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Abstract: The Cardioid (C) distribution is one of the most important models for modeling circular
data. Although some of its structural properties have been derived, this distribution is not appropri-
ate for asymmetry and multimodal phenomena in the circle, and then extensions are required. There
are various general methods that can be used to produce circular distributions. This paper proposes
four extensions of the C distribution based on the beta, Kumaraswamy, gamma, and Marshall–Olkin
generators. We obtain a unique linear representation of their densities and some mathematical prop-
erties. Inference procedures for the parameters are also investigated. We perform two applications
on real data, where the new models are compared to the C distribution and one of its extensions.

Keywords: circular data; extended Cardioid; trigonometric moments; weight function

1. Introduction

Fitting densities to data has a long history. Statistical distributions are very useful in
describing and predicting real world phenomena. Hundreds of extended distributions
have been developed by introducing one or more parameters to a baseline distribution
over the past decades for modeling data in several disciplines, in particular in reliability
engineering [1], survival analysis [2], demography [3], actuarial science [4], etc.

Adding parameters to a well-established distribution is a time honored device for
obtaining more flexible new families of distributions. In fact, several classes of distributions
have been introduced by adding one or more parameters to generate new distributions
in the statistical literature. Recent developments address definitions of new families
that extend well-known distributions and, at the same time, provide great flexibility in
modeling real data. The well-known generators are the Marshall–Olkin-G [5], beta-G [6],
gamma-G [7], Kumaraswamy-G (Kw-G) [8], exponentiated generalized (EG) [9], type I
half-logistic-G [10], Burr X-G [11], and exponentiated Weibull-H [12], among others. The
applications of these generators have been made in the context of linear data, i.e., on the
support of a subset of R.

Several phenomena in practice provide angles (expressed in degrees or radians) as
outputs called circular data, such as in the analysis of phase features obtained from radar
imagery [13], time series analysis of wind speeds and directions [14], etc. As one of the
most used circular distributions, the two-parameter Cardioid (C) law was pioneered by
Jeffreys [15] for describing directional spectra of ocean waves. This model has a cumulative
distribution function (cdf), G(x) = G(x; µ, ρ), and probability density function (pdf),
g(x) = g(x; µ, ρ), given by (for 0 < x ≤ 2π)

G(x) =
x

2π
+

ρ

π
[sin(x− µ) + sin(µ)] (1)

and
g(x) =

1
2π

[1 + 2ρ cos(x− µ)], (2)
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respectively, where 0 < µ ≤ 2π is a location parameter, and |ρ| ≤ 0.5 represents a
concentration index. Some known competing distributions to the C distribution are the
wrapped normal, wrapped Cauchy, wrapped Lévy, and Wrapped Lindley. A novel circular
distribution introduced by Wang and Shimizu [16] applied the Möbius transformation to
the C model. The Papakonstantinou family studied by Abe et al. [17] also extended (1).
However, these extensions present hard analytic formulas for their densities. Recently,
Paula et al. [18] introduced a simple extended C distribution, called the exponentiated
Cardioid (EC), derived from the exponentiated G (exp-G) generator—after adapting the
mapping linear to circular—that can describe asymmetric and some bimodal cases beyond
those of the C model. The models mentioned and those that will be presented in this
work are also classified as trigonometric distributions. In recent years, many trigonometric
models have been proposed, such as the transformed Sin-G family [19] and Cos-G Class [20],
thus highlighting their importance.

In this work, we derive four extensions of the C model through the adapted β-G, Kw-G,
Γ-G, and MO-G generators, which extend the exp-G family. We propose four new circu-
lar distributions called the beta Cardioid (βC), Kumaraswamy Cardioid (KwC), gamma
Cardioid (ΓC), and Marshall–Olkin Cardioid (MOC). Their densities are expressed in a
unique linear representation, which is the result of weighting the term [1 + 2ρ cos(x− µ)]
in Equation (2). Circular data phenomena often demand the proposal of tailored clustering
structures. Abraham et al. [21] presented a discussion on an unsupervised clustering
algorithm in circular data obtained from X-ray beam projectors. Based on mixtures of
one-dimensional Langevin distributions, Qiu and Wu [22] derived a new information
criterion to cluster circular data. We understand that these works motivate our proposals as
the potential inputs for future clustering structures. Furthermore, some mathematical prop-
erties of the new models are derived, such as extensions and trigonometric moments [23].
A brief discussion about likelihood-based estimation procedures is provided. Finally, two
applications to real data are performed to illustrate the flexibility of our proposals.

