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Abstract: The frequency of the first digits of numbers drawn from an exponential probability density
oscillate around the Benford frequencies. Analysis, simulations and empirical evidence show that
datasets must have at least 10,000 entries for these oscillations to emerge from finite-sample noise.
Anecdotal evidence from population data is provided.
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1. Introduction

According to Benford’s law, the frequency of the first digits of numbers are larger
for digit 1 (about 30%) than 2 (about 18%) and so on up to 9 (about 5%). The “law” that
governs these probabilities bd is

bd = log10(1 + 1/d), (1)

where d = 1, 2, . . . , 9 . This law originated with Simon Newcomb [1] and was popularized
by Frank Benford [2]. In 1995, T. P. Hill [3] proved a theorem that helps explain the success
of Benford’s first digit law. According to Hill’s theorem, the frequency of the first digits of
numbers randomly drawn from randomly chosen distributions converge to bd in the limit
of large numbers. Several books introduce and summarize findings on the subject [4–6].

Benford illustrated Equation (1) with “found” or empirical datasets drawn from a
number of sources. Many empirical sets of numbers observe or approximate Benford’s
first digit law, particularly those that (1) span several decades; (2) have positive skewness;
(3) have many entries; and (4) are not intentionally designed. Such datasets have been
called “Benford suitable” by Goodman [7].

Even so, some numerically generated datasets that are Benford suitable do not observe
Benford’s law in detail. In particular, consider numbers drawn from an exponential
probability density

pλ(t) = λ exp (−λt), (2)

where 0 ≤ t ≤ ∞ and λ are the rate or, equivalently, the inverse mean of the exponential
probability density given by

λ−1 =
∫ ∞

0
tpλ(t)dt. (3)

The first digits of numbers drawn from Equation (2) oscillate with λ around bd with
amplitudes of about 10%.

Random numbers drawn from the exponential probability density (2) are important
because they approximate pieces of a quantity that is randomly partitioned [8]. Suppose,
for instance, that a population P is to be divided, without bias, into M cities and towns in
such a way that the mean city size P/M is a definite quantity. If this partition is done so as
to maximize the entropy of the partition, we find that the probability of city size t is given
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by (2), where λ = M/P. See Appendix A for a derivation of this claim that is inspired by a
similar derivation by Iafrate, Miller, and Strach [9]. Miller and Nigrini [10] also explore
relations between the exponential probability density (2) and Benford’s law (1).

We might expect the oscillations in the exponential probability density (2) with λ to
have been observed in real-world data. However, our analysis shows that the predicted
oscillations emerge from finite-sample noise only with a sample number N > 10,000. We
also describe a real-world example of this first digit oscillation in the populations of US
towns and cities as they have evolved over the last hundred years.

2. First Digit Probabilities

The probability gd(λ) that a number drawn from the exponential distribution (2) has
a first digit d is given by

gd(λ) =
∞

∑
k=−∞

∫ (d+1)10k

d10k
pλ(t)dt

=
∞

∑
k=−∞

[
exp(−λd10k)− exp(−λ(d + 1)10k)

]
. (4)

According to Equation (4), the first digit probability gd(λ) is periodic in λ in the
sense that gd(10λ) = gd(λ). Reference [11], from whose paper the contents of this section
originate, demonstrated that the averages of gd(λ) over one decade of λ are the Benford
frequencies bd. The n = 0 and n = ±1 terms of a Fourier expansion of (4) produce
the formula

gd(λ) ≈ bd +
( 4r

ln 10
)

sin
[
π log10(1 + 1/d)

]
sin
[
θ + 2π log10

(
λ
√

d(1 + d)
)]

, (5)

where r and θ are, respectively, the absolute value and argument of the gamma function
Γ(−2πi/ ln 10) .

The first two factors in the second term on the right hand side of (5) characterize an
oscillation amplitude of approximately 10% of the non-oscillating term bd, while the last
factor is periodic in log10(λ). The n = ±2 Fourier coefficients are approximately 10−2 times
smaller than the n = ±1 coefficients. Higher order coefficients are even smaller. Indeed,
formula (5) produces curves visually identical to those produced by the more complete
expression (4).

3. Sample Noise

Because the magnitude of the oscillating term in Equation (5) is approximately 10% of
the non-oscillating term bd , its effect can easily be swamped by the noise inherent in finite
datasets and finite samples from the exponential probability distribution (2). We see this in
the following way.

