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Abstract: Statistical inference based on the cluster weighted model often requires some subjective
judgment from the modeler. Many features influence the final solution, such as the number of
mixture components, the shape of the clusters in the explanatory variables, and the degree of
heteroscedasticity of the errors around the regression lines. Moreover, to deal with outliers and
contamination that may appear in the data, hyper-parameter values ensuring robust estimation are
also needed. In principle, this freedom gives rise to a variety of “legitimate” solutions, each derived
by a specific set of choices and their implications in modeling. Here we introduce a method for
identifying a “set of good models” to cluster a dataset, considering the whole panorama of choices.
In this way, we enable the practitioner, or the scientist who needs to cluster the data, to make an
educated choice. They will be able to identify the most appropriate solutions for the purposes of their
own analysis, in light of their stability and validity.

Keywords: cluster-weighted modeling; outliers; trimmed BIC; eigenvalue constraint; monitoring;
constrained estimation; model-based clustering; robust estimation

1. Introduction

One of the most fundamental problems tackled in data mining is clustering. A
plethora of algorithms, procedures, and theoretical investigations have been developed in
the literature to identify groups in data. Several monographs have been published on the
topic, to cite a few excellent ones we suggest [1–3], among many others. Applications can
be found in virtually every possible area, spanning from bioinformatics, marketing, image
analysis to text and web mining.

Clustering is the “art” of decomposing a given data set into subgroups, where ob-
servations are as similar as possible within clusters, while being the most heterogeneous
between them. Apart from this informal description, however, there is no universally
appropriate unique formalism, algorithm, and/or evaluation measure for clustering. The
very same definition of cluster and, as a consequence, the most appropriate clustering
procedure, heavily depends on the application at hand and on the (subjective) rationale
defining similarity between units. These considerations can be subsumed by saying that
clustering per se is an ill-posed problem, where the number of clusters, their shape, and
their parameters depend, in general, on a multiplicity of choices made by the modeler.
We refer the interested reader to the thought-provoking work in [4] for a deeper discus-
sion on the topic. A complementary point of view on this regard stems as well from the
machine learning community, where the stability of clustering solutions has been treated
in a principled way in [5,6]. All in all, only in a few cases there is no ambiguity on a
partitioning solution.

Stats 2021, 4, 602–615. https://doi.org/10.3390/stats4030036 https://www.mdpi.com/journal/stats

https://www.mdpi.com/journal/stats
https://www.mdpi.com
https://orcid.org/0000-0001-9348-710X
https://orcid.org/0000-0002-7617-3034
https://orcid.org/0000-0003-2929-1748
https://doi.org/10.3390/stats4030036
https://doi.org/10.3390/stats4030036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/stats4030036
https://www.mdpi.com/journal/stats
https://www.mdpi.com/article/10.3390/stats4030036?type=check_update&version=2


Stats 2021, 4 603

Generally, therefore, the most delicate choice focuses on the number of groups G to be
identified. Again, in some cases, G is known in advance, due to context-specific knowledge.
However, most of the times, it is expected that the data itself would indicate a reasonable
value for the number of clusters. Many approaches in the literature have been proposed to
identify a “sensible” value for G: see, e.g., [7–9] and references therein. The most popular
method adopted to tackle the aforementioned problem in model-based clustering is based
on penalized likelihood. Under some general hypotheses, it defines a sound and very
effective criterion. Nevertheless, the presence of data contamination and outliers could
severely undermine such a powerful approach.

The present paper focuses on the estimation of mixtures of regressions with random
covariates, employing the cluster weighted robust model (CWRM). When it comes to hyper-
parameters selection within this clustering framework, besides the number of groups many
other modeling choices must be made: whether to fix the shape for the clusters in the
explanatory variables, to impose or not equal variances in the regression errors and to
determine the desired degree of robustness for discarding spurious solutions and outliers.
When arbitrary decisions are made, inferential methods are not free to give their best.

Our purpose is therefore to introduce a method for identifying a “set of good models”
by exploring a wide grid of modeling choices. Each obtained solution will be accompanied
by information about its stability, a measure of cluster validation, and by its position in the
ranking based on a penalized criterion. In general, more than one solution is presented
to the practitioner, to the final user, or to the scientist that provided the data, to make an
educated choice. They will be able to single out the ones that fit the purpose of the analysis,
by combining their domain-specific knowledge with the distinct features provided by the
reduced set of solutions.