The remainder of this paper is organized as follows. New circular distributions
are defined in Section 2. Section 3 provides some of their properties, and an estimation
procedure is addressed in Section 4. Subsequently, two applications to real data are
performed in Section 5, and some conclusions are offered in Section 6.

2. Generalized Cardioid Models

We provide some three- and four-parameter distributions by transforming the C
distribution according to four well-known generators.

Let G(x) be the cdf of a baseline distribution with p parameters:

(a) The β-G cdf defined by Eugene et al. [6] is

Fβ-G(x) = IG(x)(θ, φ) =
1

B(θ, φ)

∫ G(x)

0
ωθ−1 (1−ω)φ−1 dω, (3)

where θ, φ > 0 are two additional parameters, IG(x)(θ, φ) is the incomplete beta

function ratio evaluated at G(x), and B(θ, φ) =
∫ 1

0 ωθ−1(1−ω)φ−1dω is the complete
beta function;

(b) The Kw-G cdf pioneered by Cordeiro and Castro [8] is

FKw-G(x) = 1−
{

1− G(x)θ
}φ

, (4)

where θ, φ > 0 are two additional parameters;
(c) The Γ-G cdf reported by Zografos and Balakrishnan [7] is

FΓ-G(x) =
γ(θ,− log[1− G(x)])

Γ(θ)
, (5)
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where θ > 0, Γ(θ) =
∫ ∞

0 tθ−1 e−t dt is the gamma function, and γ(θ, z) =
∫ z

0 tθ−1 e−t dt
is the incomplete gamma function;

(d) The MO-G cdf defined by Marshal and Olkin [5] is

FMO-G(x) = 1− θ[1− G(x)]
1− (1− θ)[1− G(x)]

=
θ[1− G(x)]

G(x) + θ[1− G(x)]
, (6)

where θ > 0 is a shape parameter.

For the first two generators, given a p-parameter baseline cdf as input, one has
new (p + 2)-parameter models, whereas for the remaining generators, (p + 1)-parameter
distributions are furnished.

Let A(x) = (2π)−1[x −mod(x, 2π)], where mod(x, y) is the remainder after x is
divided by y. In what follows, we will do an adaptation to the generators (3)–(6) in order to
propose generalized Cardioid models with cdf F(·) and pdf f (·) that satisfy the conditions

1. f (x + 2π) = f (x);
2. F(x + 2π)− F(x) = 1.

The conditions are required for circular data studies (see Mardia and Sutton [24]).
The new models present discontinuity in {2kπ : k ∈ Z}. This pattern also holds for other
circular models in the literature such as wrapped exponential [25].

2.1. Beta Cardioid

By applying (1) to Equation (3), the cdf of the βC distribution is

F1(x) = A(x) + Imod(x,2π)
2π +

ρ
π [sin(x−µ)+sin(µ)]

(θ, φ),

for x ∈ R \ {2πk : k ∈ Z}. This case is denoted by X ∼ βC(θ, φ, µ, ρ). By differentiating
the last equation, the βC pdf, say f1(x) = f1(x; θ, φ, µ, ρ), has the form

f1(x) =
h1(x)

2π B(θ, φ)︸ ︷︷ ︸
=h̄1(x)

[1 + 2ρ cos(x− µ)], (7)

where h̄1(x) = h1(x)/[2π B(θ, φ)] and

h1(x) = h1(x; θ, φ, µ, ρ) =

{
mod(x,2π)

2π + ρ
π [sin(x− µ) + sin(µ)]

}θ−1

{
1 − mod(x,2π)

2π − ρ
π [sin(x− µ) + sin(µ)]

}1−φ
.

