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Abstract: A random variable X that is base b Benford will not in general be base c Benford when
c 6= b. This paper builds on two of my earlier papers and is an attempt to cast some light on the issue
of base dependence. Following some introductory material, the “Benford spectrum” of a positive
random variable is introduced and known analytic results about Benford spectra are summarized.
Some standard machinery for a “Benford analysis” is introduced and combined with my method of
“seed functions” to yield tools to analyze the base c Benford properties of a base b Benford random
variable. Examples are generated by applying these general methods to several families of Benford
random variables. Berger and Hill’s concept of “base-invariant significant digits” is discussed. Some
potential extensions are sketched.
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1. Introduction

My grandfather, the physicist Frank Benford for whom Benford’s Law is named,
considered his “law of anomalous numbers” as evidence of a “real world” phenomenon.
He realized that geometric sequences and exponential functions are generally base 10
Benford, and on this basis he wrote [1]:

“If the view is accepted that phenomena fall into geometric series, then it follows that
the observed logarithmic relationship is not a result of the particular numerical system,
with its base, 10, that we have elected to use. Any other base, such as 8, or 12, or 20,
to select some of the numbers that have been suggested at various times, would lead to
similar relationships; for the logarithmic scales of the new numerical system would be
covered by equally spaced steps by the march of natural events. As has been pointed out
before, the theory of anomalous numbers is really the theory of phenomena and events,
and the numbers but play the poor part of lifeless symbols for living things.”

This argument seems compelling, and it might seem to apply to Benford random
variables as well as to geometric sequences and exponential functions. It is therefore
somewhat surprising to observe that a random variable that is base b Benford is not
generally base c Benford when c 6= b. We’ll see some examples shortly.

This paper builds on two of my earlier papers [2,3] and is an attempt to cast some
light on the issue of base dependence. It’s organized as follows. Section 2 introduces the
significand function and the fractional part notation and gives several logically equiva-
lent definitions of “Benford random variable.” The base b first digit law is introduced,
and several examples of random variables are presented that are Benford relative to one
base but not to another. Section 3 introduces the “Benford spectrum” BX of a positive
random variable X and summarizes some of the known analytical results that involve BX .
Section 4 is a brief digression listing some facts about Fourier transforms that are needed
in subsequent sections. Section 5 introduces some fundamental notation and results that
provide a framework for the “Benford analysis” of a positive random variable. Section 6
combines the framework of Section 5 with my method of “seed functions” to develop the
theory of the base c Benford properties of random variables X that are known to be Benford
relative to base b, and Section 7 gives several examples of such random variables. Section 8
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discusses Berger and Hill’s concept of “base-invariant significant digits.” Section 9 is a
summary and a look ahead.

2. Benford Random Variables

The best way to define Benford random variables is via the significand function. Let
b > 1 be a fixed “base.” Any x > 0 may be written uniquely in the form

x = s× bk where s ∈ [1, b) and k ∈ Z,

and the base b significand of x, written Sb(x), is defined as this s. Hence,

x = Sb(x)× bk where Sb(x) ∈ [1, b) and k ∈ Z. (1)

(Berger and Hill [4] define the significand of x for all x ∈ R, but we don’t require
this generality.)

Now let X be a positive random variable; that is, Pr(X > 0) = 1. Assume that X is
continuous with a probability density function (pdf).

Definition 1. X is base b Benford (or X is b-Benford) if and only if the distribution function
of Sb(X) is given by

Pr(Sb(X) ≤ s) = logb(s) for all s ∈ [1, b). (2)

Nothing written above requires that b be an integer. For this paragraph alone, we
assume that b is an integer greater than or equal to 3. Let D1(X) denote the first (i.e.,
leftmost or most significant) digit of X in the base b representation of X, so D1(X) ∈
{1, . . . , b− 1}. (Leading zeros, if there are any, are ignored.)

Proposition 1. If X is b-Benford, then

Pr(D1(X) = d) = logb

(
d + 1

d

)
(3)

for all d ∈ {1, . . . , b− 1}. This is the “base b First Digit Law.” To prove it, it is sufficient to
observe that D1(X) = d if and only if d ≤ Sb(X) < d + 1.

It’s useful at this point to introduce some non-standard notation. Let y ∈ R and recall
that the “floor” of y, written byc, is defined as the largest integer that is less than or equal
to y. Define 〈y〉 as:

〈y〉 ≡ y− byc (4)

and note that 0 ≤ 〈y〉 < 1 for every y ∈ R. We’ll call 〈y〉 the fractional part of y, though if
y < 0 this description is misleading.

If we take the logarithm base b of Equation (1) we obtain

logb(x) = logb(Sb(x)) + k. (5)

On the other hand,
logb(x) = 〈logb(x)〉+

⌊
logb(x)

⌋
. (6)

As
⌊
logb(x)

⌋
is necessarily an integer and 0 ≤ logb(Sb(x)) < 1, comparison of Equations (5)

and (6) shows that

logb(Sb(x)) = 〈logb(x)〉 and k =
⌊
logb(x)

⌋
(7)

for any x > 0.
Using Equation (7), we may rephrase Definition 1 in several logically equivalent ways.
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Proposition 2. X is b-Benford if and only if any one of the following four conditions is met.