By taking advantage of the idea of monitoring statistics for different values of the
input parameters [10], we devise a semiautomatic procedure for selecting a reduced set of
“optimal stable solutions”, extending to the cluster weighted model the methodology de-
veloped in [11] for Gaussian mixtures. Such an extension is far from being straightforward:
a new penalized likelihood will be introduced, to accommodate the constraint imposed on
the regression term. Moreover, to explore the space of the solutions, both constraints on
the covariates and on the regression will be taken into account while considering different
trimming levels and varying the number of groups.

The remainder of the article is organized as follows. In Section 2, we review the
main methodological aspects of the cluster weighted robust model (CWRM), and we
introduce a novel penalized likelihood criterion to be employed for model selection. In
Section 3 we define a two-stage monitoring procedure for exploring the CWRM model
space. A synthetic example characterized by multiple plausible solutions is reported in
Section 4. Section 5 concludes the paper featuring some remarks and directions for future
research.

2. The Cluster Weighted Robust Model

Let us assume to deal with a vector X of explanatory variables with values in Rd, and
let Y be a response or outcome variable, with values in R. Suppose that the regression of Y
on X varies across the G levels (groups or clusters), of a categorical latent variable G. In
the cluster-weighted approach, introduced in [12], the marginal distribution of X and the
conditional distribution of Y|X = x may have different scatter structures in each group.
The Cluster Weighted Model (CWM) decomposes the joint p.d.f. of (X, Y) in each mixture
component as the product of the marginal and the conditional distributions as follows

p(x, y) =
G

∑
g=1

πg p(y|x; ξg)p(x; ψg), (1)

where the πgs define the mixing proportions with πg > 0 ∀g, ∑G
g=1 πg = 1 and p(·; ξg),

p(·; ψg) are, respectively, the g-th conditional and marginal component densities with
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associated parameters ξg and ψg, g = 1, . . . , G. Due to its very definition, the CWM
estimator is able to take into account different distributions for both the response and
the explanatory variables across groups, overcoming an intrinsic limitation of mixtures
of regression, in which the latter are implicitly assumed to be equally distributed. In the
following, we focus on the linear Gaussian CWM:

p(x, y; Θ) =
G

∑
g=1

πgφ1(y; b′gx + b0
g, σg)φd(x; µg, Σg), (2)

where φd(·; µg, Σg) denotes the density of the d-variate Gaussian distribution with mean
vector µg and covariance matrix Σg. Y is related to X by a linear model in (2), that is,

Y = b′gx + b0
g + εg with εg ∼ N(0, σ2

g), bg ∈ Rd, b0
g ∈ R, ∀g = 1, . . . , G. Under the given

framework, Θ denotes the resulting parameter space:

Θ = {π1, . . . , πG, µ1, . . . , µG, Σ1, . . . , ΣG, b1, . . . , bG, b0
1, . . . , b0

G, σ1, . . . , σG}.

Inference for the linear Gaussian CWM can be performed via Maximum Likelihood
(ML) optimizing the observed log-likelihood function based on a set of n i.i.d. samples
(xi, yi), i = 1, . . . , n, drawn from (X, Y):

`(Θ|X, Y) =
n

∑
i=1

log

[
G

∑
g=1

πgφ(yi; b′gxi + b0
g, σ2

g)φd(xi; µg, Σg)

]
. (3)

Unfortunately, ML inference on models based on normal assumptions, see, e.g., [13], is
strongly affected by outliers. In addition, the likelihood function in (3) is unbounded over
the parameter space Θ and its optimization results in an ill-posed mathematical problem.
To deal with both issues, [14] derived a robust version of the CWM: the Cluster Weighted
Robust Model (CWRM) is based on the maximization of the trimmed log-likelihood [15]:

`trimmed(Θ|X, Y) =
n

∑
i=1

z(xi, yi) log

[
G

∑
g=1

πgφ(yi; b′gxi + b0
g, σ2

g)φd(xi; µg, Σg)