For φ = 1, the βC model reduces to the EC distribution discussed by Paula et al. (2020).
Figure 1a–d display βC densities for some parametric points.
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(d) For θ = 2, φ = 2 and ρ = 0.2.

Figure 1. Cartesian and circular βC densities for some parametric points.

2.2. Kumaraswamy Cardioid

By inserting (1) in Equation (4), the Kw-C cdf, say F2(x) = F2(x; θ, φ, µ, ρ), can be
expressed as

F2(x) = A(x) + 1 −
{

1 −
{

mod(x, 2π)

2π
+

ρ

π
[sin(x− µ) + sin(µ)]

}θ
}φ

for x ∈ R \ {2πk : k ∈ Z}. This case is denoted by X ∼ KwC(θ, φ, µ, ρ). The KwC pdf,
f2(x) = f2(x; θ, φ, µ, ρ), can be reduced to

f2(x) =
θ φ h2(x)

2 π︸ ︷︷ ︸
=h̄2(x)

[1 + 2ρ cos(x− µ)], (8)
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where h̄2(x) = θ φ h2(x)/(2 π) and

h2(x) = h2(x; θ, φ, µ, ρ) =

{
mod(x,2π)

2π + ρ
π [sin(x− µ) + sin(µ)]

}θ−1

{
1 −

(
mod(x,2π)

2π + ρ
π [sin(x− µ) + sin(µ)]

)θ
}1−φ

.

Figure 2a–d display KwC densities for some parametric points.
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Figure 2. Cartesian and circular KwC densities for some parametric points.

2.3. Gamma Cardioid

By applying (1) in Equation (5), the ΓC cdf, F3(x) = F3(x; θ, µ, ρ), has the form

F3(x) = A(x) +
γ

(
θ,− log

{
1 − mod(x, 2π)

2π
− ρ

π
[sin(x− µ) + sin(µ)]

})
Γ(θ)

,

for x ∈ R \ {2πk : k ∈ Z}. This case is denoted by X ∼ ΓC(θ, µ, ρ). By differentiating the
last equation, the ΓC pdf, f3(x) = f3(x; θ, µ, ρ), reduces to
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f3(x) =
h3(x)

2π Γ(θ)︸ ︷︷ ︸
=h̄3(x)

[1 + 2ρ cos(x− µ)], (9)

where h̄3(x) = h3(x)/[2π Γ(θ)] and

h3(x) = h3(x; θ, µ, ρ) =

(
− log

{
1 − mod(x, 2π)

2π
− ρ

π
[sin(x− µ) + sin(µ)]

})θ−1

.

Figure 3a–d display ΓC densities for some parametric points.
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Figure 3. Cartesian and circular ΓC densities for some parametric points.

2.4. Marshall–Olkin Cardioid

By inserting (1) in Equation (6), the MOC cdf, F4(x) = F4(x; θ, µ, ρ), is given by

F4(x) = A(x) +
θ
{

1 − mod(x,2π)
2π − ρ

π [sin(x− µ) + sin(µ)]
}

mod(x,2π)
2π + (1− θ) ρ

π [sin(x− µ) + sin(µ)] + θ
{

1 − x
2π

} ,
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for x ∈ R \ {2πk : k ∈ Z}. This case is denoted by X ∼ MOC(θ, µ, ρ). Thus, the MOC
pdf, f4(x) = f4(x; θ, µ, ρ), becomes

f4(x) =
θ h4(x)

2π︸ ︷︷ ︸
=h̄4(x)

[1 + 2ρ cos(x− µ)], (10)

where h̄4(x) = θ h4(x)/(2π) and

h4(x) = h4(x; θ, µ, ρ)

=

(
1 − (1− θ)

{
1 − mod(x, 2π)

2π
− ρ

π
[sin(x− µ) + sin(µ)]

})−2

.

Figure 4a–d display MOC densities for some parametric points.
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Figure 4. Cartesian and circular MOC densities for some parametric points.
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2.5. A General Formula

All four extensions have the same support, and their densities can be expressed as

fi(x) = h̄i(x) [1 + 2ρ cos(x− µ)], for i = 1, . . . , 4, (11)

where h̄i(x) is defined in Table 1.