(1) Pr(logb(Sb(X)) ≤ logb(s)) = logb(s) for all s ∈ [1, b),

(2) Pr(〈logb(X)〉 ≤ u) = u for every u ∈ [0, 1),

(3) 〈logb(X)〉 ∼ U[0, 1),

(4) X = bY where 〈Y〉 ∼ U[0, 1),

where the notation “W ∼ U[0, 1)” means that W is uniformly distributed on the half open interval
[0, 1). (More generally, I use the symbol “∼” to mean “is distributed as.” Hence, for example,

“X ∼ f ” means that X is distributed with pdf f , and “X1 ∼ X2” means that X1 and X2 have the
same distribution.)

For any random variable Y, if 〈Y〉 ∼ U[0, 1) we sometimes say that Y is “uniformly
distributed modulo one,” abbreviated “u.d. mod 1.” Hence X is b-Benford if and only if
logb(X) is u.d. mod 1.

With this background we can now give a couple of examples of random variables that
are Benford with respect to one base but not to another. Let Y ∼ U[0, 1).

Example 1. Let X ≡ 10Y, so X is 10-Benford. But it’s not 8-Benford as it fails to satisfy the base
8 First Digit Law. To see this, note that the support of X is [1, 10), and let D1(X) denote the first
digit in the base 8 representation of X. Then

Pr(D1(X) = 1) = Pr(1 ≤ X < 2) + Pr(8 ≤ X < 10)

= log10(2) + log10(5/4) ≈ 0.3979,

whereas

log8

(
1 + 1

1

)
= log8(2) =

1
3

.

Example 2. Let Y be as above, but now let X ≡ 8Y, so X is 8-Benford. Note that the support
of X is [1, 8). Let D1(X) denote the first digit in the base 10 representation of X. Hence
Pr(D1(X) ∈ {8, 9}) = 0, whereas

log10

(
9
8

)
+ log10

(
10
9

)
≈ 0.09691.

Hence, X fails to satisfy the base 10 First Digit Law.

3. The Benford Spectrum

Let X be a positive random variable.

Definition 2. Following Wójcik [5], the “Benford spectrum” of X, denoted BX , is defined as

BX ≡ {b ∈ (1, ∞) : X is b-Benford}. (8)

The Benford spectrum of X may be empty. In fact, the Benford spectra of essentially
all the standard random variables used in statistics are empty.

This section summarizes some of the known facts about Benford spectra. While
proofs are provided for Proposition 4 and 6, I’m just going to provide citations for proofs
of the other propositions.

Proposition 3 (Berger and Hill [4], page 44, Proposition 4.3 (iii)). A random variable Y is u.d.
mod 1 if and only if kY + c is u.d. mod 1 for every integer k 6= 0 and every c ∈ R.
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Proposition 4 (Whittaker [6]). If b ∈ BX , then m
√

b ∈ BX for all m ∈ N. In other words, if X is
b-Benford, then X is m

√
b-Benford for all m ∈ N.

Proof. Suppose that X is b-Benford, so X = bY where Y is u.d. mod 1. Hence, for any
m ∈ N,

X =
(

b1/m
)mY

.

As b1/m > 1 and mY is u.d. mod 1 by Proposition 3, it follows that b1/m ∈ BX .

Proposition 5. If BX is non-empty, then it is bounded above. In other words, no random variable
can be b-Benford for arbitrarily large b. Citations: Refs. [3,5,6].

Proposition 6. If X is b-Benford and c > 0, then cX is b-Benford.

Proof. As X is b-Benford, Y ≡ logb(X) is u.d. mod 1. As logb(cX) = Y + logb(c) is u.d.
mod 1 from Proposition 3, it follows that cX is b-Benford.

We say of this result that the Benford property of a random variable is “scale-invariant.”

Proposition 7. Suppose that X and W are independent positive random variables and that X is
b-Benford. Then the product XW is also b-Benford. Citations: Refs. [3–5].

Proposition 8 (a corollary of Proposition 7). If X and W are independent positive random
variables, then

BX ∪ BW ⊆ BXY.

So far, the spectra we’ve seen are at most countably infinite. One may wonder if there
exists a random variable with an uncountable spectrum. Whittaker showed by an example
that such a random variable exists. Let b > 1 be given. Define g : R→ R by

g(y) ≡ 1− cos(2πy)
2π2y2 . (9)

It may be shown that g is a legitimate pdf, and Y is u.d. mod 1 if Y ∼ g. Hence X ≡ bY is
b-Benford. (This is what I’ve called Whittaker’s random variable.) For any c > 1, define
Yc ≡ logc(X). It may then be shown that Yc is u.d. mod 1 (and hence that X is c-Benford)
if and only if c ≤ b. In summary, BX = (1, b]. Citations: Refs. [3,5,6].

4. Digression: Fourier Transforms

Before going much further, we need to list some facts about Fourier transforms. Let
g denote the pdf of a real valued random variable Y. The Fourier transform of g is the
function ĝ : R→ C defined as

ĝ(ξ) ≡
∫ ∞

−∞
e−2πiξyg(y) dy = E

(
e−2πiξY

)
= u(ξ) − iv(ξ) (10)

for all ξ ∈ R, where

u(ξ) ≡
∫ ∞

−∞
cos(2πξy)g(y) dy = E(cos(2πξY)) and

v(ξ) ≡
∫ ∞

−∞
sin(2πξy)g(y) dy = E(sin(2πξY)).

