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Abstract: Without randomization of treatments, valid inference of treatment effects from observa-
tional studies requires controlling for all confounders because the treated subjects generally differ
systematically from the control subjects. Confounding control is commonly achieved using the
propensity score, defined as the conditional probability of assignment to a treatment given the
observed covariates. The propensity score collapses all the observed covariates into a single measure
and serves as a balancing score such that the treated and control subjects with similar propensity
scores can be directly compared. Common propensity score-based methods include regression
adjustment and inverse probability of treatment weighting using the propensity score. We recently
proposed a robust multiple imputation-based method, penalized spline of propensity for treatment
comparisons (PENCOMP), that includes a penalized spline of the assignment propensity as a pre-
dictor. Under the Rubin causal model assumptions that there is no interference across units, that
each unit has a non-zero probability of being assigned to either treatment group, and there are no
unmeasured confounders, PENCOMP has a double robustness property for estimating treatment
effects. In this study, we examine the impact of using variable selection techniques that restrict
predictors in the propensity score model to true confounders of the treatment-outcome relationship
on PENCOMP. We also propose a variant of PENCOMP and compare alternative approaches to
standard error estimation for PENCOMP. Compared to the weighted estimators, PENCOMP is less
affected by inclusion of non-confounding variables in the propensity score model. We illustrate the
use of PENCOMP and competing methods in estimating the impact of antiretroviral treatments on
CD4 counts in HIV+ patients.

Keywords: causal inference; double robustness; PENCOMP; variable selection; penalized spline

1. Introduction

Observational studies are important for evaluating causal effects, especially when
randomization of treatments is unethical or expensive. Valid inferences about causal effects
from observational studies can only be drawn by controlling for all confounders, that
is, pre-treatment variables that are related to both treatment allocation and the outcome,
because the treated subjects generally differ systematically from the control subjects. For
example, sicker HIV patients are more likely to take antiretroviral treatments to control
the virus when their CD4 cell counts drop too low. The CD4 cell count, a measure of
how well the immune system functions, is one clinical measure of the effectiveness of an
antiretroviral treatment. Direct comparison of the CD4 counts between the treated and the
control would lead to the false conclusion that antiretroviral treatments result in lower CD4
counts. Thus, to assess the effects of using antiretroviral treatments on the CD4 counts from
an observational study, such as the Multicenter AIDS Cohort study (MACS) [1], appropriate
statistical methods are needed to remove confounding by patient characteristics.

To deal with confounding by patient characteristics, the propensity score, the condi-
tional probability of assignment to a treatment given the observed covariates, is commonly
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used. Rosenbaum and Rubin (1983) [2] showed that controlling for the propensity score is
sufficient to remove bias due to differences in the observed covariates between treatment
groups. The propensity score summarizes the observed covariates into a single measure
and serves as a dimension reduction technique. Due to the balancing property of the
propensity score, the treated and control subjects with similar propensity scores can be
directly compared [2]. For example, in our application, because sicker patients were more
likely to be treated, we can adjust for that by controlling for the patient’s probability of
receiving treatment given all observed histories prior to treatment. After controlling for the
propensity score, the distribution of the observed covariates, in this case, the proportion
of sicker patients, will be similar between the treated and the control subjects, so the CD4
counts between the treated and the control subjects with similar propensity scores can
be compared.

More generally, propensity-score-based methods first estimate the probability of
treatment assignment given potential confounding variables, and then use the estimated
treatment probability in weighting, or as a predictor in regression models for the outcome
under alternative treatment assignments. Inverse-probability of treatment weighting
(IPTW) controls for confounding by weighting subjects by the inverse of the estimated
probability of receiving the observed treatment. The weights in effect create a pseudo-
population that is free of treatment confounders. The IPTW estimator is consistent if the
propensity score model is correct. Like IPTW, augmented IPTW estimation (AIPTW) uses
the estimated propensity score as a weight but incorporates predictions from a regression
model for the outcome. The AIPTW estimator consistently estimates causal effects if the
propensity score model is correctly, or the outcome model is correctly specified. Both IPTW
and AIPTW estimators are based on the Rubin (1974) [3] causal model framework. As
such, the estimators are consistent under the causal model assumptions that there is no
interference across units (stable unit treatment value assumption, SUTVA), that each unit
has a non-zero probability of being assigned to either treatment group (positivity) and
there are no unmeasured confounders (ignorability) [3]. Here, we mean robustness to
mis-specification of the covariates in regression models, rather than robustness to outliers
in the residuals. That might be achieved by replacing the assumption of normality in the
distribution of errors by a longer-tailed distribution, such as Student’s t [4].