Table 1. The weighted multipliers for the proposed models.

Model C βC KwC ΓC MOC

Index (i) • 1 2 3 4

Expression (2π)−1 h̄1(x) h̄2(x) h̄3(x) h̄4(x)

The new densities can be interpreted as weighted multipliers for the baseline pdf
kernel [1 + 2ρ cos(x− µ)]. Thus, the behavior of h̄i(x) in (11) has an important task for
studying the flexibility of the new models. Figure 5 displays the weighted functions h̄i(x).
For these plots, we set (µ, ρ) = (2, 0.2) and consider θ = φ ∈ (0, 100) and x ∈ (0, 2π).
Note that although h̄3(x) and h̄4(x) have the highest values, h̄1(x) and h̄2(x) present larger
domain regions, which lead to more flexible scenarios. Thus, we conclude that the βC and
KwC can be more flexible among these models.
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Figure 5. Weighted curves of fi(x).
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3. Mathematical Properties

In this section, we obtain the trigonometric moments for the new models. First,
we recall some concepts in the area of circular distributions. We follow the notation of
Pewsey et al. [26].

Analogously as over the real line, a circular distribution can also be described by its
characteristic function (cf). However, as random variables X considered in this paper are
periodic, we can write

φX(t) = E
(

ei t X
)

= E
[
ei t (X + 2π)

]
= ei t 2 π E

(
ei t X

)
,

where i =
√
−1, which implies φX(t) = 0 or ei t 2 π = 1; i.e., the cf should be defined only

at integer values.
The cf evaluated at an integer p is called the pth trigonometric moment of X defined by

τp,0 = E
(

ei p X
)

= E[cos(p X)]︸ ︷︷ ︸
αp

+ i E[sin(p X)]︸ ︷︷ ︸
βp

.

The quantity τp,0 is the mean resultant vector in the complex plane of length ρp =

|τp,0| =
√

α2
p + β2

p ∈ [0, 1] and direction

µp =



arctan(βp/αp), αp > 0,
arctan(βp/αp) + π, βp ≥ 0, αp < 0,
arctan(βp/αp)− π, βp < 0, αp < 0,
π/2, βp > 0, αp = 0,
−π/2, βp < 0, αp = 0,
undefined, βp = αp = 0,

where | · | is the norm of a complex argument. The quantities ρ1 and µ1 are fundamental
measures of concentration and location, respectively. The polar representation of τp,0 is

τp,0 = ρp eiµp = ρp cos(µp)︸ ︷︷ ︸
αp

+ i ρp sin(µp)︸ ︷︷ ︸
βp

.

Furthermore, the pth central trigonometric moment of a circular distribution is

τp,µ1 = E{cos[p(X− µ1)]}︸ ︷︷ ︸
ᾱp

+ i E{sin[p(X− µ1)]}︸ ︷︷ ︸
β̄p

, (12)

where ᾱp and β̄p are its real and imaginary parts. The polar representation of τp,µ1 is
given by

τp,µ1 = τp,0 e−i p µ1 = ρp [ cos(µp − p µ1) + i sin(µp − p µ1) ].

Here, we are interested in finding expressions for τp,µ1 .
In what follows, µ refers to the parameter discussed previously in the models, while

µ1 is the mean direction.
Furthermore, we derive expansions for fi(x) by means of the following results. First,

consider a baseline distribution having cdf G(x) and pdf g(x). The exp-G family with
power parameter θ > 0 has cdf and pdf given by

Πθ(x) = G(x)θ and πθ(x) = θ g(x) G(x)θ−1,

respectively. Expansions for densities obtained from Equations (3)–(6) have often been
given in terms of the last two functions:
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From Nadarajah et al. [27]:

fβ-G(x) =
∞

∑
i=0

(−1)i

(θ + i)

(
φ− 1

i

)
[B(θ, φ)]−1︸ ︷︷ ︸

w(1)
i =w(1)

i (θ,φ)

(θ + i) g(x)Πθ+i−1(x)︸ ︷︷ ︸
πθ+i(x)

. (13)

