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Abstract: In genome-wide association studies (GWAS), efficient incorporation of linkage disequilibria
(LD) among densely typed genetic variants into association analysis is a critical yet challenging
problem. Functional linear models (FLM), which impose a smoothing structure on the coefficients
of correlated covariates, are advantageous in genetic mapping of multiple variants with high LD.
Here we propose a novel constrained generalized FLM (cGFLM) framework to perform simultaneous
association tests on a block of linked SNPs with various trait types, including continuous, binary
and zero-inflated count phenotypes. The new cGFLM applies a set of inequality constraints on
the FLM to ensure model identifiability under different genetic codings. The method is implemented
via B-splines, and an augmented Lagrangian algorithm is employed for parameter estimation.
For hypotheses testing, a test statistic that accounts for the model constraints was derived, following
a mixture of chi-square distributions. Simulation results show that cGFLM is effective in identifying
causal loci and gene clusters compared to several competing methods based on single markers and
SKAT-C. We applied the proposed method to analyze a candidate gene-based COGEND study and
a large-scale GWAS data on dental caries risk.

Keywords: GWAS; LD mapping; multi-loci genetic mapping; functional linear model; cGFLM

1. Introduction

Recent advances in technology have facilitated the development of association studies
using a highly dense map of genetic markers, such as single nucleotide polymorphisms
(SNPs). Nowadays, up to a million SNPs can be readily genotyped along the human
genome for thousands of subjects. Even though analyses based on univariate tests are still
popular and useful as pre-screening techniques [1], such methods have a major drawback—
the high correlation and composite effect among multiple genetic variants are omitted.
To accommodate this challenge, a few more advanced statistical methods that are based
on multiple linked SNPs have been developed in recent years [2–5], aiming to improve
the power of associations between genetic markers and phenotypic traits of interest.

As SNPs naturally cluster together and form the so-called linkage disequilibrium (LD)
blocks, multi-loci association tests that take into account this special genomic structure
are usually more powerful than single SNP-based ones [2–5]. Further, due to this locally
connected/correlated LD structure, if a casual SNP, even unobserved in some cases, exists
in one LD block, its information, i.e., genetic effect, can be partially carried and jointly
represented by its neighboring SNPs in the same block, which increases the likelihood
of the causal SNPs being detected. Another benefit of testing at the LD block level is on
multiple test adjustment in GWAS, including not only significant reduction of the total
number of tests, but also improvement on the independence of the tests. Several multi-SNP
methods have been proposed, such as principal component analysis [2,6], entropy-based
methods [7,8], kernel machine methods (SKAT, SKAT-C and CKAT) [3,5] and two-marker
LD mapping [4]. In addition, some variable selection models, such as LASSO [9,10] and
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smoothed minimax concave penalized regression (SMCP) [11], were applied to identify
a core subset of potential causal variants. Although these methods are useful, most of them
overlook marker ordering information in their physical positions.

Functional linear models (FLMs) serve as a good solution to the above-mentioned
problems, as it can effectively preserve the intrinsic correlation structure and spatial infor-
mation of SNPs in an LD [12]. In essence, FLMs take into account the effect that neighboring
correlated SNPs in an LD would show similar genetic effects, and treat the regression coeffi-
cients of these SNPs with an explicit functional form. The smooth coefficient function can be
further expanded in terms of spline bases, which allows for substantial dimension reduction
in parameter estimation [12,13]. Both functional principal component analysis (FPCA) and
beta-smooth only approaches have been applied to construct the FLMs [12,14–16]. Since
the beta-smooth only approach is more straightforward, it was used for the construction
of FLM in this study.

One critical issue with FLM is that the fitted coefficient functions are often noisy
and hard to interpret. They usually fluctuate dramatically due to several reasons: (1)
Strong LD among nearby SNPs causes multicollinearity, which leads to erratic changes in
the signs of adjacent functional coefficients; (2) FLMs cannot yield estimates that are exactly
zero over regions with no significant association, thus generating unnatural wiggles in
the fitted genetic function; (3) population-specific phenomena such as mutation, genetic
drift, population structure and variations in allele frequencies result in the LD not decaying
with distance. Excessive local fluctuation may be relieved by adding a smoothness penalty
in the model or controlling the number of spline bases. However, these methods are still
not able to identify the null regions in which the coefficient function should be zero and
may suffer from loss of detection power due to oversmoothing. In addition, no proper test
other than the permutation approach is available for penalty-based methods, which brings
heavy computational burden to large-scale studies.

In this paper, we propose a novel constrained generalized functional linear model
(cGFLM) for flexible and reasonable multi-loci genetic mapping on a block of correlated
genetic variants. The cGFLM retains the merits of FLM such as preserving the spatial
and LD information among genetic markers, as well as compressing the high-dimensional
problem into aggregate inference about several smoothing components. In addition to these
benefits, the cGFLM is more powerful and enables easier interpretation of the functional
coefficients. Specifically, we reconstruct FLM by separating the genetic effect into two
sign-specific coefficient functions and imposing an equality constraint to encourage overall
spatial sparsity. The cGFLM tends to constrain the functional coefficients to be zero in “null
regions” where no determinative positive or negative effect is present.

We further extend the cGFLM framework to several types of quantitative traits, such
as continuous, binary and count data. We put more focus on count traits as they are
common in practice but relatively less mentioned in the literature. Poisson and negative
binomial (NB) models provide tractable methods to most count traits, however, in traits
with excessive zeros, zero-inflated Poisson (ZIP) or negative binomial (ZINB) models were
also developed [17]. Since the ZINB is the most complicated model here, we discuss how
to apply the cGFLM to it in more detail. Applications of cGFLM to other models would
be similar.

