance structure. This finding is similar to that in our previous
simulation results under an autoregressive correlation structure with low correlation.

At 0.10 and 0.15 correlations, Figure 3 shows that all estimators’ performance at
100 subjects had already dipped below the 95% coverage probability line. As the sample size
decreased, the Rogers-Stoner sandwich estimator’s inflation term became significant, giving
it a marginal edge over Pan’s estimator. The Liang-Zeger’s performance lagged behind
all other sandwich estimators under 0.10 and 0.15 correlations, with 5% and 10% outcome
prevalences as the sample size decreases. Performance of the estimators, under these two
correlation settings, was similar between outcome prevalences within correlation strata, but
differed by degree. The coverage probability results between the 0.10 and 0.15 correlation
simulations mirrored one another, but the variances produced by all sandwich estimators
under the 0.15 structure suffered a greater degree of underestimation, giving an exaggerated
appearance in comparison to their 0.10 correlation structure counterparts.

6. Critical Care Application

In this Section, we discuss our use of MIMIC database version IV to compare the perfor-
mance of the sandwich estimators in a real-world ICU setting. MIMIC-IV is an extension of
MIMIC-III and contains the EHRs from patients in critical care units of the Beth Israel Dea-
coness Medical Center in Boston, Massachusetts, spanning the years 2008–2019 [17]. The
use of publicly available MIMIC ICU EHRs supports the reproducibility of our study [18].

In the USA, ICU admissions related to opioid overdoses have increased by 34% over
the last seven years [19]. This rising epidemic has led to poisoning by opioids as the
second leading cause of poisoning in the USA [20]. Since the year 2000, the USA has
experienced a 200% increase in opioid-related overdose deaths [19]. A common symptom
of acute opioid toxicity is respiratory depression, which may require the drug naloxone or
some other respiratory intervention. Although many ICU patients diagnosed with opioid
poisoning require some form of intervention to improve breathing, such as intubation or
ventilation support, some patients in the MIMIC-IV ICU database did not require direct
respiratory support.

The MIMIC-IV database stores ICU automated clinical system information and events
logged manually by medical personnel. Within its tables, a code designates respiratory
intervention procedures and includes descriptive text describing the intervention type.
This study examined ICU patients diagnosed with opioid poisoning who did not undergo
any procedure to improve respiration, such as ventilator support or intubation. Roughly
8% of these opioid-poisoned patients had a respiratory intervention code with descriptive
text indicating they were repositioned to improve respiration. While in the ICU, these
patients did not require any other ventilation support to improve respiration, although
repositioning implies concerns over the patient’s ability to breathe. The MIMIC-IV emer-
gency department module is not available to the public, so we could not determine if these
patients had treatment or a procedure to improve respiration before ICU admission. It may
be that ventilator support carried a greater risk, such as ventilator-associated pneumonia,
than is warranted for patients who exhibited only mild respiratory depression symptoms.
Also, the patient’s breathing may have been stable and regular at the time of ICU admission.

From the MIMIC-IV database, ICU EHRs, were randomly assigned to two groups
consisting of 100 and 20 patients diagnosed with opioid poisoning who did not require any
form of direct respiratory intervention while in the ICU. These group sizes corresponded
to the largest and smallest samples from our simulations. Opioid poisoning was identified
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from the International Classification of Disease (ICD) versions 9 and 10 codes assigned
to the patients’ EHRs. Heroin, an illicit drug continually increasing in popularity, was
included in our ICD coding. The specific ICD codes included 965.00, 965.01, and 965.09 for
version 9, while those for version 10 included the T40.0X, T40.1X, and T40.2X for poisoning
by opium and heroin. These ICD codes for opioid-related overdoses were validated at
the Beth Israel Deaconess Medical Center, functioning with a sensitivity and specificity
of 100% [19].