From Cordeiro and de Castro [8]:

fKw-G(x) =
∞

∑
i=0

(−1)i θ φ

θ(i + 1)

(
φ− 1

i

)
︸ ︷︷ ︸

w(2)
i =w(2)

i (θ,φ)

θ(i + 1) g(x)Π(i+1)θ−1(x)︸ ︷︷ ︸
π(i+1)θ(x)

. (14)

From Castellares and Lemonte [28]:

fΓ-G(x) =
∞

∑
i=0

ϕi(θ)

(i + θ)︸ ︷︷ ︸
w(3)

i =w(3)
i (θ)

πθ+i(x), (15)

where

ϕ0(θ) =
1

Γ(θ)
, ϕi(θ) =

ρi(θ)

Γ(θ)
=

(θ − 1)
Γ(θ)

ψi−1(i + θ − 2), i ≥ 1,

and ψi−1(·) are the Stirling polynomials given in Castellares and Lemonte [28].

From Cordeiro et al. [29]:

fMO-G(x) =
∞

∑
i=0

w(4)
i πi+1(x), (16)

where the coefficients w(4)
i = w(4)

i (θ) are given by (i = 0, 1, . . .)

w(4)
i =

{
(−1)i θ
(i+1) ∑∞

j=i (j + 1) (j
i) θ̄ j, θ ∈ (0, 1),

θ−1(1− θ−1)i, θ > 1,

and θ̄ = 1− θ.

From Paula et al. [18]:

Let XEC ∼ EC(θ, µ, ρ). The cdf of XEC is (Paula et al., 2020)

Πθ(x; µ, ρ) =
∞

∑
k=0

k

∑
l=0

bk,l(θ, µ, ρ) xθ−k sinl(x− µ). (17)

By simple differentiation, we can write

πθ(x; µ, ρ) =
∞

∑
k=0

k

∑
l=0

1

∑
q=0

[q l + (1− q) (θ − k)]bk,l(θ, µ, ρ)

×mθ−k+q−1,q,l−q(x; µ),

where mp,q,r(x; µ) = xp cosq(x− µ) sinr(x− µ),

bk,l(θ, µ, ρ) =

(
θ

k

)(
k
l

)( ρ

π

)k sink−l(µ)

(2π)θ−k .
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After some algebraic manipulations, the pth central circular trigonometric moment of XEC,
say τ

EC(θ)
p,µ1 , with mean direction µ1, follows as

τ
EC(θ)
p,µ1 = e− i p µ1 + p

{ ∫ 2π

0
sin[p(x− µ1)]Πθ(x; µ, ρ)dx

+ i
∫ 2π

0
cos[p(x− µ1)]Πθ(x; µ, ρ)dx

}
= e− i p µ1 + p

∞

∑
k=0

k

∑
l=0

bk,l(θ, µ, ρ)

× [A1(θ − k, l, p) − i A2(θ − k, l, p)], (18)

where A1(a, b, c) =
∫ 2π

0 xa sinb(x− µ) sin(c(x− µ1))dx and A2(a, b, c) =
∫ 2π

0 xa sinb(x−
µ) cos(c(x− µ1))dx. The functions A1(·, ·, ·) and A2(·, ·, ·) are easily handled both numeri-
cally and analytically.

For example, Table 2 displays some special quantities using the symbolic computation
software wxmaxima.

Table 2. Some expressions for A1(·, ·, ·) and A2(·, ·, ·).

A2(1, 1, 1) = − 4π cos (µ1+µ)−8π2 sin (µ1−µ)
8

A1(1, 1, 1) = 4π sin (µ1+µ)+8π2 cos (µ1−µ)
8

A2(2, 2, 2) =
(96π2−3) sin (2µ1+2µ)−24π cos (2µ1+2µ)−256π3 cos (2µ1−2µ)+(48−384π2) sin (2µ1)+192π cos (2µ1)

384

+ sin (2µ1+2µ)−16 sin (2µ1)
128

A1(2, 2, 2) =
24π sin (2µ1+2µ)+(96π2−3) cos (2µ1+2µ)+256π3 sin (2µ1−2µ)−192π sin (2µ1)+(48−384π2) cos (2µ1)

384

+ cos (2µ1+2µ)−16 cos (2µ1)
128

By applying (17) to Equations (13)–(16), we obtain linear representations for (11),
which hold for the four generalized C distributions.