The remainder of the article is organized as follows. In Sections 2 and 3, we introduce
a generalized functional linear model (GFLM) framework, discussing the continuous and cate-
gorical traits (Section 2) and then zero-inflated negative binomial phenotypic traits (Section 3).
In Section 4, we describe the proposed cGFLM and cGFLM-ZINB models, as well as their
estimation and testing processes. In Section 5, we present Monte Carlo simulations to
validate the proposed test and compare our model with several alternative methods. In
Sections 6 and 7, we apply the proposed method to the COGEND (The Collaborative
Genetic Study of Nicotine Dependence) and Dental Caries GWAS data. Sections 8 and 9
are the discussion and conclusion, respectively.
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2. Generalized Functional Linear Model

Suppose n subjects are sampled, each characterized by p linked SNP markers j =
1, . . . , p, where mj is the spatial location of SNP marker j with 0 ≤ m1 < · · · < mp. SNP
location can be measured by the distance of a SNP from starting position of a block. Denote
the SNP genotype at marker position mj for subject i as Xi(mj) . Suppose the genotypes of a
SNP are AA, Aa and aa, which are coded as 0, 1 and 2, according to the number of copies
of the allele a. That is,

Xi(mj) =


0, if the genotype of SNP j at position mj is AA;
1, if the genotype of SNP j at position mj is Aa;
2, if the genotype of SNP j at position mj is aa.

(1)

Suppose the genetic effect is denoted by β(m), a smooth coefficient function over all
marker positions m in an LD block. The value of the smooth coefficient function at marker
position mj is then β(mj). Further, suppose a set of other covariates zi = (zi1, . . . , ziq)

>

are also observed for subject i and let α = (α1, . . . , αq)> be the q × 1 vector of their
corresponding coefficients. The global-featured effect is included as the intercept, denoted
as α0. For the ith subject, let yi denote its phenotypic response. If yis are continuous,
a functional linear model (FLM) can be formulated as

yi = α0 +
q

∑
u=1

ziuαu +
p

∑
j=1

Xi(mj)β(mj) + εi, εi ∼ N(0, σ2
ε ). (2)

This type of association has been explored in [12,14]. Alternatively, if yis are categorical,
a link function g(·) can be applied to to transform its mean µ(yi) = E(yi) to be g(µ(yi)).
In this case, a generalized functional linear model (GFLM) can be formulated as

g(µ(yi)) = α0 +
q

∑
u=1

ziuαu +
p

∑
j=1

Xi(mj)β(mj). (3)

In the FLM/GFLM above, the genetic effects of a block of SNPs are assumed to be
a smooth function. In other words, SNPs located close to each other are expected to show
similar effects.

Here we represent β(m) with B-splines and express β(m) as

β(m) =
d

∑
r=1

γrBr(m) = B(m)γ, (4)

where d ≥ 1 is the number of basis functions, γd×1 = (γ1, . . . , γd)
> is a vector of real-valued

coefficients, (B1, . . . , Bd) is a set of d basis functions, and B(m) = (B1(m), . . . , Bd(m)) is
a vector for the d basis functions evaluated at position m. Let yn×1 = (y1, . . . , yn)>, Zn×q =

(z1, . . . , zn)>,

Xn×p =

 X1(m1) · · · X1(mp)
...

...
...

Xn(m1) · · · Xn(mp)

and Bp×d =

 B1(m1) · · · Bd(m1)
...

...
...

B1(mp) · · · Bd(mp)

. (5)

In matrix form, the GFLM in (3) can be reformulated as

g(µ(y)) = α0 + Zα + Xβ

= α0 + Zα + XBγ

=
(

1 Z XB
)(

α0 α γ
)>.

(6)
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Suppose the responses yn×1 are i.i.d. samples from a distribution with density f (y; β).
By substituting β with Bγ, the number of parameters changes from (p+ q+ 1) to (d+ q+ 1).
Then the log-likelihood function can be expressed as

l(α0, α, γ) =
n

∑
i=1

log f (yi; α0, α, γ) (7)

The maximum likelihood estimators (MLE) for parameters can be computed by maxi-
mizing the log-likelihood function

(α̂0, α̂, γ̂) = arg max
α0,α,γ

l(α0, α, γ). (8)

Since we are modeling a block of SNPs simultaneously in (3), the hypothesis test
of association between genetic variants and phenotypic trait will be made at the block level.
That is,

H0 : β(mj) = 0, for all j = 1, . . . , p.
Ha : Not H0.

(9)

Approximately, the hypotheses can also be expressed as:

H0 : γr = 0, for all r = 1, . . . , d.
Ha : γr ∈ Rd.

(10)

The likelihood ratio test (LRT) can be applied to draw inference about whether a block
of SNPs may be associated with the phenotypic trait. Under H0, the LRT statistic, defined
as−2(l0− l1), follows asymptotically a χ2

d distribution (Chi-square distribution with df = d,
the number of basis vectors used in Equation (5)).

3. GFLM for Zero-Inflated Negative Binomial (ZINB) Traits

Most count traits can be modeled with Poisson or negative binomial (NB) distributions.
However, when excessive zeroes are present in the data, a zero-inflated Poisson or negative
binomial regression framework needs to be employed [17], which utilizes a latent Bernoulli
distribution and a Poisson distribution to incorporate explanatory variables. In this section,
we describe a GFLM framework for count traits that follow a ZINB distribution.

To illustrate the ZINB model, we use dental caries, more commonly known as tooth
decay, as an example. Let Y denote the number of dental caries, and the probability
distribution of Y is given as:

L ∼ Bernoulli(π);
Pr(Y = 0|L = 1) = 1;

Pr(Y = k|L = 0) ∼ NB(µ, φ), k = 0, 1, . . .
(11)

Here L is a latent Bernoulli random variable that categorizes caries “risk” into two
states: “risk-free” (L = 1) and “risky” (L = 0). π is the probability of L = 1 , µ and φ are
the mean and dispersion parameter of the NB distribution, respectively.

In a ZINB regression model, let yi denote the observation of number of caries for sub-
ject i, i = 1, . . . , n. Then,

yi ∼
{

0, with probability πi;
NB(µi, λ), with probability 1− πi.

(12)

We can see that zeroes may come from two sources: the conditional point mass
distribution or the conditional NB distribution. Thus, the occurrence of dental caries yi is:

yi =

{
0, with probability πi + (1− πi)(

φ
φ+µi

)φ;

k, with probability (1− πi)
Γ(φ+k)
k!Γ(φ) (

φ
φ+µi

)φ( µi
φ+µi

)k, k = 1, 2, . . .
(13)
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An expectation-maximization (EM) algorithm can be applied to estimate the param-
eters in the ZINB model. Suppose at step t, the parameter estimates are (π(t), µ(t), φt).
Then the detailed EM implementation is given as follows.