We used peripheral oxygen saturation (SpO2) as a measurement of the patient’s
breathing effectiveness. This was automatically recorded by the iMDsoft Metavision ICU
system and stored within the MIMIC database tables. We limited our examination of
this sampling of patients to the first 24 h of ICU admission, constructing a longitudinal
dataset of repositioning events and SpO2 measurements over the first 24 h of each patient’s
stay. We studied four SpO2 measurements from each patient’s pulse oximeter readings
over that 24 h. The first SpO2 measurement was randomly selected from the first six
hours of the patient’s ICU stay, while the second was randomly selected from the sixth
through the twelfth hours. The third SpO2 measurements were randomly selected between
the twelfth and eighteenth hours, while the fourth SpO2 measurements were randomly
selected between the eighteenth and twenty-fourth hours of the ICU patient’s stay.

If the patient was present in the ICU for fewer than 24 h, their stay was divided
into four equal time intervals, with the SpO2 measurements randomly drawn from these
periods. When repositioning was performed, we randomly selected the SpO2 measurement
recorded in the following hour from the MIMIC database. We selected the following hour,
as the act of repositioning a patient is logged manually, with the time recorded in the
MIMIC-IV “chart time” database field. This field dates to an earlier period when paper
charts were used to record notable patient events. These paper charts were divided into
hourly blocks, and it was customary to log events at the top of the hour, a practice that
has carried forward into the electronic era [21]. By selecting the next hour, we ensured
that the act of patient repositioning occurs before the SpO2 reading. We hypothesized
that repositioning alone, without any other respiratory intervention type, improves the
patient’s breathing and is reflected in subsequent SpO2 measurements.

GEE for Patient Repositioning Demonstration

The outcome event of interest was the act of repositioning a patient to improve
respiration, represented as a binary variable; while the covariate of interest was the patient’s
SpO2 values, a continuous variable, recorded by the iMDsoft MetaVision ICU system and
stored in the MIMIC-IV database table with its associated timestamp value. Repositioning
was performed in 8.05% of the patients stricken with opioid poisoning within the first 24 h
of ICU admission. The study question is represented by Equation (8), where Y represents a
binary outcome, with a one and zero indicating the occurrence or lack of a repositioning
event, respectively. The symbol Yij represents the ith patient while j signifies the first,
second, third, or fourth six-hour interval of the patient’s ICU stay.

ln

{
Pr
(
Yij = 1

)
Pr
(
Yij = 0

)} = β0 + β1[SpO2ij] (8)

An autoregressive correlation structure reflects correlation decay with increasing
intervals of time between measurements and was considered practical, given the design
of the study. The six different sandwich estimators, covering four different time points
for each patient, were used in this scenario with a test of significance performed on the
β̂1 regression coefficient. The odds ratio is computed as the exponential function raised
to the power of the regression coefficient. The p-value is the result of a hypothesis test
of significance for the regression coefficient. The results of the sandwich estimators of
variance, in samples of 100 and 20 subjects, are shown in Tables 4 and 5, respectively.
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Due to the asymptotic nature of the estimators and the large sample size of 100 subjects,
the variances for β̂1, shown in Table 4, were close to the same size for all six sandwich
estimators and the Z-scores indicate that there were no statistically significant results for
any of the six sandwich estimators. Our first publication demonstrated that the coverage
probabilities of the sandwich estimators will converge to the same value with a large
enough sample size [1]. At 100 subjects, the sandwich estimators are close to converging to
the same value.

Results for the smaller sample size of 20 subjects, shown in Table 5 had standard
errors that differed significantly from each other. The six different estimators produced
estimated variances for β̂1 of different magnitudes; the Liang-Zeger underestimated the
variances while the Rogers-Stoner compensated with an inflation factor. The Liang-Zeger
and both Morel estimators led to statistically significant results for β̂1, while the Pan and
Rogers-Stoner indicated statistically insignificant results. The Mancl-DeRouen estimator
produced a borderline p-value but would have been considered statistically insignificant at
a 0.05 level of significance. The estimated regression coefficient for a one-unit increase in
SpO2 in the sample of 20 subjects was −0.2712. If the results, in truth, had been statistically
significant, the act of repositioning a patient would have worked to reduce respiration.
The associated 95% odds ratio confidence interval for the Liang-Zeger and Rogers-Stoner
sandwich estimators were (0.6583, 0.8828) and (0.4872, 1.1928), respectively.

