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Abstract: The so-called proportional odds assumption is popular in cumulative, ordinal regression.
In practice, however, such an assumption is sometimes too restrictive. For instance, when modeling
the perception of boar taint on an individual level, it turns out that, at least for some subjects, the
effects of predictors (androstenone and skatole) vary between response categories. For more flexible
modeling, we consider the use of a ‘smooth-effects-on-response penalty’ (SERP) as a connecting
link between proportional and fully non-proportional odds models, assuming that parameters of
the latter vary smoothly over response categories. The usefulness of SERP is further demonstrated
through a simulation study. Besides flexible and accurate modeling, SERP also enables fitting of
parameters in cases where the pure, unpenalized non-proportional odds model fails to converge.
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1. Introduction

The production of entire male pigs is an alternative to surgical castration taking animal
welfare concerns into account. However, the elevated levels of so-called boar taint may
impair consumer acceptance (see, for example, the Ref. [1] and references therein). Boar
taint is (presumably) caused by two malodorous volatile substances, namely: androstenone
and skatole (compare, for example, the Ref. [2]). In an experimental study presented in [3],
fat samples from roughly 1000 pig carcasses were collected and subjected to a thorough
sensory evaluation and quantification using a panel of 10 trained assessors on a sensory
score scale ranging from 0 = ‘untainted’ to 5 = ‘strongly tainted’. The absolute frequencies
of the panelist scores are shown in Figure 1. The question of interest is how the sensory
evaluation is influenced by the samples’ androstenone and skatole content. In this context,
the Ref. [3] considered the average panel ratings as the response, which gives a quasi-
continuous variable, and made standard linear modeling the approach of choice. As an
alternative, panel ratings may be discretized to a binary outcome, with a typical cut-point
for dichotomization (boar-tainted/no boar taint) fixed at 2; compare, for example, the
Ref. [2]. With this, a binary (e.g., logit) model can be used instead of standard linear
modeling. On an individual, subject-specific level, dichotomization/binary regression is
thus a sensible approach as well, whereas linear modeling with a relatively small number
of (ordinal) response categories may be questionable [4]. However, dichotomization still
poses the problem of loss of information and choice of the threshold. Thus, for a clearer
understanding of the individual panelists’ rating patterns of deviant smell, we (a) consider
an ordinal model utilizing as much information as possible, and (b) fit those models to each
panelist separately. The latter is done because effects of androstenone and skatole can be
very different between people, while it is very important to examine those subject-specific
effects, for instance when selecting potential raters to identify boar-tainted carcasses at
the slaughter line. That is why [3] also provided modeling on an individual level as
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supplementary information (online appendix), but only considered the dichotomized data.
Thus, with prediction/inference in mind, to realize an adequate predictive model of deviant
smell via an ordinal regression model, we consider the following rating scale: no boar taint
(0/1), low boar taint (2), medium boar taint (3) and high boar taint (4/5), where the extreme
categories are collapsed (due to the small number of observations in categories 1 and 5).
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Figure 1. Summary of the individual sensory ratings for each rater/panelist; the scores of deviant
smell run from 0 = ‘untainted’ to 5 = ‘strongly tainted’.

A very popular type of ordinal regression model is the cumulative logistic model,
particularly the so-called proportional odds model [5]. Using the latter, however, imposes
some restrictions that may not be true for at least some of our raters. Omitting those
restrictions and allowing for the most flexible cumulative logit model, on the other hand,
may result in numerical problems in the fitting algorithm, high variability in the estimated
effects of androstenone and skatole, and results that are hard to interpret. We hence
discuss a regularized cumulative model here that is a data-driven compromise between
proportional and fully non-proportional odds models, assuming that parameters of the
latter vary smoothly across categories. An idea that has already been applied successfully
with rating scales as predictors [6]. As will be illustrated, the model proposed maintains the
flexibility of the non-proportional odds model and adapts very well to the underlying data
structure, while at the same time providing competitive or better accuracy with respect to
parameter estimates and prediction. Furthermore, results are typically easier to interpret.
The rest of the paper is organized as follows: we begin with a short review of cumulative
models for ordinal response in Section 2, and introduce our smoothing/penalty approach
in Section 3. A simulation study is found in Section 4, while application to the sensory data
is provided in Section 5. Section 6 concludes with a discussion.

2. Cumulative Models for Ordinal Response

Models for categorical outcome variables have been the subject of many discussions,
with several approaches available in the literature for various forms of empirical appli-
cations; see, for example, the Refs. [7,8]. Assuming a categorical response variable Y,
with k distinct but ordered categories, the information supplied by each response category
can be incorporated in a model using the ordinal rather than the multinomial class of
models [8,9]. The ordered model that is probably most frequently used is the cumulative
model developed by McCullagh [5], which is not only popular from a frequentist, but also
a Bayesian point of view; see, for example, the Ref. [10]. The model is often motivated by
an underlying/latent, continuous variable, say Ỹ, and a linear model of the form:

Ỹi = −x>i δ̃ + εi, (1)
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where xi = (xi1, . . . , xip)
> is a vector of covariates observed on unit i = 1, . . . , n, δ̃ is

the vector of corresponding regression parameters, and εi an error term with continuous
distribution function F. Then, it is assumed that the observable, ordinal response Y is
obtained via the threshold model

Yi = r ⇔ δ̃0,r−1 < Ỹi < δ̃0r,

with −∞ = δ̃00 < δ̃01 < · · · < δ̃0k = ∞ being cut-points on the (latent) scale of Ỹ. It then
follows that

P(Yi ≤ r|xi) = P(−x>i δ̃ + εi ≤ δ̃0r) = P(εi ≤ δ̃0r + x>i δ̃)

= F(δ̃0r + x>i δ̃).
(2)

The choice of F in (2) results in different forms of the cumulative model. Normally
distributed εi, for instance, leads to the so-called (cumulative) probit model. Note, however,
that Gaussian εi does not mean that the latent Ỹi is also marginally normal. Neither thresh-
olds δ̃0r are assumed to be equidistant. As a consequence, skewed or bimodal (ordinal)
data can also be analyzed within the framework of a cumulative/latent variable model.