E-step
For subject i, i = 1, . . . , n, estimate Li by its conditional mean

L(t)
i = EL|yi ,π(t),µ(t),φ(t)(Li) =


0, yi > 0;

π(t)

π(t)+(1−π(t))(
φt

φ(t)+µ(t)
)φ(t)

, yi = 0. (14)

M-step

• Find π(t+1) by maximizing

lBer(π|y, z(t)) =
n

∑
i=1

L(t)
i log(π) + (1− L(t)

i )log(1− π) (15)

• Find µ(t+1), φ(t+1)i by maximizing

lNB(µ, φ|y, z(t)) =
n

∑
i=1

(1− L(t)
i )log

Γ(φ + yi)

yi!Γ(φ)
(

φ

φ + µ
)φ(

µ

φ + µ
)yi (16)

The maximization can be performed by the Newton–Raphson algorithm for the two
models int the M-step simultaneously.

Using the same notations as in the previous section, the Bernoulli probabilities and
the negative binomial means can be transformed using the logit and the log links, respec-
tively, and are modeled as follows:

logit(πi) = log(
πi

1− πi
) = αBer

0 +
q

∑
u=1

ziuαBer
u +

p

∑
j=1

Xi(mj)βBer(mj), (17)

and

log(µi) = αNB
0 +

q

∑
u=1

ziuαNB
u +

p

∑
j=1

Xi(mj)βNB(mj). (18)

Since usually we do not have strong pre-assumption about genetic components and
covariates, the same sets of genetic components and covariates can be used in both Bernoulli
and NB models simultaneously. For univariate analyses on single SNPs, it is equivalent
to the case that one LD block only contains one SNP, and we can simply set p = 1
in the above equations. For multi-loci mapping purposes, we set all SNPs in an LD block
as input/explanatory variables.

We substitute the unstructured coefficients to functional coefficients, which are repre-
sented by linear combination of B-Splines. That is, Equation (5) is plugged into the coeffi-
cients for both the latent Bernoulli model and NB model to form the GFLM-ZINB model.
Using the same notation above, the GFLM-ZINB model is reformulated as:

logit(πi) =
(

1 Zi XiB(Ber)
)(

αBer
0 αBer γBer

dBer×1

)>
= UBer

i ηBer. (19)

log(µi) =
(

1 Zi XiB(NB)
)(

αNB
0 αNB γNB

dNB×1

)>
= UNB

i ηNB.

Then we can estimate the parameters using an EM Algorithm again, which is imple-
mented as follows.

1. Let L̂(t)
i =

π
(t)
i

π
(t)
i +(1−π

(t)
i )(

φt

φ(t)+µ
(t)
i

)φ(t)
I(yi = 0)
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2. • Perform logistic regression of L̂(t)
i on UBer to estimate ηBer(t+1)

.

• Perform weighted negative binomial regression of y on UNB with weights 1− L̂(t)
i

to obtain estimate ηNB(t+1)
and φ(t+1).

3. Let π
(t+1)
i =

exp(UBer
i ηBer(t+1)

)

1+exp(UBer
i ηBer(t+1)

)
and µ(t+1) = exp(UNB

i ηNB(t+1)
), iterate back to step 1.

For hypothesis testing, since we model a block of SNPs simultaneously, the test
of association between genetic variants and a phenotypic trait will be made at the block
level. In the meantime, we have two sets of parameters, one for the latent Bernoulli model
and one for the negative binomial model. The hypothesis test should consider the overall
effect of both models. That is, we consider testing at least one coefficients from either model
being nonzero. Note that we obtained dimension reduction by changing the estimator
of interest from the 2p-dimensional βBer(mj) and βNB(mj), j = 1, . . . , p to the (dBer + dNB)-
dimensional γBer

dBer×1 and γNB
dNB×1 by applying the functional coefficients implemented via

the B-spline bases. The hypotheses are formulated as

H0 : γBer
b = 0, γNB

m = 0, for all b, n.
Ha : Not H0.

(20)

The likelihood ratio test (LRT) can be applied to draw inference about whether a block
of SNPs may be associated with the phenotypic trait. Under H0, the LRT statistic asymptot-
ically follows a χ2

dBer+dNB
distribution (Chi-square distribution with df = dBer + dNB):

χ2 = −2(l0 − l1)
d−→ χ2

dBer+dNB
. (21)

4. Constrained Generalized Functional Linear Model

In practice, we have observed that the fitted coefficient functions in the GFLM can
fluctuate dramatically, and the fluctuation makes it difficult to explain the functional pat-
terns and determine the locations of causal SNPs . To address this, here we propose a more
reasonable constrained functional linear model (cGFLM). Specifically, we separate the ge-
netic effect into two sign-specific coefficient functions and impose an equality constraint to
promote spatial sparsity. The cGFLM is formulated as follows:

g(µ(yi)) = α0 +
q

∑
u=1

ziuαu +
p

∑
j=1

Xi(mj)β+(mj) +
p

∑
j=1

Xi(mj)β−(mj)

subject to β+(mj) ≥ 0, β−(mj) ≤ 0, β+(mj) · β−(mj) = 0 for all j,

(22)

where β+(m), β−(m) are smooth coefficient functions.
We express β+(m), β−(m) in terms of B-spline bases B+

1×d1
(m), B−1×d2

(m) and the mod-
ified coefficient vectors γ+

d1×1, γ−d2×1, respectively:

β+(m) = B+(m)γ+, β−(m) = B−(m)γ−. (23)

Let ◦ denote the Hadamard product of two vectors. In matrix form, the cGFLM is
formulated as:

g(µ(y)) = α0 + Zα + XB+γ+ + XB−γ−

=
(
(1 Z) XB+ XB−

)(
γ0 γ+ γ−

)>
= Uγ∗ = η∗

subject to B+γ+ ≥ 0, B−γ− ≤ 0, (B+γ+) ◦ (B−γ−) = 0.