Another recently developed method, Penalized Spline of Propensity Methods for
Treatment Comparison (PENCOMP), imputes missing potential outcomes using regression
models that include splines on the logit of the estimated probability to be assigned that
treatment, as well as other covariates that are predictive of the outcome. The idea is based
on the potential outcome framework of the Rubin causal model [3]. In the Rubin causal
model, potential outcomes are defined as potentially observable outcomes under different
treatments or exposure groups. Individual causal effects are defined as comparisons of
the potential outcomes for that subject. Only the potential outcome corresponding to
the treatment assigned is observed for any subject. Thus, causal inferences are based
on comparisons of the imputed and the observed outcomes. Under the Rubin causal
model assumptions, PENCOMP has a double robustness property for estimating treatment
effects [5]. Specifically, under these standard causal inference assumptions, PENCOMP
consistently estimates the causal effects if the propensity score model is correctly spec-
ified and the relationship between the outcome and the logit of the propensity score is
modeled correctly, or if the relationship between the outcome and other covariates is
modeled correctly.

In this paper, we study important, unresolved questions concerning how to generate
robust causal inferences from observational studies. As mentioned above, common ap-
proaches to robust causal inference involve fitting two models: (a) a propensity score model,
where the outcome is the indicator for which treatment is assigned and the predictors
are potential confounding variables; (b) the outcome model, which relates the outcome
to the treatment, and includes the propensity score as a predictor variable or as a weight,
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usually the inverse of the estimated propensity to be selected. Our paper concerns practical
strategies for how these regression models are specified.

For valid inferences, all true confounders should be included in the propensity score
model. Ideally, we would know the set of true confounders, but in observational studies
this information is rarely if ever known. Given this fact, the question of how to select
variables to be included in the propensity score model is important and controversial. Some
researchers have argued that all pre-treatment potential confounders should be included
in the propensity model prior to seeing the outcome data, to avoid “data snooping” and
mimic, as closely as possible, a randomized trial, where randomization occurs prior to
observing the outcomes [6].

On the other hand, this strategy may lead to inclusion of variables that are associated
with treatment selection but are not associated with the outcome and, hence, are not true
confounders; including them in the propensity score model can lead to highly inefficient
and non-robust inferences. The reason is the including these variables shrinks the overlap
region of the propensity score distributions for the treatments, leading to weighted esti-
mators that have extreme weights, or regression estimators that are vulnerable to model
mis-specification—for example, mis-specifying a nonlinear relationship as linear. Limiting
this problem argues that variable selection should consider the relationship between the
variable and the outcome, provided it is not done in a way that prejudices the estimated
treatment effect [7–10].

Another consideration is that including variables in the outcome model that are not
associated with treatment allocation—and, hence, are not true confounders—but are related
to the outcome can improve the efficiency of the causal estimate [11].

Our paper examines these aspects in detail with both simulation studies and an
application, and, offers a broad discussion with a lot of important takeaways for both
researchers who believe all pre-treatment confounders should be included and those who
believe variable selection is always necessary. Specifically, we examine the performance
of alternative confounder selection methods in PENCOMP, IPTW, and AIPTW, with and
without considering the relationships between the covariates and the outcome. We also
address issues of model selection and model uncertainty. For PENCOMP, we propose a
new variant based on bootstrap smoothing, also called bagging. For AIPTW and IPTW, we
consider an alternative approach for estimating standard errors and confidence intervals
that accounts for model uncertainty.

In Section 2, we describe estimands and causal inference assumptions. In Section 3, we
describe two versions of PENCOMP for estimating causal effects: one based on multiple
imputation, and the other based on bootstrap smoothing, and two estimation procedures
for AIPTW and IPTW. In Section 4, we describe model selection for the propensity score
model and the outcome model. In Section 5, we examine using simulation studies how
specification of propensity score model affects the performance of PENCOMP, AIPTW, and
IPTW. In Section 6, we illustrate our methods using the Multicenter AIDS Cohort study
(MACS) to estimate the effect of antiretroviral treatment on CD4 counts in HIV-infected
patients. We conclude with a discussion of the results and some possible future work.