]
, (4)

where z(·, ·) is a 0-1 trimming indicator function that tells us whether observation (xi, yi) is
trimmed off (z(xi, yi) = 0), or not (z(xi, yi) = 1). A fixed fraction α of observations is left
unassigned by setting ∑n

i=1 z(xi, yi) = [n(1− α)], with α denoting the trimming level.
Moreover, two further constraints are introduced on the maximization in (4). The first

one concerns the set of eigenvalues {λl(Σg)}l=1,...,d of the scatter matrices Σg by imposing

λl1(Σg1) ≤ cXλl2(Σg2) for every 1 ≤ l1 6= l2 ≤ d and 1 ≤ g1 6= g2 ≤ G. (5)

The second constraint refers to the variances σ2
g of the regression error terms, by requiring

σ2
g1
≤ cyσ2

g2
for every 1 ≤ g1 6= g2 ≤ G. (6)

The constants cX and cy in (5) and (6) are, respectively, finite (not necessarily equal) real
numbers, such that cX ≥ 1 and cy ≥ 1. They automatically guarantee that solutions with
|Σg| → 0 and σ2

g → 0 do not appear. These constraints are an extension to CWMs of those
introduced in [16]. The novelty here is the high flexibility provided by the two constraints,
enabling a specific feature to model the marginal distribution X and the regression error
terms; in contrast with the robust mixture of regressions where the covariates are assumed
to be fixed. A comprehensive performance comparison for the two approaches is reported
in [17].
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2.1. Penalized Likelihood in Constrained Estimation

The general theory of model selection (refer to [18] for a detailed review) is applied to
derive a penalized likelihood criterion based on (4). We propose that the CWRM hyper-
parameters, namely G, cX and cy, minimize a criterion of the form:

TBIC(G, cX , cy) = −2`trimmed(Θ̂
cX ,cy
G ) + ν

cX ,cy
G , (7)

where `trimmed(Θ̂
cX ,cy
G ) is the maximized trimmed log-likelihood for a model with G com-

ponents and constraints cX and cy, while ν
cX ,cy
G is a penalty term accounting for model

complexity. Specifically, the flexibility entailed by relaxing the constrained estimation shall
be taken into account in ν

cX ,cy
G , along the lines of [11]. Therefore, the following penalty term

is derived:

ν
cX ,cy
G ={(G− 1) + Gd + G(d + 1)+ (8)

1 + ((Gd− 1) + Gd(d− 1)/2)(1− 1/cX)+

1 + (G− 1)
(
1− 1/cy

)
} log(dn(1− α)e).

The parameters required for the (G− 1) mixture weights, the Gd cluster means of the
covariates, and the G(d + 1) beta coefficients for the regression bg + b0g are summed up
in the first line of (8). Afterward, we have the contribution given by modeling the Σg in
X: based on the eigenvalue decomposition of the covariances, we have 1 free eigenvalue
and Gd− 1 constrained eigenvalues, plus the Gd(d− 1)/2 rotation matrices. Except for
the first term, the remaining ones are multiplied by (1− 1/cX) to account for constrained
estimation. Finally, there is the part relative to modeling scatters for the regressions on Y|X,
with one free σ2

g and G− 1 constrained σ2
g . Again, except for the first term, the other ones

should be multiplied by (1− 1/cy) to incorporate the constraint induced by cy. Notice that,
while [11] distinguish between rotation and eigenvalue parameters, and multiply only the
latter by the factor (1− 1/cX), we opt for multiplying all the variance parameters by such
factor, to enforce the fact that rotation loses its meaning for cX → 1. Lastly, observe that the
penalized criterion in (7) reduces to the standard Bayesian Information Criterion [19] when
α = 0 and both cX , cy go off to infinity, as (8) would simply penalize for the number of free
parameters in the model times the logarithm of the sample size n.

3. Exploring the Space of Solutions for CWRM

The great flexibility and robustness achieved by the Cluster Weighted Robust Model
come at a price: the choice of the most appropriate model among the set of potential solu-
tions, function of hyper-parameters G, cX , cy and α, results in a seemingly overwhelming
task whenever little or no prior information is available for the problem at hand. Nonethe-
less, as already argued in the introduction, most often than not, to single out a unique
and stand-alone result should not be the purpose of a clustering process. Therefore, we
hereafter describe a two stage monitoring procedure for efficiently investigating the CWRM
model space. In the first step, detailed in Section 3.1, dedicated graphical and exploratory
tools are employed for determining one or more plausible values for the trimming level
α. In the second stage (Section 3.2), conditioning on the αs selected in the previous step,
solutions stability and validity are fully investigated when G, cX and cy are free to vary
within a grid of values.