(24)
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The log-likelihood function for cGFLM is then

l(γ0, γ+, γ−) =
n

∑
i=1

log f (yi; γ0, γ+, γ−). (25)

In order to obtain the MLEs for parameters, the following nonlinear optimization
problem with inequality/equality constraints needs to be solved:

maximize l(γ0, γ+, γ−)

subject to B+γ+ ≥ 0, B−γ− ≤ 0, (B+γ+) ◦ (B−γ−) = 0.
(26)

An augmented Lagrangian algorithm (ALA) can be applied to this constrained max-
imization [18,19]. Let γ∗ = (γ0, γ+, γ−). Denote the p equality constraints defined by
(B+γ+) ◦ (B−γ−) = 0 as h(γ∗) = 0, and the 2p inequality constraints defined by
B+γ+ ≥ 0, B−γ− ≤ 0 as g(γ∗) ≤ 0. For notation purposes, let I = p, J = 2p, then
the corresponding augmented Lagrangian for (26) to be minimized is

Lρ(γ
∗, λ1, λ2) = −l(γ∗) +

ρ

2
{

I

∑
i=1

[hi(γ
∗) +

λ1i
ρ
]2 +

J

∑
j=1

[max(0, gj(γ
∗) +

λ2j

ρ
)]2}, (27)

where λ1 ∈ RI , λ2 ∈ RJ
+ and ρ > 0. Let λ1 min < λ1 max, λ2 max > 0, ξ > 1, 0 < τ < 1, εc be

a small constant value (e.g., 10−4), and {εt} be a sequence of nonnegative numbers such
that limt→∞ εt = 0. A sketch of the augmented Lagrangian algorithm is given below and
more implementation details can be found in [20]:
Step 0. Let λ

(1)
1i ∈ [λ1 min, λ1 max], i = 1, . . . , I, λ

(1)
2j ∈ [0, λ2 max], j = 1, . . . , J and ρ1 > 0. Let

γ∗(0) in the parameter space Ω be an arbitrary initial point. Set t→ 1.
Step 1. Find the approximate minimizer γ∗(t) of Lρt(γ

∗, λ
(t)
1 , λ

(t)
2 ) subject to γ∗ ∈ Ω,

satisfying
‖PΩ(γ∗(t) −5Lρt(γ

∗(t), λ
(t)
1 , λ

(t)
2 ))− γ∗(t)‖∞ ≤ εt,

where PΩ is the Euclidean projection onto Ω [21] and5Lρt(γ
∗(t), λ

(t)
1 , λ

(t)
2 )) =

∂Lρt (γ
∗ ,λ(t)

1 ,λ(t)
2 )

∂γ∗

evaluated at γ∗ = γ∗(t).

Step 2. Define V(t)
j = max{gj(γ

∗(t)),−
λ
(t)
2j
ρt
}, j = 1, . . . , J.

ρt+1 =

{
ρt, If t = 1 or max{‖h(γ∗(t))‖∞, ‖V(t)‖∞} ≤ τ max{‖h(γ∗(t−1))‖∞, ‖V(t−1)‖∞}
ξρt, otherwise

Step 3. Update λ1s and λ2s:

λ
(t+1)
1i = min{max{λ1 min, λ

(t)
1i + ρthi(γ

∗(t+1))}, λ1 max} for i = 1, . . . , I,

λ
(t+1)
2j = min{max{0, λ

(t+1)
2j + ρtgj(γ

∗(t+1))}, λ2 max} for j = 1, . . . , J.

Step 4. if ‖γ∗(t) − γ∗(t−1)‖∞ ≥ εc, set t + 1→ t and go to Step 1; else stop. �
Similar to what has been performed for (10), a likelihood ratio test can be performed

to investigate the overall genetic effects represented by a block of SNPs in contiguous
genomic regions. However, the null and alternative hypotheses in (10) are updated with
regard to the new parameter space and imposed constraints, as follows:

H0 : γ+
d1×1 = 0 and γ−d2×1 = 0.

Ha : B+γ+ ≥ 0, B−γ− ≤ 0, (B+γ+) ◦ (B−γ−) = 0
(28)
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Since we constrained that the Hadamard product of sign-specific coefficient func-
tions is 0, at least one basis coefficient in the positive or negative part would be con-
strained to zero. Therefore, the dimension of the alternative parameter space should be
K = max(d1, d2). According to [22,23], it has been shown that in nonlinear optimization,
the alternative parameter space Ω can be approximated at the null estimate by a polyhedral
convex cone defined by the gradient vectors of the constraint functions. If the uncon-
strained true parameter value is an interior point of Ω, the test statistic has an asymptotic
χ2

K distribution under H0. Otherwise when the unconstrained parameter estimate does
not fall in the admissible parameter space, the test statistic is defined by the projection
of the unconstrained estimate on the k-dimensional boundary of Ω taken metrics according
to the Hessian matrix I(γ∗), and it may follow an asymptotic χ2

k distribution under H0
(k = 0, . . . , K − 1). Therefore, the LRT statistic asymptotically follows a mixture of chi-
square distributions with mixing probabilities wj such that ∑K

j=0 wj = 1, denoted as

χ̄2 = −2(l0 − l1)
d−→

K

∑
j=0

wjχ
2
j . (29)

For any c ∈ R, the p-value of the χ̄2 test statistic is defined as

Pr(χ̄2 ≥ c2) =
K

∑
j=0

wjP(χ2
j ≥ c2). (30)

The mixing probabilities can be calculated using Monte Carlo techniques. The algo-
rithm is given as follows: (1) Take 1000 draws from a multivariate normal distribution
with mean zero and covariance matrix equaling to the Hessian matrix I(γ∗); (2) for each
draw compute and count the number of sign-agree elements of the vectors that fall in
the k-dimensional boundaries (k = 0, . . . , K) of the admissible parameter space. In this
case wj is computed as the proportion of the 1000 draws in which it has exactly k non-zero
coefficients projected on the alternative parameter space. The Monte Carlo technique is
easy to implement and able to circumvent complicated numerical integrations.

The LRT can be adapted to the constrained functional coefficients (cGFLM-ZINB)
model as follows. Since the parameter estimation is conducted with two independent sets
of constraints, the hypothesis test consists of two parts as well, one for the latent Bernoulli
distribution and one for the NB distribution.