(11)

Note that u is an even function and v is an odd function, and hence that ĝ(−ξ) = ĝ(ξ)where
the overbar denotes complex conjugation. Though the Fourier transform ĝ(ξ) is gener-
ally complex valued, it is real valued if g is an even function, i.e., if Y is symmetrically
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distributed around the origin. Hence, if g is an even function, then ĝ is an even function.
Finally, note that ĝ(0) =

∫ ∞
−∞ g(y) dy = 1.

The following fact is very useful.

Proposition 9 (shift and scale with random variables). Suppose that W = σY + µ where
σ > 0. Suppose that Y ∼ g and let h denote the pdf of W. We may obtain h from g and ĥ from ĝ
as follows:

h(w) =
1
σ

g
(

w− µ

σ

)
(12)

(proof left to reader) and

ĥ(ξ) = E
(

e−2πiξW
)
= E

[
e−2πiξ(σY+µ)

]
= e−2πiξµ ĝ(σξ). (13)

If µ = 0, Equation (13) becomes ĥ(ξ) = ĝ(σξ).

Appendix A of this paper contains a table of selected Fourier transforms.

5. A Framework for Benford Analysis

Suppose that X is a positive random variable and that b > 1. We may wish to know if
X is b-Benford, and if it’s not by how far does it differ from “Benfordness.” I call an attempt
to answer these and related questions a “Benford analysis.” In this section I establish some
notation I’ll use for a Benford analysis, and give some fundamental results that allow us
to proceed.

First, define

Y ≡ logb(X) = Λb ln(X) where Λb ≡
1

ln(b)
. (14)

Next, let
g denote the pdf of Y,

g̃ denote the pdf of 〈Y〉.

Given g̃ we may answer the two questions given above. (1) X is b-Benford if and only if
g̃(u) = 1 for almost all u ∈ [0, 1). (2) If X is not b-Benford, we may measure its deviation
from Benfordness by any measure of the deviation of g̃ from a uniform distribution. For
example, if g̃ is continuous, or if its only discontinuities are “jumps,” we could use the
infinity norm:

‖g̃− 1‖∞ ≡ sup(|g̃(u)− 1| : 0 ≤ u < 1). (15)

We need a way to find g̃ from g. Under a reasonable assumption, it may be shown that

g̃(u) = ∑
k∈Z

g(k + u) (16)

for all u ∈ [0, 1). The “reasonable assumption” is described in [2]. In this paper we’ll just
accept Equation (16) as given.

Although Equation (16) is fundamental for a Benford analysis of X, it is not very
useful for finding the answers to some analytical questions one may ask. Fourier analysis
provides the tools needed to continue the analysis. It may be shown [3] that the Fourier
series representation of g̃(u) is

g̃(u) = ∑
n∈Z

ĝ(n)e2πinu for all u ∈ [0, 1). (17)
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At first sight this expression may not seem very useful; the series of real valued functions
in Equation (16) has been replaced by a series of complex valued functions multiplied by
complex coefficients. But ĝ(0) = 1, and Equation (17) may be written as

g̃(u) = 1 + ∑
n∈N

[
ĝ(−n)e−2πinu + ĝ(n)e2πinu

]
. (18)

As ĝ(−n)e−2πinu is the complex conjugate of ĝ(n)e2πinu, it follows that each term in
brackets in Equation (18) is real valued. In fact,

ĝ(−n)e−2πinu + ĝ(n)e2πinu = an cos(2πnu) + bn sin(2πnu) (19)

where
an = ĝ(−n) + ĝ(n) = 2

∫ ∞

−∞
cos(2πny)g(y) dy,

bn = −iĝ(−n) + iĝ(n) = 2
∫ ∞

−∞
sin(2πny)g(y) dy.

(20)

Combining Equations (18) and (19) yields

g̃(u) = 1 + ∑
n∈N

[an cos(2πnu) + bn sin(2πnu)]. (21)

In practice, it is often convenient to go one step further and rewrite Equation (21) as

g̃(u) = 1 + ∑
n∈N

An cos[2πn(u− θn)] (22)

where An satisfies
A2

n = a2
n + b2

n (23)

and θn is any solution to

cos(2πnθn) =
an

An
and sin(2πnθn) =

bn

An
. (24)

The parameters An and θn are not uniquely determined by Equations (23) and (24), but in
practice natural candidates for An and θn often present themselves. I’ll call An an “ampli-
tude” (though this term generally refers to |An|) and θn a “phase.”

Proposition 10. The pdf g̃ is that of a U[0, 1) random variable if and only if ĝ(n) = 0 for all
n ∈ N. Equivalently, the pdf g̃ is that of a U[0, 1) random variable if and only if An = 0 for all
n ∈ N.

Proof. The first assertion follows from Equation (18) combined with ĝ(−n) = ĝ(n) for any
n ∈ N. The second assertion follows from Equation (22).

Proposition 11.
|An| = 2|ĝ(n)| for all n ∈ N. (25)

Proof. Solving Equation (20) for ĝ(−n) and ĝ(n), we find

ĝ(n) =
1
2
(an − ibn), ĝ(−n) =

1
2
(an + ibn). (26)

It follows that

A2
n = a2

n + b2
n = 4ĝ(n)ĝ(−n) = 4|ĝ(n)|2 ⇒ |An| = 2|ĝ(n)|.
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6. Base Dependence: Theory

Suppose we’re given a u.d. mod 1 random variable Y with pdf g and b > 1. Then
X ≡ bY is b-Benford. Now let c > 1 be another possible base and define Yc ≡ logc(X).
Let gc and g̃c denote the pdfs of Yc and 〈Yc〉, respectively, and let ĝc denote the Fourier
transform of gc. My aim in this section is to present tools that allow one to study how g̃c
varies as a function of c.