3.1. Step 1: Monitoring the Choice of a Plausible Trimming Level

Whenever dealing with robust procedures based on hard trimming, a crucial pa-
rameter to be established is the α level controlling the size of the subsets over which the
likelihood is maximized. In this step, we build upon previous work in [20] where, after
a first bet on the values of G and the constraint (unique for Gaussian mixtures), a plot of
the Adjusted Rand Index (ARI) between consecutive cluster allocations for a grid of α is
employed to visually assess the contamination rate present in a dataset. The plot shows
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changes in the clustering structure for different trimming levels, remaining close to its
maximum when solutions are close one to another. This tool can effectively detect noise
in the form of bridges, where only a correct level of trimming uncovers the proper under-
lying partition. However, in case of scattered noise, the clustering structure could evolve
very smoothly from an initial solution, obtained without trimming, to a pretty different
final one, yielding an ARI plot between consecutive allocations with no jumps. The same
consideration holds true in case of point-wise contamination. Therefore, to overcome these
drawbacks, we introduce two modifications to the monitoring strategy of [20]. On the one
hand, we do not a priori set any hyper-parameter, but we let, for each α, the best model to
be determined by the penalized criterion introduced in Section 2.1, suitably varying G, cx
and cy. In this way, we do not induce any subjectivity in the selection, letting the model
space be fully α-wise explored. On the other hand, we widen the considered monitoring
tools, accompanying the ARI plot with specific representations tailored for the CWRM
framework. In details, we graphically keep track of changes for the following metrics
varying trimming level α:

• Groups proportion via a stacked barplot, profiling sample sizes and appearance of
new clusters,

• CWM decomposition of the total sum of squares via a stacked barplot, according to the
cluster validation measure introduced in [21],

• Regression coefficients via a G-lines plot, profiling the increase and/or decrease in
parameters magnitude,

• Regression standard deviations via a G-lines plot, profiling the increase and/or decrease
in variability around the regression hyper-planes,

• Cluster volumes via a G-lines plot, profiling the increase and/or decrease in
∣∣Σ̂g
∣∣1/d,

g = 1, . . . , G,
• ARI between consecutive cluster allocations via a line plot, following [20].

By jointly exploring the evolution in the aforementioned metrics, we are able to
adequately uncover the most appropriate trimming level(s) to be employed in the sub-
sequent analysis. Within this first monitoring step, delicate care shall be devoted to
mitigating the well-known label-switching problem of mixture models. In doing so, the
component-dependent metrics, estimated varying trimming levels, are directly comparable.
A relabeling strategy based on the postulated model density is adopted to overcome the
non-identifiability issue due to components invariance. In details, the relabeling procedure
works as follows: starting from the solution obtained with the highest value of trimming,
the (1 + d)-dimensional quantities rg =

(
µ̂g, b̂0

g + b̂′gµ̂g

)
are stored for each g, g = 1, . . . , G.

Notice that rg is nothing but the estimated marginal d-dimensional cluster mean juxtaposed
to the conditional estimate according to the regression term. These quantities become the g
cluster “representatives” and are used for the relabeling process of the subsequent solutions
with decreasing trimming level, via the MAP rule. Whenever a solution possesses a higher
number of clusters than the previous one, a new r is computed and stored as representative
of this new component. Whenever a solution possesses a lower number of clusters than the
previous one, the r quantity for the merged component is identified and updated in the set
of representative units. Clearly, this heuristic may fail whenever the clustering structure
deeply changes moving from a solution to its adjacent one. Nonetheless, when the α grid is
quite dense, the failure of this procedure is itself a sign that some mechanism has spoiled
the estimation process.