Assume a list of N identically distributed, statistically independent, random numbers
indexed with j = 1, 2, . . . N. Now let Xd,j be an indicator random variable defined so that
Xd,j = 1 when the number subscripted j begins with digit d and Xd,j = 0 when the number
subscripted j does not begin with digit d. We then define the frequency Gd of the first digit
d among N numbers as

Gd =
1
N

N

∑
j=1

Xd,j. (6)

The expectation value of both sides of Equation (6) is

E[Gd] =
1
N

N

∑
j=1

E[Xd,j]

= E(Xd), (7)
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since the Xd,j are identically distributed, E[Xd,1] = E[Xd,2] = . . . E[Xd,N ], and, therefore,
we may denote each of these terms by E[Xd]. When the numbers determining the indicator
random variables Xd,j are drawn from an exponential distribution, E[Gd] and E[Xd] are
equal to gd(λ).

The variance of Gd is generated from

G2
d =

1
N2

N

∑
i,j=1

Xd,iXd,j

=
1

N2

N

∑
i=1

X2
d,i +

1
N2

N

∑
i,j=1,i 6=j

Xd,iXd,j. (8)

Since the Xd,i are statistically independent and identically distributed, the E(X2
d,i) are

identical and, therefore, can be denoted by E(X2
d) . Consequently, we find that

E(G2
d) =

E(X2
d)

N
+

N(N − 1)E(Xd)
2

N2 . (9)

Therefore, the variance σ2
Gd

is given by

σ2
Gd

= E(G2
d)− E(Gd)

2

=
E(X2

d)− E(Xd)
2

N
. (10)

However, because Xd is an indicator random variable with only two possible values,
0 and 1, E(X2

d) = E(Xd). In this case, the variance (10) becomes

σ2
Gd

=
E(Xd)− E(Xd)

2

N
(11)

and the relative standard deviation becomes

σGd

E(Gd)
=

1√
N

√
1

E(Xd)
− 1. (12)

Recall that E(Gd) = E(Xd) and that the analysis resulting in Equations (11) and (12) ap-
plies generally to any distribution with indicator random variable Xd and expectation value
E(Xd). Relations (11) and (12), between variance and mean, are, of course, not new. They
also follow from the binomial probability distribution that governs the indicator variables.

Given a Benford probability bd or Benford probability plus oscillation gd(λ) and
standard deviation σGd , Equation (12) tells us how many samples N from a distribu-
tion are required to resolve the mean frequency in the presence of finite-sample noise.
For instance, in order that the relative standard deviation be small enough for the Ben-
ford frequency b1 (= 0.301) of digit d = 1 to emerge from noise, say, about 10% of b1,

(1/
√

N)
√

1/ log10(2)− 1 ≤ 1/10, which means that N ≥ 200. However, if one also
wants the oscillation of g1(λ) around the Benford frequency b1 to emerge from sam-
ple noise, another 10% reduction in relative standard deviation is needed. In this case,

(1/
√

N)
√

1/ log10(2)− 1 ≤ 1/(10 · 10) or N ≥ 20,000. We illustrate these calculations in
the next section.
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4. Sampling

The cumulative probability of the exponential probability density defined in
Equation (2) is ∫ t′

0
λ exp(−λt)dt = 1− exp(−λt′), (13)

and can be replaced by the uniform random variable U(0, 1) , or, equivalently, by 1−U(0, 1).
Simultaneously, t′ becomes the random variable T drawn from the exponential probability
density (2). Therefore, Equation (13) implies that

T =
− ln U(0, 1)

λ
. (14)

The first digit random variable frequency Gd as determined from the random variables
generated by Equation (14) should reflect the 10% oscillations with period log10 λ as
predicted by (5), and so they do, as long as the number of samples N is large enough. For
more details concerning sampling consult reference [12].

According to (12), the relative standard deviation σGd /E(Gd) is smallest for a given
sample size N when E(Xd) is largest. For exponentially distributed probabilities this means
the oscillation in λ will most easily be seen in samples of the random variable G1, that is,
when d = 1. Figures 1–3 show sample values of G1 for N (= 102, 103, 104) as a function
of λ between 10−2 and 10−1. Values of the random variable G1 are shown as filled circles.
The central curve is g1(λ) from Equation (5), and the two surrounding curves are g1 ± σG1
from Equation (11) or Equation (12) with E(G1) = E(X1) = g1(λ). Values of the random
variable G1 mainly stay within the standard deviation curves.

A sample size of N = 100 hardly allows one to discern the Benford frequency b1 much
less the oscillation around b1. Only with larger samples, on the order of N = 10,000, does
the 10% oscillation emerge from finite-sample noise.