Theorem 1. The pdf (11) can be expanded as

fi(x) =
1

2π
[1 + 2 ρ cos(x− µ)]

∞

∑
k=0

k

∑
l=0

∞

∑
t=0

b(i)k,l,t xindi(t)−1−k sinl(x− µ), (19)

where b(i)k,l,t = indi(t)w(i)
t (θ, φ) bk,l(indi(t)− 1, µ, ρ) for i = 1, . . . , 4, ind1(t) = θ + t, ind2(t) =

θ (t + 1), ind3(t) = θ + t and ind4(t) = t.

Equation (19) can be used to derive some mathematical properties (having intractable
analytical forms) of fi(x) (for i = 1, . . . , 4). Furthermore, as a consequence, we have
expansions for the weights h̄i(x) (which have complex forms) as linear combinations of
xl−v sinh(x− µ). Proposing criteria for choosing the best fi(x) based on these expansions
may be a promising research branch. In particular, we obtain expressions for the central
trigonometric moments of distributions with pdf (11).

Corollary 1. Let τ
(j)
p,µ1 be the pth central trigonometric moment of the model Fj. We obtain

τ
(j)
p,µ1 = e− i p µ1

(
∞

∑
t=0

w(j)
t (θ, φ)

)
+ p

∞

∑
k=0

k

∑
l=0

d(j)
k,l ,

where

d(j)
k,l =

∞

∑
t=0

[A1(indj(t)− k, l, p) − i A2(indj(t)− k, l, p)]w(j)
t (θ, φ) bk,l(indj(t), µ, ρ),
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and indj(t) is given in Theorem 1.

Proof of Corollary 1. Let τ
(j)
p,µ1 be the pth circular trigonometric moment of X(j) ∼ Fj.

Furthermore, let ind1(t) = θ + t, ind2(t) = θ (t + 1), ind3(t) = θ + t, and ind4(t) = t.
Thus, assuming ᾱ

EC(θ)
p and β̄

EC(θ)
p , similar to real and imaginary parts of τ

EC(θ)
p,µ1 in (18), it

follows from Equations (13)–(16):

τ
(j)
p,µ1 = E

{
cos
[

p
(

X(j) − µ1

)]}
+ iE

{
sin
[

p
(

X(j) − µ1

)]}
=

∞

∑
t=0

w(j)
t (θ, φ) ᾱ

EC(indj(t))
p + i

∞

∑
t=0

w(j)
t (θ, φ) β̄

EC(indj(t))
p

=
∞

∑
t=0

w(j)
t (θ, φ) τ

EC(indj(t))
p,µ1 = e− i p µ1

(
∞

∑
t=0

w(j)
t (θ, φ)

)
+ p

∞

∑
k=0

k

∑
l=0

d(j)
k,l ,

where

d(j)
k,l =

∞

∑
t=0

w(j)
t (θ, φ) bk,l(indj(t), µ, ρ)[A1(indj(t)− k, l, p) − i A2(indj(t)− k, l, p)].

4. Estimation

This section tackles a brief discussion about maximum likelihood estimation of the
parameters of the pdf family (11). Several approaches for estimating the parameters have
been proposed in the literature, but the maximum likelihood method is the most commonly
employed. The maximum likelihood estimates (MLEs) present desirable properties for
constructing confidence intervals for the parameters. They are easily computed by using
well-known platforms such as the R (optim function), SAS (PROC NLMIXED), and Ox program
(MaxBFGS sub-routine)..