2. Materials and Methods
2.1. Estimands and Assumptions

Let Xi denote the vector of baseline covariates, and Zi ∈ {0, 1} denote a binary
treatment with Zi = 1 for treatment and Zi = 0 for control, for subject i = 1, · · · , N,
respectively. Under Rubin’s potential outcome framework [3], causal effects at subject level
are defined as the difference between the potential outcome for a subject under treatment
and the potential outcome under control. Only one of the potential outcomes is observed
for each subject. Let YZi

i be the potential outcome under treatment Zi. Here, we focus on
inference about the average treatment effect (ATE), E(Y1 − Y0), obtained by averaging
subject-level causal effects across the entire population of interest.

We make the following assumptions in order to estimate causal effects.
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(1) The stable unit-treatment value assumption (SUTVA) states that (a) the potential
outcome under a subject’s observed treatment is precisely the subject’s observed
outcome. In other words, there are no different versions of potential outcomes under
a given treatment for each subject, and (b) the potential outcomes for a subject are not
influenced by the treatment assignments of other subjects [12,13].

(2) Positivity states that each subject has a positive probability of being assigned to either
treatment of interest: 0 < Pr(Zi = zi | Xi) < 1, where Pr(Zi = zi | Xi) denotes the
probability of being assigned to the treatment zi, given the observed covariates xi.

(3) The ignorable treatment assumption states that (Y1
i , Y0

i ) ⊥⊥ Zi | Xi; that is, treatment
assignment is as if randomized conditional on the set of covariates Xi.

2.2. PENCOMP and Multiple Imputation

Because each subject only receives one treatment, we observe the potential outcome
under the observed treatment but not the potential outcome under the alternative treatment.
PENCOMP imputes the missing potential outcomes using regression models that include
splines on the logit of the estimated probability to be assigned that treatment, as well as
other covariates that are predictive of the outcome. We then draw inferences based on
comparisons of the imputed and observed outcomes. PENCOMP, which builds on the
Penalized Spline of Propensity Prediction method (PSPP) for missing data problems [14,15],
relies on the balancing property of propensity score, in combination with the outcome
model. Under the assumptions stated above, PENCOMP has a double robustness property
for causal effects. Specifically, if either (1) the model for the propensity score and the
relationship between the outcome and the propensity score are correctly specified through
penalized spline, or (2) the outcome model is correct, the causal effect of the treatment will
be consistently estimated [5].

Here, we briefly describe the estimation procedures for PENCOMP based on multiple
imputation with Rubin’s combining rules [16].

(a) For d = 1, · · · , D, generate a bootstrap sample Sd from the original data S by sampling
units with replacement, stratified based on treatment group. Then, carry out steps
(b)–(d) for each sample Sd:

(b) Select and estimate the propensity score model for the distribution of Z given X, with
regression parameters α. The estimated probability to be assigned treatment Z = z
is denoted as P̂z(X) = Pr(Z = z|X, α̂d), where α̂d is the ML estimate of α. Define
P̂∗z =log[P̂z(X)/(1− P̂z(X))].
In practice, it is often unknown how treatments are assigned to subjects. There are
several approaches that can be used to select the covariates to be included in the
propensity score model. One approach is to include all the potential confounders
from a large collection of pretreatment variables. Variables might also be selected
based on how well they predict the treatment assignment. Lastly, variables can be
selected based on how well they are predictive of the outcome, whether they are
related to the treatment. For a binary treatment, a logistic regression is often used to
model the treatment assignment.

(c) For each z = 0, 1, use the cases assigned to treatment group z to estimate a normal
linear regression of Yz on X, with mean

E(Yz|X, Z = z, θz, βz) = s(P̂∗z |θz) + gz(X; βz).

s(P̂∗z|θz) denotes a penalized spline with fixed knots [17–19], indexed by parameters
θz, and gz() represents a parametric function of covariates predictive of the outcome,
indexed by parameters βz. The spline model can be formulated and estimated as a
linear mixed model [19].

(d) Impute the missing potential outcomes Yz for subjects in treatment group 1− z in
the original dataset S with draws from the predictive distribution of Yz given X from
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the regression in (c), with ML estimates θ̂d
z , β̂d

z substituted for the parameters θz, βz,
respectively. Repeat the above procedures to produce D complete datasets.

(e) Let ∆̂d and Wd denote the difference in treatment means and associated pooled
variance estimate, based on the observed and imputed values of Y in each treatment
group. The MI estimate of ∆ is then ∆̄D = 1

D ∑D
d=1 ∆̂d, and the MI estimate of the

variance of ∆̄D
TD = W̄D + (1 + 1/D)BD, (1)

where W̄D = ∑D
d=1 Wd/D, BD = ∑D

d=1

(
∆̂d − ∆̄D

)2
/(D − 1). The estimate ∆ is t

distributed with degree of freedom v, (∆ − ∆̄D)T
−1
2

D ∼ tv, where v = (D − 1)(1 +
W̄D/((D + 1) ∗ BD))

2.