H0 : γBer+
dBer1×1 = 0 and γBer−

dBer2×1 = 0, γNB+
dNB1×1 = 0 and γNB−

dBer2×1 = 0.
Ha : BBer+γBer+ ≥ 0, BBer−γBer− ≤ 0, (BBer+γBer+) ◦ (BBer−γBer−) = 0

BNB+γNB+ ≥ 0, BNB−γNB− ≤ 0, (BNB+γNB+) ◦ (BNB−γNB−) = 0
(31)

Assuming that we used the same number of spline bases for both positive and negative
coefficient functions, we have dBer and dNB degrees of freedom for the latent Bernoulli and
the negative binomial models. Since a mixture of chi-square distributions (chi-bar test) is
needed for each model, the overall LRT statistic for the above test then follows a mixture
of mixture of chi-square distributions. Letting the mixing probabilities be wBer

j and wNB
k

for Bernoulli and NB models and ∑dBer
j=0 wBer

j = 1 and ∑dNB
k=0 wk = 1, we have

χ̄2
ZINB = −2(l0 − l1)

d−→
dBer

∑
j=0

wBer
j χ2

j +
dNB

∑
k=0

wNB
k χ2

k . (32)

The p-value of the χ̄2 test statistic is then

Pr(χ̄2
ZINB ≥ c2) = ∑

j,k
wBer

j wNB
k P(χ2

j+k ≥ c2). (33)
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5. Simulation Studies

To study the statistical properties of the proposed cGFLM, we carried out simulations
under different sampling schemes. Genotypic data were simulated under two settings: (1)
random LD block with varying structures [9,11], and (2) LD block of gene CHRNA7 [24]
borrowed from an existing data (COGEND, the Collaborative Genetic Study of Nicotine
Dependence), which represents a real-data genomic structure. For the phenotypes, we
considered traits following either a binomial or ZINB distribution. Sample sizes were set
to range from 500 to 2000.

To investigate whether cGFLM can correctly control type I error, βcausal was set to be
zero under the null hypothesis. For empirical power evaluation, we examined two differ-
ent scenarios. First, we assumed only one causal SNP was located in the LD block, with
varying βcausals. Then we considered another interesting setting when two causal loci with
reversed sign effects are located in the same LD block, which mimics the scenario when
both deleterious and protective SNPs exist in a genomic region. The two causal loci chosen
were weakly correlated (r2 < 0.01). The corresponding regression coefficients were set to
be (βcausal1, βcausal2) where βcausal1 = −βcausal2. In this case, we plan to examine if the pro-
posed test can deal with sign-heterogeneous genetic effects. Causal SNPs were removed
before analyses to mimic the real data setting that causal SNPs may not be genotyped.

In terms of functional parameters, the order of B-spline basis was set to 4 (degree = 3)
to construct cubic curves with desired smoothing properties. Knots were placed evenly
in the position domain. In general, the number of spline bases would be determined
according to the number of SNPs (p) in an LD block. Data-adaptive choices for the number
or the placement of knots can be made via cross-validation, but for simplicity we will not
provide further discussions here. Empirically, we suggest using the maximum of 4 and
the integer part of p/6 as the number of bases so that it is possible to capture clustering
genetic effects in the fitted function. Sensitivity analyses using a broad range of parameters
were performed to make sure our results are robust.

Because the simulation results using the random LD blocks and the LD block structure
from CHRNA7 gene are very similar, here we only show results with the random LD blocks,
whereas the results with the CHRNA7 gene are located in Appendix A (Tables A1 and A2,
Figures A1–A6). For a random LD block, all SNP genotypes within it were generated
following the strategy introduced in [9,11]. Briefly, genotypes of p SNPs were generated
based on a random p-dimensional multivariate normal matrix ζn×p with mean 0 and
covariance Σp×p. Assuming that SNPs have equal allele frequencies, the following rule
would be applied to generate the genotype of the jth SNP for the ith subject. Let z0.25 be
the third quartile of standard normal distribution, we have:

Xij =


0, if ζij < −z0.25.
1, if −z0.25 ≤ ζij < z0.25.
2, if ζij ≥ z0.25.

(34)

The covariance matrix was defined as follows. For each block, 10% of the SNPs were
selected as “tag SNPs”. They were highly correlated with each other (Corr(Xj1, Xj2) = 0.8),
moderately correlated with 30% of other SNPs (Corr(Xj1, Xj2) = 0.5), and weakly correlated
with the remaining 60% SNPs (Corr(Xj1, Xj2) = 0.2). The correlations among the 90% “non-
tag” SNPs are determined by their physical locations (Corr(Xj1, Xj2) = 0.7|j1−j2|). In this
case, we would not violate the assumptions that SNPs are physically adjacent and linked.
Further, the LD block structures vary among different randomly generated arrays.

5.1. Simulation Using Binary Traits

The following binary outcomes were simulated based on causal genotypes under
the logit model:
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logit(µ(yi)) = log
Pr(yi = 1)

1− Pr(yi = 1)
= α0 + X>i βcausal (35)

We considered simulation scenarios where α0 = 0.2. Each scenario was replicated
10,000 times in order to observe the type I error rates under small genome-wide thresholds
(nominal α = 0.05, 0.01, 0.005 and 0.001). We ran 1000 replicates for each scenario for power
evaluation, in which a p-value smaller than 0.05 would be declared for significance.
We compared the empirical power of our proposed model with three existing methods:
single marker association test (smAT), SKAT for the combined effect of rare and common
variants (SKAT-C) and the functional linear model (GFLM). p-values for smAT were ad-
justed by Bonferroni correction, and p-values for SKAT-C and GFLM were calculated by
combined sum test and χ2 test.

We can see from Table 1 that cGFLM can effectively maintain the type I error. Evaluation
of empirical power was based on settings when regression coefficient βcausal = 0.1, 0.2, 0.3, 0.4
or 0.5. For power calculation with single causal locus, we used the same settings as that in
type I error simulation. When causal SNPs were not genotyped, we can see from Figure 1
that the cGFLM showed better power than all other methods. In the second scenario when
two causal loci had reverse-sign effects, we included more SNPs in a block so that it would
be possible to locate two weakly correlated markers within the region. We used p = 25 SNPs
in a group and d1 = d2 = 4 as the number of spline bases. From Figure 2, we can see that
cGFLM consistently demonstrates better power than other methods.

Figure 1. Power simulation for binary outcomes based on random LD blocks, single causal locus.
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Figure 2. Power simulation for binary outcomes based on random LD blocks, two reverse-sign causal loci.

Table 1. Type I error simulation using cGFLM for binary outcomes based on randomly generated LD
blocks.