Table 4. Estimated regression coefficients, odds ratios (OR), standard errors, 95% confidence intervals (CI) from analysis of
repositioning events in recorded ICU SpO2 measurements within the first 24 h for 100 patients.

Estimated Regression Coefficients under an Autoregressive Correlation Structure

Method β̂1 SÊ(β̂1) OR 95% CI for OR Z-Score p-Value

Liang-Zeger −0.0489 0.1121 0.9522 0.7643, 1.1863 −0.4363 0.6625
Mancl-DeRouen −0.0489 0.1158 0.9522 0.7588, 1.1948 −0.4226 0.6725

Morel-(Trace) −0.0489 0.1133 0.9522 0.7625, 1.1890 −0.4319 0.6657
Morel-(Determinant) −0.0489 0.1131 0.9522 0.7627, 1.1887 −0.4324 0.6654

Pan −0.0489 0.0921 0.9522 0.7948, 1.1408 −0.5309 0.5954
Rogers-Stoner −0.0489 0.0930 0.9522 0.7935, 1.1427 −0.5261 0.5987

Table 5. Estimated regression coefficients, odds ratios (OR), standard errors, 95% confidence intervals (CI) from analysis of
repositioning events in recorded ICU SpO2 measurements within the first 24 h for 20 patients.

Estimated Regression Coefficients under an Autoregressive Correlation Structure

Method β̂1 SÊ(β̂1) OR 95% CI for OR Z-Score p-Value

Liang-Zeger −0.2712 0.0748 0.7624 0.6583, 0.8828 −3.6238 0.0002
Mancl-DeRouen −0.2712 0.1413 0.7624 0.5779, 1.0057 −1.9195 0.0549

Morel-(Trace) −0.2712 0.1047 0.7624 0.6209, 0.9361 −2.5900 0.0095
Morel-(Determinant) −0.2712 0.0998 0.7624 0.6268, 0.9272 −2.7156 0.0066

Pan −0.2712 0.2183 0.7624 0.4969, 1.1696 −1.2423 0.2141
Rogers-Stoner −0.2712 0.2283 0.7624 0.4872, 1.1928 −1.1877 0.2349

These results highlighted that the choice of sandwich estimator for use in small sample
sizes impacts the outcome of hypothesis testing regarding the regression coefficients. It is
quite likely that repositioning opioid-poisoned patients was performed as a preventative
measure rather than as a treatment for poor respiration. This would be one explanation
for its lack of statistical significance in our model of 100 ICU patient subjects involving
repositioning to improve respiration. It is also possible that the patients received treatment
for respiratory depression in the emergency department and breathing stabilized before
ICU admission. The MIMIC dataset includes an emergency department module that
contains a record of these medications and treatments received by each subject, but this
data is not publicly available.
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7. Conclusions

This research further assessed the qualities of a hybrid sandwich estimator, reaffirming
its superior performance over that of the Liang-Zeger estimator in simulations involving
finite samples and low outcome prevalence. Furthermore, we demonstrated in simulations
with sample sizes of 100 subjects and an autoregressive covariance structure with higher
correlation settings (0.10 and 0.15) that all the sandwich estimators produced coverage
probabilities that fell below 95%. This was not observed in our earlier simulations with
low correlation values. As the sample sizes dropped under these same correlation con-
ditions, the Liang-Zeger continued to perform abysmally while the Rogers-Stoner and
Pan estimators adjusted. As the sample sizes decreased under a 0.10 correlation with 10%
and 5% outcome prevalences, the coverage probabilities of the Liang-Zeger continued to
deteriorate, while the Rogers-Stoner and Pan estimators recovered, almost achieving 95%
coverage probabilities at 40 subjects and lower. In this situation, both Morel estimators
were the next best performers, followed by the Mancl-DeRouen; the performance of the
Liang-Zeger sandwich estimator finished well behind the Mancl-DeRouen at 20 subjects.
As the correlation increased to 0.15 with a 10% outcome prevalence, the coverage proba-
bilities of the Rogers-Stoner sandwich estimator achieved 94% coverage probabilities at
30 subjects, followed closely by the Pan at 92%. When the outcome prevalence dropped to
5% under 0.15 correlation, all of the sandwich estimators’ performances exhibited greater
deterioration in comparison to the 0.10 correlation setting. Still, the Rogers-Stoner sand-
wich estimator, followed closely by the Pan estimator, logged superior performance in
terms of coverage probabilities. In sample sizes of 20 subjects under a 0.15 correlation
structure, the Rogers-Stoner and Pan sandwich estimators had 92% and 91% coverage
probabilities, respectively.