Besides the probit model, the most popular cumulative model is the cumulative logit
model, which is obtained from F being the logistic distribution function such that

log
P(Yi ≤ r|xi)

P(Yi > r|xi)
= δ̃0r + x>i δ̃, r = 1, . . . , k− 1. (3)

In case of our sensory data, however, it makes sense to rewrite model (3) in terms of

log
P(Yi > r|xi)

P(Yi ≤ r|xi)
= δ0r + x>i δ, r = 1, . . . , k− 1, (4)

and δ0r = −δ̃0r, δ = −δ̃. Now model (4) gives the (log) odds of ‘deviant smell’, if threshold
r is used for dichotomization, that is, to distinguish ‘deviant’ from ‘normal’ smell. This
model (either in form (3) or (4)) is typically referred to as the proportional odds model
(POM), since the effect of the covariates does not depend on the cut-point r, but is rather
constant across categories. In other words, the odds ratio when increasing a specific
covariate by one unit is the same for all cut-points r. For instance, as a ‘textbook example’,
we may fit a proportional odds model to the data, as shown in Figure 1, with covariates
androstenone and skatole, and a rater-specific effect in (1). Here, and throughout the
paper, the two covariates were standardized after being transformed logarithmically. An
interaction effect was also incorporated (as done in [3]). In a few cases (14 per rater),
however, androstenone had a value of zero, which may be due to androstenone content
below the detection threshold, or defective measurement. Therefore, those observations
were excluded from further analysis. In the case of a consumer study with a large sample
of consumers drawn at random from the population, and each consumer just evaluating a
relatively small number of products, we would set the rater/consumer effect as a random
effect. With a hand-picked panel of raters, however, and each panelist evaluating about
1000 products (see Figure 1), those rater-specific effects are set as fixed effects, that is, as an
additional factor giving the rater.

As a next step, when comparing this model to a more complicated model where the
effects of androstenone and skatole also vary with the rater (both fitted using polr() from
the R package MASS [11]), the latter model is significantly better, with the p-value being
virtually zero (likelihood ratio test with LR = 219.023, df = 27). This confirms the statement
made earlier that the effects of androstenone/skatole can be very different between raters.
One step further, it also makes sense to have parameters δ0r vary with raters. Since the
model with both rater-specific thresholds and effects of androstenone/skatole varying
with the rater is equivalent to fitting separate models for each rater, the latter will be done
throughout the paper (as those individual models are easier to interpret).
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In practice, however, the proportional odds assumption made so far is also sometimes
violated; compare, for example, the Ref. [12]. In general, if the effects of covariates turn out
to vary (substantially) across response categories, the proportional odds assumption will
produce biased results. In such a situation, a more general form of the model (4) that relaxes
the proportional odds assumption may be used, although at the expense of increased model
complexity. The general cumulative logit model, or rather the non-proportional odds model
(NPOM), is given by

log
P(Yi > r|xi)

P(Yi ≤ r|xi)
= ηir = δ0r + x>i δr, r = 1, . . . , k− 1, (5)

where δr = (δ1r, . . . , δpr)>, and the restrictive global effect δ is now replaced by a more
liberal category-specific effect that accounts for every single response class/cut-point r
in the model. Model (5) has the property of stochastic ordering [5], which implies that
δ0,r+1 + x>i δr+1 < δ0r + x>i δr holds for all xi and all r = 1, . . . , k − 2,
since P(Yi > r + 1|xi) < P(Yi > r|xi) must hold for all categories. However, it is often the
case that such a constraint is not met during the iterative procedure typically used to fit the
model, leading to unstable likelihoods with ill-conditioned parameter space. This is one
reason why the simpler model (4) is often adopted in practice even when inappropriate.
Alternatively, the two different forms of effects (4) and (5) may be combined in one model. In
other words, assuming xi is partitioned into ui and vi such that x>i = (u>i , v>i ), one obtains
the so-called partial proportional odds model (PPOM) [13] as follows:

log
P(Yi > r|xi)

P(Yi ≤ r|xi)
= δ0r + u>i δ + v>i γr, r = 1, . . . , k− 1, (6)

where ui has a global effect δ and vi has a category-specific effect γr. PPOM could be of help
when it comes to reducing model complexity, but at the extra cost of clustering candidate
covariates to a particular effect type.