Nominal α N = 500 N = 1000 N = 1500 N = 2000

0.05 0.0500 0.0473 0.0466 0.0482
0.01 0.0109 0.0076 0.0099 0.0082
0.005 0.0054 0.0045 0.0046 0.0033
0.001 0.0010 0.0009 0.0011 0.0006

The association patterns of a sample simulation are presented in Figure 3. For smAT,
a modified Manhattan plot of the −log10 ( p-values) by the sign of the fitted coefficients
is used. For all other methods, the coefficient estimates are plotted. The causal loci is
highlighted with dashed lines (left in red for positive effect, right in blue for negative effect).
Compared to smAT and cGFLM, the cGFLM fitted coefficient function is more reasonable
and correctly identify the causal loci.
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Figure 3. Illustration of fitted genetic mapping patterns using different models. A modified Manhattan plot of the −log10
(p-values) by the sign of the fitted coefficients is used for smAT. For all other methods, the coefficient estimates are plotted.
The causal loci is highlighted with dashed lines (left in red for positive effect, right in blue for negative effect).

5.2. Simulation Using ZINB Traits

In this case, we simulate phenotypic traits conditional on causal genotypes under
the following ZINB model:

logit(πi) = log
πi

1− πi
= αBer

0 + X>i βBer
causal

log(µi) = αNB
0 + X>i βNB

causal

(36)

The outcomes are generated with the latent mixture process as discussed in Section 3.
The intercepts, αBer

0 and αNB, were set to be 0.0 in all subsequent simulations. βcausal
was set to zero under the null hypothesis in the evaluation of type I error. Since the compu-
tational burden for ZINB models is much higher than that in the binary outcome model,
we reduced the replicated times to 1000 times for each scenario. Type I error rates were
investigated under small genome-wide thresholds (nominal α = 0.05, 0.01 and 0.005).
For assessment of empirical power, we used similar settings as those in the simulation
for binary traits. However, we examined two general scenarios where the genetic effect is in
either the latent Bernoulli or the negative binomial models. Then for each general scenario,
we first set only one causal SNP in the LD block, affecting either βBer

causal or βNB
causal . Then we

considered two causal loci with reversed sign effects in the LD block. The two causal loci
chosen were weakly correlated (r2 < 0.01). The corresponding regression coefficients were
set to (βBer

causal1, βBer
causal2), or (βNB

causal1, βNB
causal2) where βcausal1 = −βcausal2. A total of 100 repli-

cates were run for each scenario. We compared the empirical power of our proposed
model cGFLM-ZINB with three existing methods: functional linear model with negative
binomial traits (GFLM-NB), single marker association test with ZINB traits(smAT-ZINB)
and functional linear model with ZINB traits (GFLM-ZINB). p-values for smAT-ZINB
were adjusted by Bonferroni correction, and p-values for GFLM-NB and GFLM-ZINB were
calculated by the likelihood ratio tests.

Table 2 demonstrated that the proposed cGFLM maintains the type I errors very well.
Evaluation of empirical power is based on settings with regression coefficients ranging
from 0.1 to 0.5 and sample sizes from 500 to 2000. When the genetic effect was set to be in
the latent Bernoulli model, we can observe the apparent failure of using a negative binomial
(NB) regression model, by looking at the significantly lower power when using the GFLM-
NB model compared with other models in Figures 4 and 5. This fortifies our assumption
that using a simple NB distribution will lead to loss of power when modeling genetic
effects affecting excess zero in zero-inflated count process. While using ZINB models,
similar performances were observed for smAT-ZINB, GFLM-ZINB and cGFLM-ZINB
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(see Figures 6 and 7). The figures demonstrate that ZINB models are more advantageous
than the NB regression model when excessive zeros exist. More importantly, the cGFLM-
ZINB model consistently shows the best performance among the tested models, in scenarios
when one causal locus and two causal loci were set in the LD block. Collectively, these
simulations demonstrate the advantages and robustness of our proposed cGFLM model.

Table 2. Type I error simulation using cGFLM-ZINB for ZINB outcomes based on randomly generated
LD blocks.

Nominal α N = 500 N = 1000 N = 1500 N = 2000

0.05 0.055 0.046 0.051 0.040
0.01 0.009 0.009 0.012 0.007
0.005 0.003 0.007 0.008 0.004

Figure 4. Power simulation for ZINB outcomes based on random LD blocks, single causal locus, effect in latent Bernoulli
distribution.
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Figure 5. Power simulation for ZINB outcomes based on random LD blocks, two causal loci, effect in latent Bernoulli
distribution.

Figure 6. Cont.
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Figure 6. Power simulation for ZINB outcomes based on random LD blocks, single causal locus, effect in NB distribution.

Figure 7. Power simulation for ZINB outcomes based on random LD blocks, two causal loci, effect in NB distribution.
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We then applied the cGFLM model to two independent studies to assess its practical
usage. The first dataset is a candidate-gene-based SNP study and the other is a GWAS
for dental caries.

6. Application 1: COGEND Study

According to the World Health Statistics Report [25], cigarette smoking is the single
biggest cause of preventable mortality worldwide, causing more than 5 million deaths
per year and accounting for one in 10 adult deaths. Nicotine dependence, the primary
psychoactive component in tobacco, profoundly impacts people’s ability to cease tobacco
smoking. The etiology of nicotine dependence is multifactorial, and evidence from various
epidemiology studies suggest that genetic factors have a substantial impact on smoking be-
haviors. Identification of these genetic factors and the development of targeted treatments
could be promoted to further reduce smoking related morbidity and mortality.

The Collaborative Genetic Study of Nicotine Dependence (COGEND) is a nationwide
project aiming to detect the genetic mechanisms and environmental features of nicotine
dependence. In this study on CHRN candidate genes, a total of 216 SNPs were genotyped
for 2022 individuals (1114 cases with nicotine dependence and 908 controls). In the pheno-
typic data, all cases and controls were current or former smokers who reported smoking
more than 100 cigarettes lifetime. Rates of current nicotine dependence were defined by
the Fagerstrom Test for Nicotine Dependence (FTND). Subjects having FTND ≥ 4 were
classified as nicotine dependent (case). Subjects having lifetime FTND = 0 or 1 were
classified as control. The original SNP set was divided into 12 LD blocks according to their
physical locations and LD structure, all of which consist of one or more contiguous gene
regions. Since functional models are not well-suited for LD blocks having small number
of SNPs, four small blocks with fewer than seven SNPs were excluded for analyses. We
applied our proposed method cGFLM, along with smAT, SKAT-C and GFLM to analyze
the final dataset, which consists of 191 SNPs in eight LD blocks. Age, gender and race were
included as covariates. A Bonferroni significance threshold of 0.05/8 = 6.2× 10−3 is used
for cGFLM, GFLM and SKAT-C, and a threshold 0.05/191 = 2.6× 10−4 is used for smAT.