Let x1, . . . , xn be an observed sample from a random variable having pdf (11). Thus,
the associated log-likelihood function for δ = (θ, φ, µ, ρ)> can be expressed as (for i = 1, . . . 4)

`i(δ) =
n

∑
j=1

log fi(xj) =
n

∑
j=1
{ log h̄i(xj) + log[1 + 2 ρ cos(xj − µ)] }. (20)

The score vector follows from `i(δ) as

(Uθ,i, Uφ,i, Uµ,i, Uρ,i) =

(
∂ `i(δ)

∂θ
,

∂ `i(δ)

∂φ
,

∂ `i(δ)

∂µ
,

∂ `i(δ)

∂ρ

)
,

whose components are

Uθ,i =
n

∑
j=1

1
h̄i(xj)

∂ h̄i(xj)

∂θ
, Uφ,i =

n

∑
j=1

1
h̄i(xj)

∂ h̄i(xj)

∂φ
,

Uµ,i =
n

∑
j=1

{
1

h̄i(xj)

∂ h̄i(xj)

∂µ
+

2 ρ sin(xj − µ)

1 + 2 ρ cos(xj − µ)

}
,

and

Uρ,i =
n

∑
j=1

{
1

h̄i(xj)

∂ h̄i(xj)

∂ρ
+

2 cos(xj − µ)

1 + 2 ρ cos(xj − µ)

}
.

Thus, the MLE of δ is δ̂ = argmaxδ∈∆ {`i(δ)}, where ∆ is the parametric space or,
equivalently, the solution of the system of nonlinear equations Uθ,i = Uφ,i = Uµ,i = Uρ,i =
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0. The compactness of the parameter space ∆ and the continuity of the log-likelihood
function on ∆ are sufficient for the existence of the MLE.

The partitioned observed information matrix for the model Fi(x) takes the form (for
i = 1, . . . , 4)

Ji(δ) = −


Uθθ,i Uθφ,i Uθµ,i Uθρ,i
Uφθ,i Uφφ,i Uφµ,i Uφρ,i
Uµθ,i Uµφ,i Uµµ,i Uµρ,i
Uρθ,i Uρφ,i Uρµ,i Uρρ,i


= −

{
Uab,i =

∂2 `i(δ)

∂a∂b
for a, b = θ, φ, µ, ρ

}
,

whose elements are

Uτν,i =
n

∑
j=1

Uτν,i(j),

for {τ, ν ∈ (θ, φ, µ, ν)} − {(τ, ν) : τ = ν = µ, ρ and (τ, ν) = (µ, ρ), (ρ, µ)}, where

Uτν,i(j) =
1

h̄i(xj)

∂2 h̄i(xj)

∂τ∂ν
− 1

h̄2
i (xj)

∂ h̄i(xj)

∂τ

∂ h̄i(xj)

∂ν
,

Uµρ,i =
n

∑
j=1

{
Uµρ,i(j) +

2 sin(xj − µ)

[1 + 2 ρ cos(xj − µ)]2

}
,

Uµµ,i =
n

∑
j=1

{
Uµµ,i(j) +

[ 4 ρ2 − 2 ρ cos(xj − µ) − 8 ρ2 cos2(xj − µ) ]

[1 + 2 ρ cos(xj − µ)]2

}
,

and

Uρρ,i =
n

∑
j=1

{
Uρρ,i(j) +

4 ρ sin(xj − µ) cos(xj − µ)

[1 + 2 ρ cos(xj − µ)]2

}
.

For interval estimation of the parameters in Fi(x), we obtain the Fisher information
matrix (FIM) Ki(δ) = E(Ji(δ)) under standard regularity conditions.

For n sufficiently large,
√

n(δ̂ − δ)
D−→ N4(0, K̇i(δ)) from a result in Casella and

Berger [30], where K̇i = Ki/n is the unit FIM, “Nk(µ, Σ)” denotes the k-dimensional

multivariate normal distribution with parameters µ and Σ, and “ D−→” means convergence
in distribution.

However, the FIM is seldom tractable. As a solution, we can adopt Ji instead of
Ki. This last strategy will be used in the numerical results. In the next section, the last
asymptotic result will be used to determine the standard errors associated with MLEs.

5. Applications

In this section, we provide two applications to illustrate the potentiality of the pro-
posed models. The first dataset consists of 21 wind directions obtained by a Milwaukee
weather station at 6:00 a.m. on consecutive days (see [31]). The second one corresponds to
the directions taken by 76 turtles after treatment addressed by Stephens [32].