To distinguish between POM and NPOM, proportional odds tests may come into play,
such as likelihood ratio tests. However, with those tests being dependent on the existence of
the likelihood of the general model, which is often ill-conditioned, such tests are often not
feasible. One test that is independent of the likelihood of the general model is the so-called
Brant test [14]. This test examines the proportionality assumption of the entire model
(omnibus) alongside each of the individual variables in the model. The approach is based
on viewing (5) as a combination of k− 1 correlated binary logistic regressions. Brant shows
that the separate binary logistic regression estimates δ̂1, . . . , δ̂k−1 for δr, r = 1, . . . , k− 1,
are asymptotically unbiased and follow a multivariate normal distribution. Consequently,
a Wald-type test that is based on the differences in the estimated coefficients, producing
a chi-square statistic, could be used. Thus, with δr all equal under POM, any δ̂r − δ̂l ,
r 6= l makes a possible test statistic for testing the proportional odds assumption, also
componentwise. The corresponding test, however, suffers from low power and “may
provide no clear indication as to the nature of the discrepancy [from the proportional
odds model] detected” [14]. Therefore, Brant focused on testing H0 : δr = δ for all r
vs. H1 : δr = φrδ, where φr > 0 captures misspecification of the distributional form of the
latent variable, in this instance, a nonlogistic link function. Indeed, when applying the
Brant test to the cumulative logit model of the sensory data (see Table 1), it turned out that
not all the models met the parallel slope assumption (see the highlighted p-values). The
observed non-proportionality is more pronounced in the overall model than respective
covariates. In summary, about half of the models under consideration failed the parallel
slope assumption.
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Table 1. The p-values of the Brant test of proportional odds across categories of the individual
panelist ratings of deviant smell in boar samples; with usual significance codes: ‘***’ 0.001 ‘**’ 0.01
‘*’ 0.05.

Brant Test (p-Values)

Rater Overall Androstenone Skatole Interaction

A 0.044 * 0.732 0.022 * 0.879
B 0.246 0.421 0.841 0.239
C 0.144 0.209 0.111 0.359
D 0.008 ** 0.026 * 0.375 0.288
E 0.018 * 0.043 * 0.496 0.912
F 0.992 0.969 0.861 0.817
G 0.000 *** 0.886 0.000 *** 0.546
H 0.531 0.599 0.690 0.142
I 0.000 *** 0.676 0.000 *** 0.465
J 0.787 0.414 0.311 0.923

However, the reliability of this test and similar conventional tests for validating the
proportional odds assumption has often been criticized for being prone to misleading
conclusions in empirical applications; see, for example, the Refs. [15,16]. Using approaches
other than statistical hypothesis testing have been recommended: the Ref. [16], for in-
stance, suggests a graphical approach for validating the proportional odds assumption,
and [17] proposed modified residuals that can also be used to check the proportional odds
assumption. Given our sensory data, a very intuitive graphical approach is to examine the
contour plots of the estimated log-odds of being in dichotomized categories of the deviant
smell model for different cut-points, r. Figures 2 and 3 show the corresponding log-odds
as a function of the predictors androstenone and skatole under NPOM and POM for the
seventh and eighth panelist (G, H), respectively. In addition, the dichotomized data using
cut-point r = 1, 2, 3 are given as red/blue dots, since the cumulative logistic model (5) can
be interpreted such that a binary logit model is employed on the dichotomized data using
potential threshold r = 1, 2, 3. The log-odds shown in Figure 2 for both NPOM (top) and
POM (bottom) indicate that the odds of being in the upper categories (i.e., categories of
more severe boar taint) increase for increasing androstenone and skatole. With NPOM
(top), however, the shape of the contour lines changes between columns, that is, thresholds
r, whereas log-odds all have the same shape across cut-points for POM (bottom) by con-
struction (as δ coefficients do not change across r, compare (4)). Having the relatively large
sample size in mind (n ≈ 1000 for each panelist), this may indicate that the proportional
odds assumption is inappropriate here. For panelist H (Figure 3, top) though, contour plots
change very much for different cut-points r as well, but appear rather erratic and hard
to interpret, in contrast to POM results (bottom). From the latter, we get the clear picture
of (log-)odds of deviant smell (i.e., upper categories) that are particularly varying in the
androstenone direction (increasing for increasing androstenone), since contour lines are
rather parallel to the skatole axis. Using NPOM (top), by contrast, we can hardly make such
a statement. As a consequence, we may be willing to give up the flexibility of NPOM (5)
in order to have a model fit that can be interpreted. In light of those findings, it would be
desirable to have a tool available for moving NPOM estimates towards POM automatically,
if and as far as it is supported by the data. Besides interpretation, there is another very
important advantage of POM over NPOM. The former is much simpler, and the estimates’
variance is typically smaller, which can lead to a smaller mean squared error even in the
case of bias: the so-called bias variance trade-off.



Stats 2021, 4 621

Version May 12, 2021 submitted to Stats S1 of S1

Supplementary Materials: Smoothing in Ordinal Regression
Ejike R. Ugba and Jan Gertheiss