The performance of the Liang-Zeger sandwich estimator, under an independence
covariance structure at 50% and 30% outcome prevalences, did well until the sample size
dropped to 20 subjects, while the Rogers-Stoner, Pan, Mancl-DeRouen, and both Morel
estimators generated variances that were too large for the β1 regression coefficient resulting
in coverage probabilities greater than 95%. This overestimation of variances was greatest in
the Rogers-Stoner sandwich estimator. With a 1% outcome prevalence and an independence
covariance structure, the coverage probabilities of all the sandwich estimators were under
95% at 100 subjects and steadily declined as the sample size decreased. At 20 subjects,
the Rogers-Stoner and Pan estimators improved slightly from their performance with
30 subjects. The sandwich estimators in order of best coverage probability performance at
20 subjects and 1% prevalence were: Rogers-Stoner (86%), Pan (83%), Morel (Trace—77%;
Determinant—75%), Mancl-DeRouen (70%), and Liang-Zeger (59%).

In our previously published research on simulations involving only low values of
correlation, we concluded that, as the outcome prevalence dropped below 30% and the
sample size below that of 50 subjects, the choice of estimators matters, and alternatives
to the Liang-Zeger estimator should be considered. In our limited simulation settings,
the Rogers-Stoner sandwich estimator outperformed the Liang-Zeger and typically out-
performed all other estimators as both the prevalence and sample size decreased [1]. We
further noted that the Rogers-Stoner estimator’s performance could be inferior compared to
that of the Pan estimator under different correlation settings. The simulation results of this
study demonstrated that the Rogers-Stoner sandwich estimator has a slight performance
edge over the Pan sandwich estimator in settings of higher correlation (0.10 and 0.15), finite
sample sizes, and low outcome prevalences of 5% and 10%.

The Rogers-Stoner and Pan sandwich estimators have similar performances because
the former is an extension of the latter. The Rogers-Stoner estimator is dependent on a scaled
version of the determinant in the inflation factor, similar to that in Morel’s description, to
improve performance in situations with small sample sizes and low outcome prevalences.

In summary, the Liang-Zeger sandwich estimator’s performance suffered as the sam-
ple sizes dropped below 60 subjects under correlation settings as low as 0.01 when outcome
prevalence values were less than 30%. This drop-off in performance was exacerbated
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further by lower outcome prevalence values, smaller sample sizes, and higher correlation
settings (0.10 and 0.15). The observed results were congruent with Carroll and colleagues’
predictions [5]. Under these extreme settings, the Rogers-Stoner and Pan estimators would
be good choices for variance estimators, followed by either of the two estimators proposed
by Morel.

The choice of a sandwich estimator is crucial in deriving correct statistical inferences.
The real-world ICU practice of patient repositioning to improve opioid-induced respiratory
depression showed the danger in hypothesis testing for low-prevalence situations with
small sample sizes in GEE models with binary outcomes. Using data from MIMIC ICU
EHRs, we demonstrated the limitations of the Liang-Zeger sandwich estimator with rare
events and finite sample sizes. Sandwich estimators proposed by Rogers-Stoner, Pan,
Morel, and Mancl-DeRouen could all serve as preferable alternatives to the traditional
Liang-Zeger under these conditions.
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