The first thing to observe is that Yc is proportional to Y:

Yc =
ln(X)

ln(c)
=

ln(b)
ln(c)

· ln(X)

ln(b)
= ρY where ρ ≡ ln(b)

ln(c)
. (27)

It then follows from Proposition 9 that

ĝc(ζ) = ĝ(ρζ) (28)

for any ζ ∈ R.
To use Equation (28) we first need to say something about g. I introduced “seed

functions” in [2] and showed that every pdf g of a u.d. mod 1 random variable may
be written

g(y) = H(y)− H(y− 1) (29)

for every y ∈ R, where H is a seed function. Hence

ĝ(ξ) =
∫ ∞

−∞
e−2πiξy[H(y)− H(y− 1)] dy. (30)

Under various assumptions about H, we may combine Equations (28) and (30) to
compute ĝc(n) for all n ∈ Z, and given ĝc(n) we may compute An and θn in the expression

ĝc(−n)e−2πinu + ĝc(n)e2πinu = An cos[2πn(u− θn)]

for all n ∈ N, and thereby derive g̃. In this section I’ll partially carry out this program for
two broad classes of seed functions: (1) H is a step function, and (2) H is increasing and
absolutely continuous.

Example 3. Suppose that H is the following step function:

H(y) =

{
0 if y < − 1

2 ,
1 if y ≥ − 1

2 .

This seed function implies that

g(y) =

{
1 if y ∈ [− 1

2 , 1
2 ),

0 otherwise.
(31)

Hence, from the table of Fourier transforms in Appendix A,

ĝ(ξ) =
sin(πξ)

πξ
(32)

(where it is understood that ĝ(0) = 1). Combining this with Equation (28) yields

ĝc(n) =
sin(πρn)

πρn
(33)
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for any n 6= 0. From Proposition 10 we know that Yc will be c-Benford if and only if ĝc(n) = 0 for
every n ∈ N, and from Equation (33) it’s clear that this happens if and only if ρ is an integer. But

ρ =
ln(b)
ln(c)

= m ⇔ c = b1/m (34)

for every m ∈ N. Hence, Yc is c-Benford if and only if c is an integral root of b. This result agrees
with Proposition 4.

Certain features of this result are repeated with every seed function H we consider.
In particular, we always find that ĝc(n) = 0 for all n ∈ N whenever c is an integral root of
b. Also, note that ĝc(n) depends on c entirely through the parameter ρ.

Equation (33) implies that

An =
2 sin(πρn)

πρn
, θn = 0 (35)

for this example.

Example 4. To generalize Example 3 slightly, suppose that H jumps from 0 to 1 at µ− 1
2 for some

µ ∈ R. The pdf g implied by this seed function is just that given by Equation (31) shifted right by
µ. From Proposition 9 and Equation (32) we obtain

ĝ(ξ) = e−2πiξµ sin(πξ)

πξ

and hence

ĝc(n) = e−2πiρnµ sin(πρn)
πρn

(36)

for any n ∈ N. Note that ĝc(n) = 0 if and only if c = b1/m for some m ∈ N. Equation (36)
implies that

An =
2 sin(πρn)

πρn
, θn = ρµ (37)

for this example. The only effect of including µ is to change the phase. Note that the phase does
not depend on n.

Now assume that H is increasing and absolutely continuous. This assumption makes
H mathematically equivalent to the distribution function of an absolutely continuous
random variable. Under this assumption H is differentiable almost everywhere and
h(y) ≡ H′(y) ≥ 0. We want to evaluate the integral

ĝ(ξ) =
∫ ∞

−∞
e−2πiξy[H(y)− H(y− 1)] dy = E

(
e−2πiξY

)
.

It’s clear from the rightmost expression in this equation that ĝ(0) = 1. When ξ 6= 0,
an initial integration by parts yields

ĝ(ξ) =
1

2πiξ

∫ ∞

−∞
e−2πiξy[h(y)− h(y− 1)] dy.

Evaluating this integral,

ĝ(ξ) =
1

2πiξ

(
1− e−2πiξ

)
ĥ(ξ)

=
e−iπξ

2πiξ

(
eiπξ − e−iπξ

)
ĥ(ξ) =

e−iπξ

πξ
sin(πξ)ĥ(ξ).
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Hence,

ĝc(n) =
e−iπρn

πρn
sin(πρn)ĥ(ρn) (38)

for any n 6= 0. We see once again that ĝc(n) = 0 for all n ∈ N whenever c is an integral
root of b. In addition, there’s another possibility; ĝc(n) = 0 for all n ∈ N if ĥ(ρn) = 0
for all n ∈ N. This is essentially the possibility that was exploited in the construction of
Whittaker’s random variable. We’ll return to this point in a moment.