3.2. Step 2: Monitoring Optimal Solutions, in Terms of Validity and Stability

Having identified a/some “reasonable” value/values for α, we subsequently screen
the space of solutions E0, obtained moving the pair of hyper-parameters cX and cy over
a grid, varying the number of clusters G, conditioned on a fixed trimming level. The
purpose is to obtain a reduced listO of “optimal” solutions, qualified by two features: their
stability across hyper-parameter values, and their optimality in terms of (7). We elaborate
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on the algorithm presented in [11], to encompass the more complex framework of Cluster
Weighted modeling. Given a triplet (G, cX, cy), let P(G, cX, cy) denote the partition into
G clusters, obtained by optimizing (4) under the constraints (5) and (6). Let ARI(A, B)
denote the ARI between partitions A and B. We consider that two partitions A and B
are “similar” when ARI(A, B) ≥ η, for a fixed threshold η. Clearly, the higher the value
η the greater the number of contemplated distinct solutions. Further, let us consider the
sequence G = 1, . . . , GMAX , where GMAX is the maximal number of clusters, and sequences
cX = cX

1 , . . . , cX
CX

, cy = cy
1, . . . , cy

Cy
of, respectively, CX and Cy possible constraint values

for cX and cy. Without loss of generality and for easing the notation, in the next steps
we will adopt the same grid of restrictions c = c1, . . . , cC for both the covariates and the
regression errors, but clearly the procedure does not require so in general. For instance, the
sequence of powers of 2, c1 = 20, c2 = 21, . . . , cC = 2C−1 generates a sharp grid of values
close to 1. In this setting, the proposed procedure for finding O, the set of T ≤ L optimal
solutions is summarized in Algorithm 1, where L denotes a pre-specified upper bound for
the maximum number of optimal solutions to be retained. The resulting strategy simplifies
the set of operations originally proposed in [11].

Algorithm 1 Optimal solution finder

1: Initialize the space to be explored E0 = {(G, cX, cy) : G = 1, ..., GMAX, cX, cy =

c0, ..., cC} and the empty list of optimal solutions O
2: while Et 6= ∅ or t ≤ L do
3: Obtain (Gt, ct

X , ct
y) = arg min(G,cX ,cy)∈Et−1

TBIC(G, cX , cy) and append it to list O
4: Obtain from Et−1 the set I of triplets (G, cX , cy) that induce a “similar” partition to

P(Gt, ct
X , ct

y), that is

I =
{
(G, cX , cy) : ARI

(
P(G, cX , cy), P(Gt, ct

X , ct
y)
)
≥ η, for (G, cX , cy) ∈ Et−1

}
5: Et = Et−1 \ I
6: end while
7: return O = {(G1, c1

X , c1
y), . . . , (GT , cT

X , cT
y )}

Once the optimal set has been identified, we further define two sets of “best” and
“stable” intervals for each optimal solution (Gt, ct

X , ct
y) in O:

Bt =
{
(G, cX , cy) : TBIC(G, cX , cy) ≤ TBIC(Gt+1, ct+1

X , ct+1
y )

and

ARI
(

P(Gt, ct
X , ct

y), P(G, cX , cy)
)
≥ η for (G, cX , cy) ∈ E0

}
,

(9)

St =
{
(G, cX , cy) : ARI

(
P(Gt, ct

X , ct
y), P(G, cX , cy)

)
≥ η for (G, cX , cy) ∈ E0

}
. (10)

In Bt, we want to identify the set of parameter values for which an optimal solution
remains “best”. In doing so, we include in Bt all solutions in E0 ARI-similar to the optimal,
and not worse than the next optimal solution. In St, we want to identify the set of parameter
values for which an optimal solution is "stable", including in St all solutions ARI-similar to
the optimal. It is clear that, given the definition of best and stable intervals, we implicitly
require that Bt ⊆ St. In the upcoming section, solutions in Bt and St will be graphically
represented by darker and lighter opacity cells, with varying colors depending on which
optimal solution they refer to.
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4. Synthetic Experiment with Multiple Plausible Solutions

We henceforth illustrate, via a simulated scenario, how the monitoring procedures
introduced in the previous section may be employed in analyzing a contaminated dataset in
which no exclusive solution prevails. Consider the following data generating process (DGP)

p(x, y; θ) =
4

∑
g=1

πgφ(y; b′gx + b0
g, σg)φ2(x; µg, Σg), (11)

with true parameters being as follows:

π = (0.2, 0.4, 0.35, 0.05)′,

µ1 = (2, 2)′, µ2 = (2,−2)′, µ3 = (1,−1)′ µ4 = (3, 3)′

Σ1 = I2, Σ2 =

[
2 0.5

0.5 1

]
Σ3 =

[
0.5 0
0 0.5

]
Σ4 =

[
3 0.5

0.5 2

]
b0

1 = 10, b0
2 = 20, b0

3 = 20, b0
4 = 40

b1 = (3, 4)′ b2 = (6, 7)′ b3 = (6, 7)′ b4 = (−6,−7)′

σ2
1 = 5, σ2

2 = 10, σ2
3 = 15, σ2

4 = 1.

A dataset with 980 genuine samples is generated according to (11). In addition,
20 uniformly distributed outliers are appended to the uncontaminated observations, re-
sulting in a total of n = 1000 data units with a true contamination level equal to 0.02.
A pairs plot of the resulting 3-dimensional feature space is reported in Figure 1. It is
immediately noticed that retrieving the true data partition may not be straightforward.
In addition, beyond the underlying true data generating process, several solutions may
be considered “reasonable” for this scenario. Given the small mixing proportion of the
fourth group, one may be interested only in recovering the first three main clusters, thus
preferring a solution in which the last group is entirely trimmed. Alternatively, since the
conditional distributions of y given x for clusters two and three share exactly the same
regression parameters, one may rationally favor a solution in which these two groups are
merged together. All these options emerge when exploring the space of possible solutions
E0 =

{
(G, cX , cy) : G = 1 . . . , 5; cX , cy = 1, 2, 4, 16, 32, 64

}
varying α ∈ {0, 0.02, . . . , 0.1}.

y X1 X2

y
X
1

X
2

-20 0 20 40 60 0.0 2.5 5.0 7.5 -3 0 3 6

0.00

0.02

0.04

0.06

0.08

0.0

2.5

5.0

7.5

-3

0

3

6

1 2 3 4 out

Figure 1. Pairs plot of the synthetic dataset generated according to (11), and resulting true underly-
ing partition.
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4.1. Step 1: Choosing the Trimming Level α

The first step of the monitoring procedure results in the plots reported in Figure 2. The
ARI pattern showcases two drops, respectively corresponding to the disappearance of the
fifth (spurious) and the fourth group. Notwithstanding, its value never goes below 0.8, so
no unequivocal information can be achieved by monitoring this metric only. Differently, the
group proportions and the line plots seem to suggest the presence of G = 4 groups. This
can be appreciated by the fact that, also for the fourth cluster, the regression parameters b̂g
do not demonstrate any abrupt change, contrarily to the fifth spurious group that appears
when α is set too low. Lastly, by inspecting the cluster volumes, we notice that |Σ4|1/d

seems to stabilize only when the trimming level is set higher than 0.02, that is precisely the
percentage of contamination introduced in the sample. Therefore, should a practitioner be
challenged to designate a trimming level using the information displayed in Figure 2, he
could make two equally acceptable choices. On the one hand, setting α larger than 0.02 but
smaller than 0.08 allows the CWRM to capture also the smallest cluster. On the other hand,
one could be interested only in capturing the major patterns, regarding anything else as
uninteresting noise: if this is the case, a trimming level greater than 0.08 shall be preferred.
Ultimately, exploring untrimmed solutions, obtained by setting α = 0, may also offer a
fruitful benchmark with respect to the previous two alternatives. In all cases, the second
step of the proposed procedure, described in Section 3.2, permits a thorough exploration of
the resulting stability and validity of solutions within the set E0 conditioning on the chosen
α. We hereafter study the space of solutions when the trimming level is, respectively, set
equal to 0.02, 0.08 and 0.