1. Panelist-A

−1 0 1 2 3

−
1

0
1

2
3

Androstenone

S
ka

to
le

r = 1

−1 0 1 2 3

−
1

0
1

2
3

Androstenone

S
ka

to
le

r = 2

−1 0 1 2 3

−
1

0
1

2
3

Androstenone

S
ka

to
le

r = 3

−2 0 1 2 3
−

2
0

2

Androstenone

S
ka

to
le

r = 1

−2 0 1 2 3

−
2

0
2

Androstenone

S
ka

to
le

r = 2

−2 0 1 2 3

−
2

0
2

Androstenone

S
ka

to
le

r = 3

−2 0 1 2 3

−
2

0
2

Androstenone

S
ka

to
le

−2 0 1 2 3
−

2
0

2
Androstenone

S
ka

to
le

−2 0 1 2 3

−
2

0
2

Androstenone

S
ka

to
le

−2 0 1 2 3

−
2

0
2

Androstenone

S
ka

to
le

r = 1

−2 0 1 2 3

−
2

0
2

Androstenone

S
ka

to
le

r = 2

−2 0 1 2 3

−
2

0
2

Androstenone
S

ka
to

le

r = 3

−2 0 1 2 3

−
2

0
2

Androstenone

S
ka

to
le

−2 0 1 2 3

−
2

0
2

Androstenone

S
ka

to
le

−2 0 1 2 3

−
2

0
2

Androstenone

S
ka

to
le

Figure 2. Fitted log-odds of sensory perception of boar taint under NPOM (upper row) and POM
(lower row), having (log-transformed, standardized) androstenone and skatole, plus interaction as
explanatory variables. Each column denotes the log-odds of panelist G’s rating falling into the upper
categories with cut-point r = 1, 2, 3 (column 1 to 3). The data observed are drawn as colored dots:
red, if Yi > r; blue, if Yi ≤ r.
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Figure 3. Fitted log-odds of sensory perception of boar taint under NPOM (upper row) and POM
(lower row), having (log-transformed, standardized) androstenone and skatole, plus interaction as
explanatory variables. Each column denotes the log-odds of panelist H’s rating falling into the upper
categories with cut-point r = 1, 2, 3 (column 1 to 3). The data observed are drawn as colored dots:
red, if Yi > r; blue, if Yi ≤ r.

To this end, the use of shrinkage penalties could be considered a viable means of
reaching a good, data-driven compromise between the non-proportional and proportional
odds model. In other words, when putting an appropriate penalty on parameters of the
more general, non-proportional odds model, a trade-off may be found between bias and
variance of estimated parameters. Several types of penalties have already been suggested in
the literature for categorical models. On the one hand, these comprise of penalties adopted
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from regularization methods for continuous models; see, for example, the Refs. [18–20].
On the other hand, there are penalties specifically designed to suit the need of categorical
variables. A review and discussion of the latter is, for instance, given by [21], also sketching
a smoothing penalty for ordinal regression. However, the idea is neither discussed in detail
nor applied to data. In this study, we will further investigate the approach, which we call
the ‘smooth-effects-on-response penalty’ (SERP), and use it for modeling our sensory data
in a more flexible way than POM.

3. Smooth Ordinal Regression

For a smooth transition from the general model (NPOM) to the restricted model (POM),
we consider the use of a specific penalty. This penalty enables the parameters of NPOM to
be smoothened across response categories, resulting in a data-driven compromise between
most flexible but potentially over-complex NPOM, and very popular but potentially too
restrictive POM.

3.1. Smoothing Penalty

To begin with, one maximizes the following penalized log-likelihood,

lp(θ) = l(θ)− Jλ(θ), (7)

or more specifically,

θ̂ = arg max
θ

{l(θ)− Jλ(θ)} = arg min
θ

{−l(θ) + Jλ(θ)},

where l(θ), in this context, denotes the log-likelihood of the general cumulative logit
model (5) and Jλ(θ) = λJ(θ) the penalty function J(θ) weighted by the tuning parameter
λ. The vector θ> = (δ>0 , δ>) collects the thresholds/constants δ>0 = (δ01, . . . , δ0,k−1) and
slope parameters δ> = (δ11, . . . , δ1,k−1, . . . , δp1, . . . , δp,k−1) from model (5). Thus, given
ordered categorical outcomes Yi ∈ {1, . . . , k}, and considering that slopes δj1, . . . δj,k−1,
j = 1, . . . , p, vary smoothly over the categories, the following penalty [21],

J(θ) = J(δ) =
p

∑
j=1

k−2

∑
r=1

(δj,r+1 − δjr)
2, (8)

affects smoothing across response categories such that all category-specific effects associ-
ated with a covariate turn towards a common global effect. The intercepts (thresholds) are
generally not penalized, but would be automatically adjusted while the other parameters
are being penalized. Equation (8) in matrix form can be expressed as follows:

J(δ) = δ>Mδ,

where, for a single predictor model, δ> = (δ1, . . . , δk−1) and M = D>D a [(k− 1)× (k− 1)]
symmetric matrix, with D a [(k− 2)× (k− 1)] matrix of the first-order differences given by

D =


−1 1

−1 1
. . . . . .
−1 1

.

Thus, with p predictors in NPOM, the following block matrix structure is needed to en-
force smoothness on all adjacent response categories associated with respective predictors
of an ordered model:
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Ω =


O

M
. . .

M

,

where Ω is a [(k − 1)(p + 1) × (k − 1)(p + 1)] block diagonal matrix with elements M
(p times) and a matrix O consisting of zeros in the upper left corner (which makes sure that
intercepts are not penalized). Then, one has

J(θ) = θ>Ωθ.