Example 5. Still working with the assumption that H is increasing and absolutely continuous,
we now make the additional assumption that h is an even function, which implies that ĥ is an even
function. Under these assumptions, Equation (38) implies that

An =
2 sin(πρn)ĥ(ρn)

πρn
, θn =

1
2

ρ. (39)

Example 6. In Example 5 we assume that h is even, so that it’s symmetrical around the point
y = 0. Now assume that h is symmetrical around the point y = µ for some µ ∈ R. Define
h0(y) ≡ h(y + µ) so h0 is an even function. It is easy to show that ĥ(ξ) = e−2πiξµ ĥ0(ξ).
Combining this fact with Equation (38) yields

ĝc(n) =
e−iπρn

πρn
sin(πρn)e−2πiρnµ ĥ0(ρn)

=
e−2πiρn( 1

2+µ)

πρn
sin(πρn)ĥ0(ρn). (40)

Equation (40) implies that

An =
2 sin(πρn)ĥ0(ρn)

πρn
, θn = ρ

(
1
2
+ µ

)
(41)

for Example 6. We observe that the phase depends on µ and ρ, but not on n.

Note that An and θn depend on c only through ρ in all of these examples. It’s useful
to keep in mind that ρ depends on c as shown in Figure 1 (where I’ve let b ≡ 16). In words,
ρ increases from 1 to ∞ as c decreases from b towards 1.

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20

rh
o

c

Figure 1:  as a function of . Figure 1. ρ as a function of c.
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7. Base Dependence: Examples

Equations (38) and (41) provide the scaffolding for the construction of g̃, but require in-
sertion of an actual formula for ĥ in Equation (38) or ĥ0 in Equation (41) for completion. This
section completes this construction using the table of Fourier transforms in Appendix A.

Every distribution function is a legitimate seed function. Hence every Fourier trans-
form given in Appendix A is a legitimate candidate for ĥ. Moreover, four of the distri-
butions in Appendix A (the normal, Laplace, Cauchy, and logistic) are even functions,
and their Fourier transforms are therefore legitimate candidates for ĥ0. All four of these
distributions have fixed variances, however, and it is desirable to append a “scale” pa-
rameter σ that allows these variances to be adjusted. Proposition 9 justifies the following
expanded table of Fourier transforms.

Example 7. Gauss-Benford random variables. Suppose that H is the distribution function of
a N(µ, σ) random variable, i.e., a N(0, σ) random variable shifted µ to the right. I’ll call the
random variable X implied by this seed function a “Gauss-Benford” random variable. Combining
Equation (41) with the appropriate entry from Table 1, we obtain

An =
2 sin(πρn)

πρn
exp

(
−2π2σ2ρ2n2

)
, θn = ρ

(
1
2
+ µ

)
. (42)

As exp
(
−2π2σ2ρ2n2) > 0, it follows that BX =

{
b1/m : m ∈ N

}
. Let

A∗n =
2

πρn
exp

(
−2π2σ2ρ2n2

)
, (43)

so An = sin(πρn)A∗n. Viewed as a function of n or ρ, An oscillates within an envelope [−A∗n, A∗n],
and |An| ≤ A∗n for all n, σ, and ρ. Asymptotically, letting any of the parameters n, ρ, or σ→ ∞
implies that A∗n ↓ 0. Equation (43) implies that A∗1 > A∗2 > · · · . The descent of A∗n towards zero
with increases in n, ρ, or σ is extremely rapid, and A∗1 can be small with even low values of ρ and
σ. For example, letting ρ = σ = 1 implies that A∗1 ≈ 1.7× 10−9. In this case, the graph of g̃
is visually indistinguishable from that of a uniform distribution on [0, 1) and we would have to
conclude that X is “effectively” c-Benford for all c ≤ b.

Table 1. Fourier transforms of selected even density functions with a scale parameter.

Name h0(y) ĥ0(ξ)

N(0, σ) (2πσ2)−1/2e−y2/(2σ2) exp
(
−2π2σ2ξ2)

Laplace(0, σ) 1
2σ e−|y|/σ 1

1+4π2σ2ξ2

Cauchy(0, σ) 1
πσ

(
1 + y2

σ2

)−1
e−2πσ|ξ|

Logistic(0, σ) 1
σ

(
ey/(2σ) + e−y/(2σ)

)−2 2π2σξ
sinh(2π2σξ)

Note: Among these four distributions, σ is the standard deviation of the rescaled random variable only for the
normal distribution N(0, σ).

Example 8. Laplace-Benford random variables. Now suppose that H is the distribution function
of a Laplace(µ, σ) random variable. I’ll call the random variable X implied by this seed function
a “Laplace-Benford” random variable. Combining Equation (41) with the appropriate entry from
Table 1, we obtain

An =
2 sin(πρn)

πρn
· 1

1 + 4π2σ2ρ2n2 , θn = ρ

(
1
2
+ µ

)
. (44)
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As
(
1 + 4π2σ2ρ2n2)−1

> 0, it follows that BX =
{

b1/m : m ∈ N
}

. Let

A∗n =
2

πρn
· 1

1 + 4π2σ2ρ2n2 , (45)

so An = sin(πρn)A∗n and |An| ≤ A∗n for all n, σ, and ρ. Asymptotically, letting any of the
parameters n, ρ, or σ→ ∞ implies that A∗n ↓ 0. Though the asymptotic limits of Equations (43)
and (45) are identical, the approach of A∗n to zero (as n, ρ, or σ increases) is very much slower for
Equation (45) than it is for Equation (43).

Example 9. Cauchy-Benford random variables. Now suppose that H is the distribution function
of a Cauchy(µ, σ) random variable. I’ll call the random variable X implied by this seed function
a “Cauchy-Benford” random variable. Combining Equation (41) with the appropriate entry from
Table 1, we obtain

An =
2 sin(πρn)

πρn
e−2πσρn, θn = ρ

(
1
2
+ µ

)
. (46)

As e−2πσρn > 0, it follows that BX =
{

b1/m : m ∈ N
}

. Let

A∗n =
2

πρn
e−2πσρn (47)

so An = sin(πρn)A∗n. The asymptotic behavior for this A∗n is identical to that of Equations (43)
or (45). The rate of descent of A∗n towards zero is intermediate between that of a Gauss-Benford
random variable and that of a Laplace-Benford random variable.