4.2. Step 2 with α = 0.02: Monitoring Plausible Solutions

We start by focusing on the resulting model space when α = 0.02. In this case, the
second step of the monitoring produces the plots reported in Figure 3. The T = 4 optimal
solutions, obtained setting an ARI-similarity threshold η equal to 0.7, are identified by
cells with ordinal numbers whose colors with darker and lighter opacity respectively
mark the sets of best and stable intervals, defined in (9) and (10). The plot in Figure 3
may be interpreted as a bi-dimensional extension, tailored for CWRM, of the car-bike
plot introduced in [11]. In details, each facet encompasses models with the same number
of clusters, with different values of cX (x-axis) and cy (y-axis). Likewise for the one-
dimensional car-bike plot, the proposed graphical tool ensures the immediate eye-balling
of the optimal solutions (cells with ordered numbers), as well as the sets of best interval
and stable ones. The first optimal solution, and its best and stable intervals (darkgreen
colored cells) essentially agree with the model in Equation (11), validating the fact that the
true DGP is correctly recovered. The same number of estimated clusters characterizes the
second optimal solution (orange colored cells), but the higher constraints enforced in the
scatter matrices (cX = 2) give rise to almost spherical components, where the structures
of the second and third (overlapping) groups slightly differ from the true underlying
ones. The third optimal solution is characterized by the fitting of G = 3 groups, with
its best and stable intervals entirely covering the cX and cy grids. As anticipated at the
beginning of the section, this is due to the fact that the true regression parameters for
the second and third groups are exactly equal; therefore it is reasonable to contemplate a
result in which these two components are entirely merged. Model results for the first three
optimal solutions conditioning on α = 0.02 are represented in Figure 4. The fourth optimal
model is characterized by strong restrictions in the scatter matrices and by equal regression
variances, and its interpretation is less clear.
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Figure 2. Step 1: Groups proportion (black bars denote the trimmed units), total sum of squares decomposition, regression
coefficients, standard deviations, cluster volumes and ARI between consecutive cluster allocations as a function of the
trimming proportion α.
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Figure 3. Step 2: monitoring the optimal solutions (cells with ordered numbers), best interval solutions (darker opacity
cells) and stable solutions (lighter opacity cells), varying G, cX (x-axis) and cy (y-axis) in E0. Trimming level α = 0.02.

4.3. Step 2 with α = 0.08: Monitoring Plausible Solutions

In this subsection we explore solutions conditioning on a higher trimming level, with
the intention of focusing on the predominant clusters still present in the right most side
of plots in Figure 2. The resulting T = 4 optimal solutions are reported in Figure 5. As
expected, the first identified optimal model possesses G = 3 clusters, for which the fourth
group, with the smallest mixing proportion, entirely falls within the set of trimmed units.
Interestingly, the second and third optimal solutions suggest the presence of G = 4 clusters:
by inspecting the induced data partition in Figure 6 we notice that the original fourth
component is still partially recovered when α = 0.08. Even though the stability of the
solution is much lower due to the higher trimming level, comparing these results with
those outlined in the previous subsection indicates that the fourth group, albeit small,
shall probably be included in the fitting process. Lastly, we observe that models in which
components two and three are merged together define a plausible clustering partition
again, as highlighted by the fourth optimal solution and its associated stable interval.
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Figure 4. Pairs plots for the first, second and third optimal solution resulting from the second step of the monitoring
procedure. Trimmed units are denoted by ×. Trimming level α = 0.02.
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Figure 5. Step 2: monitoring the optimal solutions (cells with ordered numbers), best interval solutions (darker opacity
cells) and stable solutions (lighter opacity cells), varying G, cX (x-axis) and cy (y-axis) in E0. Trimming level α = 0.08.
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Figure 6. Pairs plots for the first, second and third optimal solution resulting from the second step of the monitoring
procedure. Trimmed units are denoted by ×. Trimming level α = 0.08.