Let the overall design matrix be given by X> = (X>1 , . . . , X>n ) and let Li(θ) = ∂h(ηi)/∂η
be the derivative of h(η) evaluated at ηi = X iθ, where ηi = (ηi1, . . . , ηi,k−1)

>, compare (5),
and h is the inverse link, that is, the response function of the cumulative logit model. Then,
the penalized score function sp(θ) is given by

sp(θ) = X>L(θ)Σ−1(θ)(z− µ)− λΩθ,

where L(θ) = diag(Li(θ)) is the block-diagonal matrix of derivatives, Σ(θ) =
diag(Σ1(θ), . . . , Σn(θ)) the block-diagonal matrix of covariance matrices of k-dimensional
binary response vectors zi indicating the category of observation i, z> = (z>1 , . . . , z>n ) the
combined vector of observed values, and µ> = (µ>1 , . . . , µ>n ) the vector of mean vectors,
that is, k-dimensional class probabilities µi = h(X iθ). Equating the score function to
zero yields the estimation equation sp(θ) = 0, which may be solved with the following
iterative routine:

θ̂
[t+1]

= θ̂
[t]
+ F−1

p (θ̂
[t]
)sp(θ̂

[t]
),

where Fp(θ) = F(θ) + λΩ is the penalized/pseudo-Fisher information matrix, F(θ) =

X>W(θ)X the Fisher information and W(θ) = L(θ)Σ−1(θ)L(θ)> the weight matrix. As-

suming θ̂
[0]

= (δ̂
[0]>
0 , δ̂

[0]>
)> is the vector of the initial (k− 1)(p + 1) values in the algo-

rithm, in our particular case (logit link), δ̂
[0]
0 is obtained from the logistic transformation

(see the left-hand side of (5)) of the cumulative, relative class frequencies in the data; δ̂
[0]

,
on the other hand, is a p(k − 1) vector of zeros. Alternatively, POM estimates may be
used as starting values. Given that θ̂ contains penalized estimates for θ parameters, the
approximate covariances are obtained by the sandwich matrix:

cov(θ̂) ≈ (F(θ̂) + λΩ)−1F(θ̂)(F(θ̂) + λΩ)−1, (9)

where all notations are as defined earlier. For more details on the estimation procedures for
cumulative models and the like, see, for example, the Refs. [8,22].

3.2. Choosing the Tuning Parameter and Measures of Performance

Since the penalty term Jλ(δ) in (7) depends on the tuning parameter λ, a suitable
value of λ needs to be determined. Common practice is to fit the penalized model for
a sequence of λ values and select the best value via a tuning routine [23,24]. A typical
tuning routine entails choosing the best model based on criteria such as AIC, BIC, and
so forth. Alternatively, the λ value at which the model’s out-of-sample prediction error
is minimal can be determined via cross-validation. There are various specifications of
such prediction errors in the literature, including, classification error, squared error, minus
log-likelihood error, and so forth. The pros and cons of some of these error types are, for
example, reviewed in [25,26]. The squared error (or Brier score [27]) particularly captures
the sum of squared distances of the observed classes and the predicted values/probabilities.
We refer to this here as the mean squared prediction error (MSPE). For a multi-class model
with response categories 1, . . . , k, it is defined as
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MSPE =
1
n

n

∑
i=1

k

∑
r=1

(zir − π̂ir)
2, where zir =

{
1 if yi = r
0 otherwise

(10)

is the indicator variable for each (potential) level of the dependent variable, π̂ir are the pre-
dicted probabilities for the respective categories and subject i, and n is the total number of
observations. We will use MSPE alongside other error metrics to determine λ and compare
the performance of our proposed approach with standard approaches. Another common
performance metric is the mean squared error (MSE). Given that the true parameters δjr are
known (as they are in simulation studies), we can obtain the MSE of parameter estimates
as follows:

MSE =
1

(k− 1)p

p

∑
j=1

k−1

∑
r=1

(δ̂jr − δjr)
2, (11)

where k and p are the number of response categories and predictors in the model, respec-
tively. Also, the MSE can be calculated covariate/component-wise.

Please note, in order to reduce complexity, we used a single, global penalty parameter
λ in (7). In general, we could also use covariate-specific penalty parameters λj within the
penalty term (8) in terms of Jλ1,...,λp(δ) = ∑

p
j=1 λj ∑k−2

r=1(δj,r+1− δjr)
2. This, however, would

mean that cross-validation needs to be carried out over a multi-dimensional space.

4. Numerical Experiments

Before applying SERP to the sensory data, the effect and performance of the penalty
shall be investigated in simulation studies where the truth is known. Following Equation (5),
the probabilities P(Yi > r|xi), r = 1, . . . , 3, were obtained with the two covariates xi1 and
xi2, including an interaction, where both variables are iid N(0, 1), and i = 1, . . . , 1000.
However, on the one hand, the intercepts δ0 = (δ01, . . . , δ03)

> were set to be equidis-
tant as follows: δ0 = (0.1,−1.0,−2.1)>, and on the other hand, the slope parameters
δj = (δj1, . . . , δj3)

>, j = 1, 2, 3, were selected to form three different simulation settings
as follows:

(a) Varying coefficients for x1i and x2i where, δ1 = (0.3, 0.4, 0.5)>, and δ2 = (0.4, 0.5, 0.6)>;
(b) Constant coefficients for x1i and x2i where, δ1 = (0.3, 0.3, 0.3)>, and

δ2 = (0.4, 0.4, 0.4)> and
(c) Varying and constant coefficients for x1i and x2i, respectively, where δ1 = (0.3, 0.4, 0.5)>,

and δ2 = (0.4, 0.4, 0.4)>.