Example 10. Logistic-Benford random variables. For our final example of a symmetric seed
function, let H be the distribution function of a logistic(µ, σ) random variable. I’ll call the
random variable X implied by this seed function a “Logistic-Benford” random variable. Combining
Equation (41) with the appropriate entry from Table 1, we obtain

An =
2 sin(πρn)

πρn
· 2π2σρn

sinh(2π2σρn)
= sin(πρn)A∗n, θn = ρ

(
1
2
+ µ

)
(48)

where
A∗n =

4πσ

sinh(2π2σρn)
> 0. (49)

The asymptotic behavior for this A∗n is identical to that of the previous three random variables. The
rate of convergence of A∗n to zero is comparable to that of a Cauchy-Benford random variable.

Example 11. Gamma-Benford random variables. Suppose that the seed function H is the distri-
bution function of a Γ(α, β) random variable. I’ll call the random variable X implied by this seed
function a “Gamma-Benford” random variable. This seed function is increasing and absolutely
continuous, but h is not symmetrically distributed around any point µ, so Equation (41) does not
apply. Combining Equation (38) with the appropriate entry from the table of Fourier transforms
found in Appendix A, we obtain

ĝc(n) =
e−iπρn

πρn
sin(πρn)(1 + 2πiβρn)−α (50)

for every integer n 6= 0. To make headway, define

zn ≡ 1 + 2πiβρn = 1 + iyn where yn ≡ 2πβρn, (51)
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and rewrite zn in polar form, so

zn = rneiφn where rn ≡
√

1 + y2
n, tan(φn) = yn. (52)

Hence,

ĝc(n) =
e−iπρn

πρn
sin(πρn)r−α

n e−iαφn =
sin(πρn)

πρnrα
n

e−2πinθn (53)

where
θn ≡

1
2

ρ +
αφn

2πn
. (54)

Hence,

ĝc(−n)e−2πinu + ĝc(n)e2πinu =
sin(πρn)

πρnrα
n

(
e−2πin(u−θn) + e2πin(u−θn)

)
=

2 sin(πρn)
πρnrα

n
cos[2πn(u− θn)] = An cos[2πn(u− θn)] (55)

where

An ≡
2 sin(πρn)

πρnrα
n

. (56)

To “compare and contrast” these results with those with symmetric distributions, we make the
following observations. (1) The presence of sin(πρn) in the numerator of Equation (56), combined
with r−α

n > 0, implies that An = 0 for all n ∈ N if and only if ρ is an integer, i.e., if and only if c is
an integral root of b. (2) Unlike our earlier results, where the phase θn is given by Equation (41) and
does not depend on n, for a Gamma-Benford random variable the phase is given by Equation (54).
It’s easy to show that φn → 1

2 π as n→ ∞, and hence that θn ↓ 1
2 ρ. (3) It’s easy to show that

A∗n ≡
2

πρnrα
n
↓ 0 as ρn→ ∞.

Example 12. Whittaker-Benford random variables: For our final example, we return to Equation (38),

ĝc(n) =
e−iπρn

πρn
sin(πρn)ĥ(ρn),

which holds for all increasing and absolutely continuous seed functions. All of our previous
examples have made use of the fact that sin(πρn) = 0 for all n ∈ N whenever ρ is an integer. We
now consider another possibility: ĝc(n) = 0 for all n ∈ N if ĥ(ρn) = 0 for all n ∈ N. I’ll say that
a b-Benford random variable X satisfying this condition is a “Whittaker-Benford” random variable.
The key here is to find ĥ with bounded support, and the simplest such ĥ is triangular:

ĥ(ξ) = max
(

0, 1− |ξ|
γ

)
, (57)

where γ > 0. With this ĥ it’s clear that ĥ(ρn) = 0 for all n ∈ N if ρ ≥ γ. Note that
ρ ≥ γ⇔ c ≤ b1/γ. Therefore, the Benford spectrum BX of a Whittaker-Benford random variable
X with ĥ given by Equation (57) has two (overlapping) components: BX = Bd

X ∪ Bc
X where

Bd
X ≡

{
b1/m : m ∈ N

}
,

Bc
X ≡ (1, b1/γ].

(58)

(The superscript d stands for “discrete,” and the superscript c stands for “continuous.”) If γ ≤ 1,
then Bd

X ⊂ Bc
X. For example, if γ = 1

2 then BX = Bc
X = (1, b2]. On the other hand, if γ > 1,

then Bc
X = (1, b1/γ] ⊂ (1, b], so BX equals the disjoint union of the discrete set (Bd

X − Bc
X) and the

continuous set Bc
X .
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The function h that yields ĥ given by Equation (57) is

h(y) =
1− cos(2πγy)

2γπ2y2 . (59)

8. On “Base-Invariant Significant Digits”

I wish to acknowledge that I first encountered many of the ideas discussed in this
section in Michal Wójcik’s admirable paper [5]. All citations to Berger and Hill in this
section are to their text, reference [4].

Proposition 12. If X is b-Benford, then Xn is b-Benford for any n ∈ N.