4.4. Step 2 with α = 0: Monitoring Plausible Solutions

The monitoring procedure for models with no trimming enforced in the ML estimation
is graphically summarized in Figure 7. The first optimal solution efficiently well recovers
the true DGP, in which an extra component with high variance, in both the regressions
and the scatter matrices, is nevertheless needed to model the background noise. Similar
to what was experienced for the previous choices of α, the option of merging components
two and three defines the second optimal solution, spanning the entire grid of cX and cy
for G = 4 (see Figure 8). However, the most unexpected behavior appears when looking at
the fourth optimal model: the groups heterogeneity is entirely lost and a single regression
term is deemed sufficient to explain the entire dataset. This shall be interpreted as a
wake-up call that a noise mechanism is by some means masking the clustering structure.
Notice that contamination of only 2% is sufficient to induce such unwanted behavior.
Clearly, by exploring Figure 2 in the first step it should immediately be apparent that
a small percentage of trimming is necessary to ensure stability in the estimation. The
α = 0 case has been examined to cast light on the harmful effect noise produces when
contamination is not properly taken care of, further justifying the applicability of our
two-steps monitoring procedure.
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Figure 7. Step 2: monitoring the optimal solutions (cells with ordered numbers), best interval solutions (darker opacity
cells) and stable solutions (lighter opacity cells), varying G, cX (x-axis) and cy (y-axis) in E0. Trimming level α = 0.
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Figure 8. Pairs plots for the first, second and third optimal solution resulting from the second step of the monitoring
procedure. Trimming level α = 0.

The described analyses have been carried out by means of the R programming lan-
guage: software routines, including the method implementation and the scripts nec-
essary to reproduce the results presented in this section are openly available at https:
//github.com/AndreaCappozzo/STATS-monitoring_CWRM (accessed on 18 June 2021).
Regarding the computational cost it is clear that, by its very nature, the proposed method
is computationally expensive since many parameters combinations have to be estimated.
Nevertheless, the overall computational load can be alleviated by either using paralleliza-
tion or optimal solutions as reasonable initializations for contiguous problems.

5. Concluding Remarks

The present paper has focused on the problem of identifying a set of sensible hyper-
parameters in the framework of robust mixtures of regressions with random covariates. By
relying on the logic that no unique solution exists when it comes to perform cluster analysis,
we have proposed a two-steps monitoring procedure for helping practitioners choose the
best model, according to their judgment, within a reduced set of optimal solutions. To this
extent, we have introduced a dedicated criterion for performing model selection, based on
a penalty that depends on the doubly-constrained maximization problem. In exploring the
space of solutions, we have first selected a plausible trimming level(s) by means of specific
representations tailored for the CWRM framework. Secondly, conditioning on one or more
α values determined in the first step, we have defined a semi-automatic procedure for
screening the model hyper-parameters, ranking subsets of solutions that are ARI-similar

https://github.com/AndreaCappozzo/STATS-monitoring_CWRM
https://github.com/AndreaCappozzo/STATS-monitoring_CWRM
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and arranged by the penalized criterion. The thorough analysis of a challenging synthetic
experiment has demonstrated the applicability of our proposal.

Our method has commonalities with another novel monitoring methodology for
semiautomatic robust regression clustering [22]: they both appeared almost concomitantly
in the literature. The cited work is certainly related to the one we have proposed, thus a
short remark is in order to highlight the respective commonalities and distinctive features
of the two proposals. First off, the main focus of [22] is on the classical mixture of robust
regressions, without taking into account distribution on the covariates. Certainly the
method proposed in [22] is quite general: the authors themselves suggest that it is sufficient
to fix cX to a large number, e.g., cX = 128, to adapt their procedure to work for CWRM.
We however would like to stress that our methodology is specifically designed to deal
with situations in which the covariates are random, so much so that we explicitly account
for different values of cX in our monitoring step. Secondly, how the model space is
explored differs in the two proposals: in our first step we let the best model be selected
conditioning on the trimming level, whereas in [22] the authors firstly identify the best
G and cy and then, conditioning on these two values, they monitor α. Lastly, the label
switching problem is differently handled: while we suggest a density-based metric to
designate cluster representatives, in [22] the relabeling strategy is based on other criteria
such as the estimated regression coefficients varying trimming level. Overall then, both
contributions possess distinctive peculiarities, suggesting de facto two different approaches
for solving a similar, and, as it seems, very relevant, problem.

Further research directions include the employment of the devised methodological
procedure in a wide set of applications, further validating its relevance in real-world
contexts. Additionally, as suggested by an anonymous reviewer, the present work may
foster the development of a broader set of graphical tools useful for checking the sensitivity
of the CWRM to miss-specifications of φd. That is, the group-wise Gaussian assumption
may not always hold for the set of covariates, and it would be interesting to monitor at
which extent deviations from Gaussianity can impact the hyper-parameters specification.
These topics will be the object of future research.
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