Moreover, the interaction effects δ3 = (δ31, . . . , δ33)
> were also chosen to reflect the

three different settings as follows: varying δ3 = (0.1, 0.2, 0.5)>; constant δ3 = (0.1, 0.1, 0.1)>;
partly constant/varying δ3 = (0.1, 0.1, 0.5)>. The realized P(Yi = r|xi) = P(Yi >
r − 1|xi) − P(Yi > r|xi) were subsequently used on a multinomial distribution to gen-
erate corresponding observed values, yi ∈ {1, . . . , 4}. In general, the number of response
categories, and sample and effect size(s) were chosen to be comparable to the sensory data
from Sections 1, 2 and 5.

For an illustrative application of SERP on ordinal models, SERP is inflicted on a
cumulative logit model built from the generated data, using a grid of λ ∈ [0, ∞). As shown
in Figure 4 (top), at large values of λ, all NPOM estimates level up to POM estimates; see
the dashed blue horizontal line on each display. The down displays provide a second
visualization of SERP’s smoothing steps from NPOM’s original set of estimates towards
POM’s estimates, represented with line strokes across ordinal levels/cut-points r. Again,
we have the initial cut-point specific estimates (solid black) all shrunken to the parallel
estimates (dashed blue horizontal lines) with several tuning steps of SERP in between
(gray). An optimal value of λ regulating the degree of smoothing can be determined
following a predefined criterion, for instance, a λ value minimizing a performance metric;
see, for example, Equation (10) in Section 3. In this particular setting, the unique vertical
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(dashed red) lines on the top and the non-horizontal dashed lines in the down displays of
Figure 4 give the resulting set of estimates at which the 5-fold cross-validated test errors
(MSPE) were minimal. Unless stated otherwise, this tuning criterion is used throughout
this study for SERP-fitted models.
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Figure 4. Estimated coefficients when using SERP under the first simulation setting, that is, (a) vary-
ing coefficients. The black lines on the top displays are the category-specific coefficient paths of δ̂j1

(dotted), δ̂j2 (dashed/dotted), and δ̂j3 (dashed), j = 1, 2, 3, associated with the two predictors plus
interaction used in the model. The solid horizontal blue and vertical gray lines denote the parallel
estimates and the selected estimates based on 5-fold cross-validation, respectively. The bottom row
further illustrates SERP’s smoothing steps from the category-specific to the parallel estimates, the
solid black, gray and blue line strokes are NPOM, SERP and POM estimates, respectively; with the
dashed/dotted black lines indicating SERP estimates chosen via cross-validation.

We next investigate SERP’s improvement on (N)POM (where the denotation (N)POM
refers to POM and/or NPOM). Thus, following the described data-generating process,
100 replications (each of SERP and (N)POM) were obtained for the three different simulation
settings. For comparison purposes, a test set error (MSPE) of each of the models was
obtained for all the simulation runs. In addition to that, the MSE of estimates with respect
to the true slope parameters plus interaction were also obtained. Figure 5 shows the
pairwise differences across simulation runs in MSE and MSPE of (N)POM and SERP, with
the horizontal dashed line in each plot indicating the mark of SERP’s improvement over
(N)POM. In other words, differences above the dashed lines indicate better performance
of SERP than (N)POM. As observed in the first simulation setting (column 1), where the
underlying coefficients vary across categories, SERP outperformed both NPOM and POM
in terms of the MSE and MSPE. In the second simulation setting (column 2), where truly
constant coefficients generated the data, POM expectantly performed distinctively better
than NPOM. SERP, however, adapted very well and gave estimates that are as good as
POM. The third simulation setting (column 3) had varying underlying coefficients for the
first covariate and constant coefficients in the second. As before, SERP adapted very well
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(compare the MSE for the three coefficient vectors δ1, δ2, δ3), thus producing models with
better predictions on average than both NPOM and POM. It should be pointed out at this
point that we used one, global λ here. Nevertheless, SERP is highly competitive to POM
on (truly constant) δ2, while performing much better on (truly varying) δ1. If compared
to NPOM, SERP is superior on δ2 and competitive on δ1. This indicates that coefficients
are decisively shrunken towards proportionality in the first case (δ2), while allowing for
substantial non-proportionality in the latter (δ1).
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Figure 5. The pairwise differences of SERP and (N)POM across simulation runs with respect to the
MSE (rows 1–3) of the slope parameter estimates and the MSPE (last row), given three different
simulation settings (column-wise): (1) varying coefficients, (2) constant coefficients, and (3) varying
and constant coefficients. The horizontal dashed lines indicate the mark of SERP’s improvement over
(N)POM, with differences above the dashed lines indicating better performance with SERP.
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Finally, it should be noted that we only provided settings here that are comparable to
the real, sensory data considered in Sections 1, 2, and 5 below. In general, however, it has
been our experience that, if the models considered are identifiable within cross-validation,
the penalty parameter chosen will yield results that are (at least) competitive to NPOM
and/or POM.

5. Application to Sensory Evaluation

We continue with our real data problem from Section 1, where panelists’ ratings
of the degree of deviation from a normal smell were modeled using the two covariates,
androstenone and skatole (each log-transformed, standardized), plus the interaction effect.
For a detailed discussion of the experiment(s) to generate this data set, and a preliminary
analysis of all variables of interest, the reader is referred to [3]. Our interest here is on the
rater-specific ordinal models of the scores of deviant smell.