Proof. As X is b-Benford, X = bY where Y is u.d. mod 1. Hence Xn = bnY. But nY is u.d.
mod 1 by Proposition 3. Therefore Xn is b-Benford.

Corollary 1. As Xn = (bn)Y, it follows that Xn is bn-Benford if X is b-Benford.

Corollary 2. If X is b-Benford, then Sb(X) ∼ Sb(Xn) for any n ∈ N. This follows from
Definition 1.

One may wonder if the converse of Corollary 2, namely

if Sb(X) ∼ Sb(Xn) for all n ∈ N, then X is b-Benford,

is true. The answer is “no.” Here’s a counterexample. If X ≡ 1, then Sb(X) ∼ Sb(Xn)
for all n ∈ N, but X is not b-Benford. In fact, any X of the form bm where m ∈ Z is a
counterexample, as Sb(X) = 1 = Sb(Xn). However, we may show the following:

Proposition 13. If Sb(X) ∼ Sb(Xn) for all n ∈ N, then either X is b-Benford, or Sb(X) = 1.
We’ll provide a proof in a moment.

Definition 3. Let
Sb(X) ∼ Sb(Xn) for all n ∈ N (60)

be called Wójcik’s condition.

Here’s another way to state Proposition 13. (This is Wójcik’s Theorem 19.)

Proposition 14. X satisfies Wójcik’s condition if and only if the distribution function of Sb(X) is
given by

Pr(Sb(X) ≤ s) = q + (1− q) logb(s) (61)

for some q ∈ [0, 1] and for all s ∈ [1, b).

To prove Proposition 13 or 14, we first massage Wójcik’s condition into an alternative
form. Let X be a positive random variable and define Y ≡ logb(X). For all n ∈ N,

Sb(X) ∼ Sb(Xn) ⇔ logb(Sb(X)) ∼ logb(Sb(Xn))

⇔ 〈logb(X)〉 ∼ 〈logb(Xn)〉 = 〈n logb(X)〉
⇔ 〈Y〉 ∼ 〈nY〉 = 〈n〈Y〉〉 (62)

where the last equality follows from the identity 〈ny〉 = 〈n〈y〉+ nbyc〉 = 〈n〈y〉〉 for any
y ∈ R.

Berger and Hill ([4], Lemma 5.15, page 77) show the following.
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Proposition 15. For any random variable Y, the relation 〈Y〉 ∼ 〈n〈Y〉〉 for all n ∈ N holds if and
only if

Pr(〈Y〉 ≤ u) = q + (1− q)u for all u ∈ [0, 1) (63)

for some q ∈ [0, 1].

Propositions 13 and 14 are straightforward corollaries of Proposition 15.
I bring these facts to the reader’s attention because Wójcik’s condition is effectively

equivalent to Berger and Hill’s notion of “base-invariant significant digits” and sheds some
light on this notion. (I say “effectively equivalent” as Berger and Hill’s concept applies to a
probability measure P, whereas Wójcik’s condition applies to a random variable X.)

Here’s Berger and Hill’s definition (Definition 5.10, page 75). Let A ⊇ S be a σ-
algebra on R+. A probability measure P on (R+,A) has base-invariant significant digits if
P(A) = P

(
A1/n

)
for all A ∈ S and all n ∈ N.

Here’s a guide to the symbols used in this definition. (1) S is the σ-algebra generated
by the significand function Sb. (2) R+ ≡ (0, ∞), the set of strictly positive real numbers.
(3) For any A ⊆ R+ and n ∈ N, A1/n ≡ {x > 0 : xn ∈ A}. Also, it’s useful at this point to
introduce one more bit of non-standard notation used by Berger and Hill: for every x ∈ R
and every set C ⊆ R, let xC ≡ {xc : c ∈ C}.

The following proposition (showing the effective equivalence of Wójcik’s condition
and Berger and Hill’s base-invariant significant digits) is the major result of this section.

Proposition 16. Suppose that X ∼ (R+,B(R+), P). Then Sb(X) ∼ Sb(Xn) for all n ∈ N if
and only if P has base-invariant significant digits.

Proof. We begin by proving that Wójcik’s condition holds whenever P has base-invariant
significant digits. Suppose that A ∈ S . From the definition of A1/n, we have X ∈ A1/n ⇔
Xn ∈ A. Hence,

P
(

A1/n
)
= Pr

(
X ∈ A1/n

)
= Pr(Xn ∈ A). (64)

If P has base-invariant significant digits, then

P
(

A1/n
)
= P(A) = Pr(X ∈ A). (65)

Combining Equations (64) and (65), we see that

Pr(X ∈ A) = Pr(Xn ∈ A) (66)

whenever P has base-invariant significant digits. As A ∈ S there exists a set A0 ∈ B[1, b)
such that

A =
⋃

k ∈ Z
bk A0. (67)

In fact, A0 = Sb(A) ≡ {Sb(x) : x ∈ A}. Hence

X ∈ A⇔ Sb(X) ∈ A0,

Xn ∈ A⇔ Sb(Xn) ∈ A0.
(68)

Combining Equations (66) and (68), we conclude that

Pr(Sb(X) ∈ A0) = Pr(Sb(Xn) ∈ A0). (69)

As this equation holds for every A0 ∈ B[1, b), we conclude that Sb(X) ∼ Sb(Xn) whenever
X ∼ (R+,B(R+), P) and P has base-invariant significant digits.