Table 3 summarizes the results. All four methods yielded small p-values (cGFLM:
5.25× 10−6; GFLM: 8.24× 10−6; SKAT-C: 1.7× 10−3; smAT: 1.72× 10−4) for the CHRNA5
cluster (“IREB2 + LOC123688 + PSMA4 + CHRNA5 + CHRNA3 + CHRNB4” gene cluster) on
chromosome 15. However, only cGFLM and SKAT-C showed significance for the “CHRNB3
+ CHRNA6” gene cluster (cGFLM: 8.67× 10−4; SKAT-C: 1.3× 10−3). For these two blocks,
p-values calculated by cGFLM are much smaller than those calculated by other methods. It is
also worth mentioning that both gene clusters have been shown to be associated with nicotine
dependence in previous studies [26–29]. Other LD blocks (candidate gene clusters) are not
significantly associated with the phenotypic trait in this cohort.

Table 3. Association tests for COGEND study based on LD blocks using single-marker association tests with Bonferroni
correction (smAT), SKAT-C, GFLM and cGFLM.

p-Value LD Block CHR Length # of p-Value

(Genes) (kb) SNPs cGFLM smAT SKAT-C GFLM

CHRND 2 43 10 0.0990 0.4818 0.1920 0.1321
CHRNA9 4 20 11 0.4308 0.7580 0.3941 0.3915
CHRNA2 8 31 11 0.7078 0.7596 0.5698 0.8036

CHRNB3 + CHRNA6 8 101 25 8.67× 10−4 0.0064 0.0013 0.0033
CHRNA7 15 126 39 0.2759 0.3382 0.6078 0.5587

CHRNA5 cluster 15 212 72 5.25× 10−6 1.72× 10−4 0.0017 8.24× 10−6

CHRNB1 17 84 14 0.0137 0.3975 0.0274 0.0602
CHRNA4 20 17 9 0.0556 0.1134 0.0255 0.1409



Stats 2021, 4 566

7. Application 2: Whole Genome Association Study for Dental Caries

More than 40% children and adolescents, and 90% adults in the US are being affected
by dental caries, or more commonly known as tooth decay. Multiple factors are considered
to contribute to the risk of having dental caries, such as some environmental factors and
social behaviors [30–32]. Evidence has shown that some individuals are more susceptible
to caries while some others are more resistant, almost irrelevant to the environmental risk
factors they are exposed to, suggesting that genetic factors may play crucial roles in the risk
of developing caries [33]. According to several previous studies, the heritability of dental
caries were evaluated to be as high as 60%.

To better understand the genetic mechanisms of the risk of dental caries, a GWAS
study has been conducted as part of the Gene Environment Association Studies initiative
(deposited in dbGaP Study Accession: phs000095.v2.p1) [4,34]. A total of 4020 individuals
were genotyped with a large panel of SNPs (610,000) and examined with multiple outcomes.
Our study focused on traits related to caries in permanent teeth. Two indexes, D1MFT
and D1MFS, which quantifies the total permanent tooth/surface caries with white spots,
were included in the analyses. Since the outcomes of interest were both count traits with
excess zeroes (Figure 8), the proposed methods, zero-inflated negative binomial model
(smAT-ZINB for single-marker tests) and its application with functional coefficient (GFLM-
ZINB and cGFLM-ZINB), were applied to the data set. The final analytic sample consists
of 1480 individuals with complete permanent teeth phenotypic data. Age, gender and total
number of teeth/surfaces were included as covariates in the analyses.

Figure 8. Histograms and fitted densities for traits D1MFT and D1MFS in dental caries study.

Tables 4 and 5 summarize the significant findings. The Manhattan plots for GWAS
scans using the ZINB model are presented in Figures 9 and 10. For genome-wide univariate
screening, a significance threshold of 1× 10−7 was used. For the LD block-based analysis,
a genome-wide significance threshold of 2.5× 10−6 was used. Several SNPs were identified
significantly associated with D1MFT and D1MFS in genome-wide scan, of which rs7990965
in chromosome 13 and rs1058595 in chromosome 10 demonstrate consistent significance
for both traits. In the LD block based association tests, the cGFLM-ZINB model identified
two significant genetic regions: PKDCC in chromosome 2 ( both traits), and the inter-
genic region between DCN and BTG1 in chromosome 12 (D1MFS). It is worth mentioning
these two genetic regions cannot be identified by other competing methods, suggesting
that the cGFLM model may provide potentially new insights into understanding the risk
of dental caries. More interestingly, the gene PKDCC was found to be associated with cran-
iofacial morphogenesis in previous dental studies [35], further supporting and validating
the biological significance of our findings.
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Table 4. Significant findings for dental caries GWAS scanning using single-marker association tests
based on the ZINB model.

Trait: D1MFT

SNP ID CHR Gene MAF p-Value

rs7990965 13 - 0.033 1.02× 10−12

rs1058595 10 PHYH 0.063 2.52× 10−9

rs12344120 9 - 0.029 4.79× 10−8

rs4694666 4 MTHFD2L 0.135 5.48× 10−8

rs17078140 3 LIMD1 0.029 5.77× 10−8

rs9893536 17 USP32 0.091 8.80× 10−8

rs7334525 13 RFC3 0.093 9.52× 10−8

Trait: D1MFS

SNP ID CHR Gene MAF p-Value

rs7990965 13 - 0.033 2.40× 10−10

rs1058595 10 PHYH 0.063 3.29× 10−9

Table 5. Significant findings for dental caries association tests based on LD blocks (gene clusters)
using the ZINB model (smAT-ZINB with Bonferroni correction, GFLM-ZINB, cGFLM-ZINB).