We have already introduced the cumulative logit model of the individual raters in
Section 2. In order to understand the rating patterns of individual panelists and for an
accurate inference, it is necessary to determine whether (and to what extent) category-
specific effects or global effects are suitable for the individual models of deviant smell.
Moreover, it is necessary to have the parameters in the model and the model itself be
completely identifiable. SERP could, therefore, provide the means of arriving at a good set
of estimates other than (N)POM’s original estimates, as well as help to induce convergence
where NPOM fails to converge. Hence, cumulative logit models of deviant smell were
obtained for all the panelists using SERP and the two standard approaches, POM and
NPOM. The obtained estimates and standard errors of SERP, with standard errors being
extracted from (9), together with (N)POM are exemplarily given for panelist G and H in
Tables 2 and 3, respectively. Standard errors (SE) could also be used to calculate common,
approximate 95% confidence intervals in terms of ‘estimate ± 2 SE’. It should be noted
though, that those SE are obtained for a given smoothing parameter; compare (9). That
means that we treat them as if they would have been specified a priori. Although this
is commonly done in penalized regression, it ignores variation that is induced by cross-
validation (or other methods used to find an appropriate λ in practice). As a consequence,
those SE are typically biased downwards and lead to some under-coverage of confidence
intervals. Of course, usual POM confidence intervals (in terms of SERP, obtained for
λ→ ∞) are conditioned on the much stricter assumption of proportional odds, and hence
are only valid if this assumption is true. With respect to point estimates, we see that in
the case of panelist G, SERP shrinks NPOM estimates towards POM, but still produces
a non-proportional odds model. With panelist H, by contrast, cross-validated λ yields a
proportional odds model as all slope coefficients are (virtually) constant across cut-points
(compare Table 3). We shall later examine the extent of SERP’s improvement over (N)POM
via re-sampling procedures.

Figure 6 shows the log-odds of deviant smell for panelists G, H, and I, in analogy
to Figures 2 and 3. Again, we see (top row) that SERP shrinks the estimates for panelist
G towards the proportional odds model, but still maintains some non-proportionality;
also compare Figure 2 and the Supplementary Material, where for each panelist NPOM,
POM, and SERP are shown together in one graphic. With panelist I (bottom row), we also
have a smoothed version of NPOM (compare the Supplementary Material). In the case of
panelist H (center row), as already observed above (Table 3), the (nearly) proportional odds
model is obtained (compare Figure 3 and the Supplementary Material). More generally
speaking, not only does SERP help to locate the ‘best’ set of coefficients, but one could
also make some informed decision as to which of POM and NPOM or the combination of
estimates from both models, that is, partially proportional odds (6), could be adequate in
an empirical study. Another point that is nicely seen from Figure 6 and Tables 2 and 3, is
that the effects of androstenone and skatole can indeed be very different between people.
On the one hand, effects are much stronger for panelists G and I than for panelist H. On the
other hand, panelist H senses boar taint rather for increasing androstenone than skatole, as
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iso-lines look rather parallel to the y-axis in Figure 6 (middle row). For panelist G, it is a
combination of both, whereas, according to panelist I, deviant smell is mainly caused by
increased levels of skatole (iso-lines rather parallel to x-axis in Figure 6, bottom).

Table 2. Estimates and standard errors (SE) of regression coefficients in SERP and (N)POM for
the sensory rating of panelist G, with androstenone (AN), skatole (SK) and interaction (AN:SK) as
predictors of deviant smell.

NPOM SERP POM

Estimates SE Estimates SE Estimates SE

(Intercept):1 −0.774 0.141 −0.785 0.070 −0.824 0.071
(Intercept):2 −1.368 0.141 −1.363 0.078 −1.478 0.081
(Intercept):3 −2.154 0.141 −2.077 0.078 −2.317 0.104
AN:1 0.352 0.142 0.352 0.072 0.388 0.074
AN:2 0.370 0.142 0.372 0.074
AN:3 0.401 0.142 0.401 0.074
SK:1 0.479 0.140 0.536 0.076 0.644 0.077
SK:2 0.638 0.140 0.584 0.078
SK:3 0.994 0.140 0.654 0.078
AN:SK:1 0.130 0.114 0.161 0.072 0.165 0.066
AN:SK:2 0.215 0.114 0.201 0.073
AN:SK:3 0.478 0.114 0.273 0.073

Table 3. Estimates and standard errors (SE) of regression coefficients in SERP and (N)POM for
the sensory rating of panelist H, with androstenone (AN), skatole (SK) and interaction (AN:SK) as
predictors of deviant smell.

NPOM SERP POM

Estimates SE Estimates SE Estimates SE

(Intercept):1 0.522 0.065 0.526 0.064 0.526 0.064
(Intercept):2 −0.335 0.063 −0.353 0.063 −0.354 0.063
(Intercept):3 −1.233 0.075 −1.220 0.073 −1.219 0.073
AN:1 0.108 0.067 0.107 0.059 0.107 0.058
AN:2 0.134 0.066 0.108 0.059
AN:3 0.080 0.077 0.106 0.059
SK:1 0.004 0.069 0.028 0.061 0.030 0.061
SK:2 0.049 0.068 0.031 0.061
SK:3 0.044 0.080 0.031 0.062
AN:SK:1 0.026 0.057 0.019 0.049 0.019 0.049
AN:SK:2 −0.034 0.055 0.016 0.049
AN:SK:3 0.051 0.061 0.021 0.050
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Figure 6. The result of the empirical application of SERP on the sensory data, showing the fitted
log-odds of deviant smell ratings as a function of (log-transformed, standardized) androstenone and
skatole for different cut-points r (the columns), and for panelists G, H and I (the rows). Data points
observed (dots) are color-coded, where Yi > r (red dots) and Yi ≤ r (blue dots).