0.01 0.02 0.05 0.1
Λ0.2

0.3

0.4

g1HΛL

Figure 1. Frequency of first digit 1 versus λ from (5) and (11) or (12) with N = 100. Filled circles are
first digit frequencies from N = 100 samples generated by (14).
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Figure 2. Frequency of first digit 1 versus λ . Curves are from (5) and (11) or (12) with N = 1000.
Filled circles are first digit frequencies from N = 1000 samples generated by (14).

0.01 0.02 0.05 0.1
Λ0.2

0.3

0.4

g1HΛL

Figure 3. Frequency of first digit 1 versus λ . Curves are from (5) and (11) or (12) with N = 10,000.
Filled circles are first digit frequencies from N = 10,000 samples generated by (14).

5. Population of Towns and Cities in the USA

In order to observe the predicted first digit oscillations in real-world data, one must
find datasets with more than approximately 10,000 entries and with several different values
of the inverse mean λ. For a first effort, no data seems more likely to reveal these oscillations
than that of the US Census Bureau as described in [13]; in particular, the populations of
incorporated towns and cities at different 10-year intervals. However, only the decennial
censuses from 1970 forward have been digitized. While the population of the USA has
increased by 50% since 1970, the number of towns and cities has also increased. For this
reason, the inverse mean of the municipal population λ has changed very little between
1980 and 2010.

In order to find town and city population data with significantly different inverse
means λ, we reached back to the census of 1910. After making the considerable effort to
digitize the 1910 populations of 14,000 incorporated towns and cities as listed in the pdf
made available by the US Census Bureau [14], we sorted these numbers (and others from
the 1980–2010 period) according to first digits.
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Figure 4 shows the result of our efforts. Here we see the frequency of leading digit 1
for the decennial censuses 1980–2010 (the leftmost group of filled circles) and for 1910 (the
rightmost filled circle) versus their respective inverse mean population per town or city
λ. The probability g1(λ) of first digit 1 as determined by formula (5), which derives from
the exponential distribution (2) with parameter λ, is also shown. Figure 4 does not have
standard deviation curves because the number of samples is different for each point.

Figure 4. First digit frequencies versus λ. Filled circles are frequencies of first digit 1 from the
1980–2010 (leftmost group) and 1910 (rightmost circle) US census. The curve is frequency versus λ

from formula (5) derived from the exponential probability distribution (2).

Of course, these data merely suggest that the 10% first digit oscillations around
Benford frequencies are a feature of population and other real-world data. As such, we
hope it encourages others to look for more conclusive evidence. However, as noted, the
prerequisite for this search is a Benford suitable dataset with at least 10,000 entries.

6. Summary and Conclusions

In Equation (5), we have made explicit the periodic dependence of the first digit
frequencies gd(λ) of numbers that are drawn from an exponential distribution with rate
λ. According to this relation, the amplitude of these oscillations is approximately 10% of
the Benford frequencies bd. We have also demonstrated that the number of data entries
required to allow these 10% oscillations to emerge from sample noise in real-world data
should be larger than about 10,000. We have illustrated this requirement in numerical
realizations of the simulation algorithm in Equation (14). The populations of US towns and
cities spanning a century is real-world, if anecdotal, evidence of these first digit oscillations.

While the requirement of 10,000 numbers sets a high bar, sufficiently large Benford
suitable datasets do exist and have been sorted according to first digit [15]. The first digit
frequencies reported in [15] appear to be consistent with the predicted 10% oscillations
around Benford values. However, the appropriate value of λ , which determines the phase
of these oscillations, was not reported.

Alternatively, one might repeat the same experiment many times in which a given
quantity is partitioned in such a way that the inverse mean of the partition sizes λ is
constant. Then, according to the law of large numbers, the mean values of the frequency
of first digits will converge to those described by formula (5). Our analysis may explain
why those mining specific datasets for evidence of Benford’s law may only fortuitously
find agreement within 10% of bd and then only for certain digits.
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Appendix A

Suppose a quantity P is partitioned among M pieces in such a way that the inverse
mean M/P = λ is fixed and the entropy of this partition is maximized. The probability
density of these partitions is normalized so that

1 =
∫ ∞

0
p(t)dt, (A1)

the inverse mean
λ−1 =

∫ ∞

0
tp(t)dt, (A2)

and the entropy

S = −
∫ ∞

0
p(t) ln p(t)dt. (A3)

Finding the stationary value of the entropy (A3) subject to the constraints (A1) and
(A2) means solving

δ

δp(t′)

∫ ∞

0
[−p(t) ln p(t)− αp(t)− βtp(t)]dt = 0, (A4)

the solution of which is
p(t) = exp (−1− α) exp (−βt). (A5)

Requiring (A5) to satisfy constraints (A1) and (A2) produces the exponential probabil-
ity density (2), that is,

pλ(t) = λ exp (−λt). (A6)
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