Trait:
D1MFT

LD Block CHR Length # of p-Value

(Genes) (kb) SNPs cGFLM GFLM smAT

PKDCC 2 70 18 8.41× 10−7 8.06× 10−5 4.17× 10−5

Trait:
D1MFS

LD Block CHR Length # of p-Value

(Genes) (kb) SNPs cGFLM GFLM smAT

Intergenic between
DCN and BTG1 12 70 21 6.07× 10−7 5.92× 10−6 4.41× 10−3

PKDCC 2 70 18 1.38× 10−6 1.59× 10−4 7.73× 10−6

Figure 9. Genome-wide scanning for trait D1MFT using single-marker association tests based on
the ZINB model.
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Figure 10. Genome-wide scanning for trait D1MFS using single-marker association tests based on
ZINB model.

8. Discussion

Joint analyses of multiple contiguous SNPs, which can form an LD block, are ex-
pected to provide better inference about unknown causal variants, since these SNPs all
carry partial information about the causal variants and collectively they should be more
powerful. In principle, LD between genetic loci should decline with their intervening
physical distance, given that more cross-over events occur within longer ranges. Therefore,
how to effectively incorporate and take full advantage of the distance/alignment order
information of these SNPs is an important yet challenging problem. While FLMs seem
to provide a good solution, its estimated coefficient function is usually noisy and hard to
interpret, which consequently leads to potential power loss. Improvements to existing
methods are then of great interest in order to better detect significant genetic variants.

In this article, we proposed a novel cGFLM for flexible and more reasonable multi-loci
mapping strategy. Our model is built upon the general FLM framework by imposing
constraints to specify sign-specific effects. Our limited simulations suggest that these
constraints encourage spatial sparsity in the estimated coefficient function, which needs to
be further validated in other experimental settings. Due to these constraints, the likelihood
ratio test statistic does not follow a fixed chi-square distribution, but a null weighted
mixture of chi-square distributions. The simulation results show that compared to three
competing methods, our proposed cGFLM generally demonstrated better power when
effect size is moderate and large, and comparable performance when effect size is small,
while at the same time maintaining correct type I errors.

Applications of the cGFLM to two real datasets demonstrate the applicability of our
method. Particulary, its application to the GWAS of dental caries risk identifies new
genetic regions that are have not been discovered before, validating that our method can
potentially provide new insights into large-scale genomic studies. However, it is also
important to note that some significant SNPs identified by other methods were missed
by cGFLM as well. This is likely because in cGFLM, identification of significant SNPs is
based on the collective evidence of a group of linked SNP, and in the case of causal SNPs
being weakly linked to its neighboring SNPs, our methods may miss them. Additionally,
cGFLM inherently would not work well for variants not in LD with neighboring SNPs,
such as singletons and doubletons. Therefore, these observations suggest that our method
should be considered as an additional approach in our toolbox for more discoveries, while
not replacing existing ones.

When the cGFLM method is applied to large-scale genome-wide scanning of LD blocks,
one concern is how to group SNPs into LD blocks. Several software, such as PLINK [36]
and LDExplorer [37], have embedded functions to define LD blocks for genomic data, and
we can utilize them to help partition the genome. Even with these tools, LD blocks can
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vary with different LD thresholds. That is, a weaker LD threshold can lead to larger LD
blocks and vice versa. Another concern is about LD blocks with few SNPs, since they are
not suitable for functional analysis. They can be either combined into adjacent larger blocks
with weak LD, or can be just analyzed with those single-marker methods. Prospectively, in
order to discover the core subset of causal genes, further group selection among multiple
candidate blocks is of great interest, and regularization methods such as group LASSO
and group SCAD can be included as extensions to our current framework. Additionally,
in this study cGFLM only considers LD-based blocks for association analyses; however,
it would be also of great interest to see if cGFLM can be applied to gene-level analyses
as genes are functional units of the genome. Finally, if subpopulations exist in the genotypic
sample, stratification can be addressed in our model by including principal components
of population variation as additional covariates [38].

9. Conclusions

Our proposed GFLM, cGFLM and their related implementations with the ZINB
model (GFLM-ZINB, cGFLM-ZINB) are novel and complex methods. They are specifi-
cally designed for multi-loci mapping in naturally formed LD blocks. The models can
simultaneously incorporate multiple linked SNPs, including their physical alignments
and block-wide linkage structure, and make inference at the LD block level. Simulation
studies show that cGFLM and cGFLM-ZINB have desirable performances in terms of both
simpler coefficients functions and empirical power gain. The practical usage of cGFLM
is demonstrated with a candidate-gene study of nicotine dependence and a GWAS on
dental caries. Considering its flexibility and comprehensiveness, cGFLM would be a very
attractive method for future gene-based association studies.
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Appendix A. Simulation Results Using the LD Block Information in CHRNA7 Gene

Table A1. Type I error simulation using cGFLM for binary outcomes based on the CHRNA7 gene.

Nominal α N = 500 N = 1000 N = 1500 N = 2000

0.05 0.0508 0.0512 0.0493 0.0506
0.01 0.0100 0.0099 0.0102 0.0093
0.005 0.0056 0.0053 0.0048 0.0046
0.001 0.0011 0.0009 0.0011 0.0007

Table A2. Type I error simulation using cGFLM-ZINB for ZINB outcomes based on the CHRNA7 gene.

Nominal α N = 500 N = 1000 N = 1500 N = 2000

0.05 0.037 0.046 0.045 0.042
0.01 0.011 0.011 0.006 0.008
0.005 0.005 0.007 0.002 0.006
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Figure A1. Power simulation for binary outcomes based on the CHRNA7 gene, single causal locus.
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Figure A2. Power simulation for binary outcomes based on the CHRNA7 gene, two reverse-sign causal loci.
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Figure A3. Power simulation for ZINB outcomes based on the CHRNA7 gene, single causal locus, effect in latent Bernoulli
distribution.
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Figure A4. Power simulation for ZINB outcomes based on the CHRNA7 gene, two causal loci, effect in latent Bernoulli
distribution.
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Figure A5. Power simulation for ZINB outcomes based on the CHRNA7 gene, single causal locus, effect in NB distribution.
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Figure A6. Power simulation for ZINB outcomes based on the CHRNA7 gene, two causal loci, effect in NB distribution.
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