Further comparison of SERP and the other methods were made with respect to the
out-of-sample MSPE of the respective methods. Those were obtained for each of the
panelists on a randomly chosen test set amounting to 20% of the original data set and
over 100 replications of this experiment. Figure 7 captures the pairwise prediction error
differences of SERP against (N)POM (with differences above zero favoring SERP). As
observed, SERP shows distinct improvement over NPOM for 9 out of 10 panelists, as a
greater amount of differences are seen over the dashed horizontal line for the respective
panelists. Improvement over POM, however, is much less pronounced than SERP’s im-
provement over NPOM. For panelists A, D, E, and G, at least the median of differences is
(slightly) above zero. For the other panelists, though, SERP is still not worse than POM.
In summary, SERP appears to be a safe choice when it comes to modeling/prediction of
panelists’ ratings in our application. Compared to standard approaches (POM and NPOM),
results in terms of prediction accuracy are at least similar, but often better. With respect
to boar taint perception, our results impressively show that people can be very different,
both in terms of the effects of androstenone and skatole, as well as (non-)proportionality.
This needs to be kept in mind, for instance, when hiring raters for detecting boar-tainted
carcasses at the slaughter line.
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Figure 7. The result of the empirical application of SERP on the sensory data, showing the pairwise
differences of the out-of-sample MSPE of SERP from (N)POM, for all panelists (A–J). The horizontal
dashed lines indicate the mark of SERP improvement over NPOM and POM.

6. Discussion

Regularization has been a topic of intensive research in statistics for decades now.
However, regularization methods that are specifically designed for categorical data are
relatively new. Particularly, the focus has rarely been on ordinal response models. This
might be due to the fact that the model most frequently used for ordinal response data (if
not employing a standard linear model) is the cumulative model with global effects, partic-
ularly the proportional odds model, which can be nicely motivated via a latent variable
and a corresponding linear model. Hence, most of the regularization methods proposed
for ordinal response data can be seen as extensions of methods typically found in the
high-dimensional linear or generalized linear model framework. For instance, the Ref. [28]
considered high-dimensional genomic data and forward stagewise regression in the pro-
portional odds model, the Ref. [29] proposed a Boosting approach for variable selection, the
Ref. [30] used a sparsity-inducing Bayesian framework, whereas [20] employed a penalty
approach. In the latter case, class-specific parameters were also considered, but only in a
continuation ratio model, similar to [19]. Instead of a penalty term, the Ref. [31] proposed
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to use pseudo-observations in order to regularize and stabilize fitting in the proportional
odds model.

The proportional odds assumption, however, rules out category-specific effects. Since,
with our sensory data, it is very clear that at least for some raters the proportional odds
assumption is too restrictive, alternatives are needed. Simply allowing for category-specific
effects that are estimated via usual maximum likelihood, however, is hardly an option
because the model becomes too complex, which leads to large variance in the fitted coeffi-
cients, or even numerical issues like non-convergence. We hence investigated a penalty
approach for smoothing effects across ordered categories. The new approach, called SERP,
showed very encouraging results both in simulation studies and our sensory data. As
observed, SERP makes it possible to find a good compromise in a completely data-driven
manner between the purely non-proportional odds model and the usual but restrictive as-
sumption of proportionality. Additionally, SERP may be used to check in a rather informal
way for partial (non-)proportionality, that means, it may help to make a decision on the
structure of the partial proportional odds model (6). If supported by the data, coefficients
for some variables may be shrunken towards proportionality, while the coefficients for
other variables still indicate non-proportionality.

A penalty very similar to SERP has been proposed by [32] in the bivariate ordered
logistic model. In this framework, the authors also proposed a partial likelihood ratio
test (PLRT) which works with penalized likelihood. As an alternative to the Brant test, a
corresponding PLRT could also be used with our data and methodology to distinguish
between raters where the proportional odds assumption might be acceptable, and those
where it is significantly violated. In our case, however, the Brant test turned out to be
superior in both size and power. For instance, the PLRT was very sensitive to the smoothing
parameter λ. Particularly, it produced unsatisfactory results for large λ (where the results
derived by [32] do not hold). When deciding between global and category-specific effects
after penalized fitting employing SERP, we hence prefer making the decision in a rather
informal way on the basis of the estimated penalty parameter and regression coefficients.

Besides (non-)proportional odds models as considered in this paper, various other
models and methods have been proposed for handling ordinal data. For instance, the
stereotype model [33], probabilistic index models [34–36], and rank-based models [37,38],
just to name a few. In the present paper, however, we focused on cumulative models
in combination with a specific type (8) of quadratic, first-order smoothing penalty. An
Ref. [39] implementation of the proposed method is provided as add-on package serp [40],
available from open access repositories CRAN and Github.

Supplementary Materials: Contour plots of the odds (on log scale) of sensory perception of boar
taint under NPOM, SERP and POM for all panelists in analogy to Figures 2, 3 and 6 are available
online at https://www.mdpi.com/article/10.3390/stats4030037/s1, Figures S1–S10.
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