To prove that Wójcik’s condition implies that P has base-invariant significant digits,
we essentially reverse this chain of logic. Wójcik’s condition implies Equation (69) for
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any A0 ∈ B[1, b), which in turn implies Equation (66) for A given by Equation (67). But
Pr(X ∈ A) = P(A) and Pr(Xn ∈ A) = P

(
A1/n

)
, so Equation (66) implies that P(A) =

P
(

A1/n
)

. As A0 was an arbitrary element of B[1, b), the equation P(A) = P
(

A1/n
)

holds
for A, an arbitrary element of S , and the proof is complete.

Berger and Hill state the following theorem (Theorem 5.13, page 76). A probability
measure P on (R+,A) with A ⊇ S has base-invariant significant digits if and only if,
for some q ∈ [0, 1],

P(A) = qδ1(A) + (1− q)B(A) for every A ∈ S .

(The meaning of the “Dirac measure” δ1 is given on page 22 of their book, and the
meaning of the “Benford measure” B is given on page 32.)

In the light of Proposition 16, it can be seen that Berger and Hill’s Theorem 5.13 is
equivalent to Proposition 14 given above.

I conclude this section with a personal opinion about Berger and Hill’s exposition. I
think that the terminology “base-invariant” they chose for their concept is a misnomer.
There is only one base (b) in the definition, and their concept of “base-invariant” significant
digits tells us nothing about the Benford properties of alternative bases for a b-Benford
random variable. Hence, the label “base-invariant” they chose for their concept seems
misleading and I believe they really should give it a different name.

9. Conclusions and Prospect

Let Y be a u.d. mod 1 random variable with pdf g, let b > 1, and define X ≡ bY, so X
is b-Benford. Without loss of generality we may assume that

g(y) = H(y)− H(y− 1) for any y ∈ R,

where H is a seed function. Let c > 1. In principle, the machinery introduced in Section 6
allows one to investigate the dependence of the distribution of 〈logc(X)〉 on c. In practice,
I’ve carried out this investigation only for seed functions of the first two types in the
following list of classes of seed functions.

(1) Step functions that jump from 0 to 1 in a single step.
(2) Increasing functions that are absolutely continuous.
(3) Step functions that increase from 0 to 1 at a finite or countably infinite number of

“points of jump.”
(4) Convex combinations of seed functions in classes (2) and (3).
(5) “Singular” distribution functions. These functions are increasing and continuous,

but not absolutely continuous. The Cantor function is the best known example.
(6) Seed functions satisfy a condition I call “unit interval increasing.” Every increasing

function is unit interval increasing, but not conversely. That is, a function H may be
unit interval increasing, but not everywhere increasing. Several examples of such
seed functions are given in [2].

My intuition suggests that seed functions of types (3) and (4) will offer no additional
conceptual difficulties, though they will certainly complicate the algebra. I’ll leave the
investigation of seed functions of classes (5) and (6) to the reader.

With X and c defined as above, let g̃c denote the pdf of 〈logc(X)〉. If X is c-Benford,
and if g̃c is continuous or has only “jump” discontinuities, then

‖g̃c − 1‖∞ = 0. (70)
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Hence, c is in the Benford spectrum BX if and only if Equation (70) is satisfied. For almost
all random variables X, the Benford spectrum BX is empty. We might want to say that X is
“effectively” c-Benford if

‖g̃c − 1‖∞ < ε (71)

for some small number ε. If we define the “effective” Benford spectrum of X to be the set

BX,ε ≡ {c > 1 : ‖g̃c − 1‖∞ < ε}, (72)

then BX ⊆ BX,ε. In general, I suggest, the effective spectrum will be a much larger set than
the spectrum.

The machinery described in Section 5 to carry out a “Benford analysis” helps us
determine whether or not the criterion of Equation (71) is satisfied. In Section 7 I suggested
that a Gauss-Benford random variable should be regarded as effectively c-Benford if the
product ρσ is large enough. In [3] I suggested that a lognormal random variable, which is
not b-Benford for any b, should be regarded as effectively c-Benford if Λcσ is large enough.

I leave further investigation of effectively Benford random variables to the reader.
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Appendix A. A Small Table of Fourier Transforms

Feller [7] gives a table of characteristic functions of selected probability density func-
tions. I’ve adapted his table to give the Fourier transforms of 8 of his 10 densities,
and added a row for an additional pdf (the logistic).

Table A1. Fourier transforms of selected probability density functions.

No. Name Density g(x) Interval Fourier Transform ĝ(ξ)

1 N(0, 1) (2π)−1/2e−x2/2 R exp
(
−2π2ξ2)

2 U[−a, a] 1/2a [−a, a] sin(2πaξ)
2πaξ

3 U[0, a] 1/a [0, a] 1−exp(−2πiaξ)
2πiaξ

4 Triangular 1
a

(
1− |x|a

)
|x| ≤ a 1−cos(2πaξ)

2π2a2ξ2

5 Dual of 4 1−cos(2πax)
2aπ2x2 R max

(
0, 1− |ξ|a

)
6 Γ(α, β) 1

Γ(α)βα xα−1e−x/β x > 0 (1 + 2πiβξ)−α

7 Laplace(0, 1) 1
2 e−|x| R 1

1+4π2ξ2

8 Cauchy(0, 1) 1
π

1
1+x2 R e−2π|ξ|

9 Logistic(0, 1)
(

ex/2 + e−x/2
)−2 R 2π2ξ

sinh(2π2ξ)
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