The Cartesian histograms of first and second datasets in Figures 6a and 7a indicate pos-
itive (0.4313) and negative (−0.0816) skewness, respectively. Furthermore, these datasets
have bimodal shapes.
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Figure 6. Fitted densities of the C, EC, βC, KwC, ΓC, and MOC models to the first dataset. (a) histogram and (b) rose diagram.
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Figure 7. Fitted densities of the C, EC, βC, KwC, ΓC, and MOC models to the second dataset. (a) histogram and (b) rose diagram.

First, the MLEs and their SEs (given in parentheses) are evaluated and, subsequently,
the values of the Kuiper (K), Watson (W), Akaike information criterion (AIC), and Bayesian
information criterion (BIC) statistics. The first two adherence measures are used in the
context of circular statistics and can be found in Jammalamadaka and Sengupta [23]. All
computations were performed using function maxLik of the R statistical software (see [33]).

The results for the first and second datasets are reported in Tables 3 and 4, respectively.
We note that all generalized models fit both datasets better than the Cardioid model
according to these statistics. For the first dataset, the EC distribution stands out according to
the K, AIC, and BIC measures, while the βC model yields the best fit to the dataset according
to the W statistic. The βC model outperforms the other models for the second dataset.
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Table 3. MLEs of the parameters for the first dataset, their standard errors (given in parentheses),
and the Kuiper, Watson, AIC, and BIC statistics.

Model ρ µ θ φ Kuiper Watson AIC BIC

C 0.2436 4.6708 − − 1.1590 0.0711 76.5763 80.6654(0.1463) (0.6835) − −

EC 0.2164 1.1780 2.8755 − 0.7367 0.0257 68.6317 74.7653
(0.1465) (0.6168) (0.8929) −

βC 0.2774 0.9093 3.9353 1.4044 0.8060 0.0247 68.8623 77.0404(0.0980) (0.5030) (2.6919) (0.6641)

KwC 0.2767 0.9381 3.6511 1.4144 0.8038 0.0240 68.8919 77.0700(0.0989) (0.4933) (2.1205) (1.1213)

ΓC 0.1364 1.7274 1.8563 − 0.8289 0.0328 70.0159 76.1495(0.1349) (0.6820) (0.2566) −

MOC 0.2007 2.0632 4.5765 − 0.8134 0.0327 70.6394 76.7730(0.1277) (0.7659) (1.8103) −

Table 4. MLEs of the parameters for the second dataset, their standard errors (given in parentheses),
and the Kuiper, Watson, AIC, and BIC statistics.

Model ρ µ θ φ Kuiper Watson AIC BIC

C 0.3259 1.2022 − − 2.4852 0.4855 254.6554 261.3169(0.0553) (0.3337) − −

EC 0.3067 1.6025 0.7688 − 2.3610 0.4443 251.9396 261.9318
(0.1256) (0.0829) (0.5656) −

βC 0.3978 0.1441 1.8836 3.1088 1.2683 0.0917 231.1254 244.4483(0.0538) (0.1892) (0.4959) (1.0142)

KwC 0.3985 0.1712 1.6295 3.2205 1.3204 0.1007 231.9943 245.3172(0.0543) (0.2713) (0.3180) (1.8769)

ΓC 0.2829 1.5308 0.7788 − 2.3005 0.4006 249.8842 259.8764(0.0776) (0.4744) (0.0760) −

MOC 0.2160 1.9026 0.3880 − 1.9593 0.2614 242.0967 252.0889(0.1088) (0.7594) (1.1475) −

Figures 6 and 7 display plots of the empirical and fitted densities to these data.
The plots support the indications from these tables.

6. Conclusions

We propose four new distributions with supports on the circle. These extensions of
the Cardioid (C) distribution follow by inserting this distribution in the beta-G, gamma-
G, Kumaraswamy-G (Kw-G), and Marshall–Olkin-G generators, considering a specific
adaptation. We derive expansions for the densities and trigonometric moments of the new
models. We also discuss the maximum likelihood estimation for their parameters. Two
applications illustrate the flexibility of the proposed models to fit real data.
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