2.3. PENCOMP and Bagging

As an alternative to multiple imputation combining rules, we can draw inference about
the ATE using the bagging estimator, a form of model averaging that accounts for model
uncertainty. Let S = (S1, S2, · · · , SN) denote the original dataset consisting of N subjects.
A nonparametric bootstrap sample with replacement is denoted as Sd = (Sd

1 , Sd
2 , · · · , Sd

N).
The procedures for PENCOMP are similar as described above, except in step (e). In step (e),
the imputations are carried out on each bootstrap sample Sd, instead of the original data S.

(a) For d = 1, · · · , D, generate a bootstrap sample Sd. Repeat steps (b)–(d) for each
bootstrap sample Sd to produce D complete datasets.

(b) Select and estimate the propensity score model as described in Section 2.2 (b).
(c) Estimate the outcome model Yz on X and a penalized spline on the logit of the

propensity to the treatment z using the cases assigned to treatment z.
(d) Impute the missing potential outcomes Yz for subjects in treatment group 1− z in the

bootstrap sample Sd with draws from the predictive distribution estimated in (c).
(e) Let ∆̃ and s̃dD denote the estimate and standard error of the causal effect, respectively.

The causal estimate ∆̃ = ∑D
d=1 ∆̂d

s /D, where ∆̂d
s is the mean difference in the potential

outcomes obtained from bootstrap sample Sd. The standard error s̃dD is calculated as
follows.

s̃dD = (
N

∑
j=1

ˆcov2
j )

1/2 (2)

ˆcovj =
D

∑
d=1

(Q∗dj −Q∗.j)(∆̂
d
s − ∆̃)/D,

where Q∗.j = ∑D
d=1 Q∗dj/D and Q∗dj = #{Sd = Sj} is the number of times that observa-

tion j of the original data S was selected into the dth bootstrap sample Sd [20]. ˆcovj

estimates the bootstrap covariance between Q∗dj and ∆̂d
s . To estimate the standard error

of the smoothed bootstrap causal estimate, a brute force approach would be to use a
second level of bootstrapping that requires an enormous number of computations.
The formula provides an approximation to such an estimate of the standard error.

Inference is made using the bootstrap smoothed estimator ∆̃ and confidence interval
∆̃± 1.96s̃dD, instead of the Rubin’s multiple imputation combining rules.

2.4. Inverse Probability Treatment Weighted Estimator IPTW

Unlike PENCOMP, IPTW does not impute potential outcomes but uses only the
observed outcomes. IPTW controls for confounding by weighting subjects based on their
probabilities of receiving their observed treatments. Let P̂1(Xi, α̂) denote the estimated
probability of being assigned to treatment Zi = 1 given the set of observed covariates
Xi = xi, obtained from the propensity score model for the distribution of Zi given Xi = xi,
with regression parameters α̂. The treated subjects are assigned weights 1/P̂1(Xi, α̂), and
the control subjects are assigned weights 1/{1− P̂1(Xi, α̂)}. Thus, the subjects who are
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under-represented in a given treatment arm are given higher weights. The weights in
effect create a pseudo-population where treatment groups are balanced with respective to
covariate distributions. The IPTW estimator is consistent if the propensity score model is
correct under the assumptions stated in Section 2.1.

The IPTW estimator is defined as

∆̂IPTW =
N

∑
i=1

ZiYi

P̂1(Xi, α̂)
−

N

∑
i=1

(1− Zi)Yi

1− P̂1(Xi, α̂)
.

Let ∆̂IPTW denote the causal estimate on the original data S. Here, we consider bootstrap
methods for computing its standard errors and confidence intervals. The procedures are
as follows.

(a) For d = 1, · · · , D, generate a bootstrap sample Sd. Then, repeat steps (b)–(d) for each
sample Sd:

(b) Select and estimate the propensity score model as described in Section 2.2 (b).
(c) Compute ∆̂d

IPTW for each bootstrap sample Sd.
(d) Estimate the standard error ŝdIPTW,D for ∆̂IPTW based on D bootstrap samples as

ŝdIPTW,D =
D

∑
d=1

(∆̂d
IPTW − ∆̃IPTW)2/(D− 1), (3)

where ∆̃IPTW = ∑D
d=1 ∆̂d

IPTW/D. The standard 95% confidence intervals
∆̂IPTW ± 1.96ŝdIPTW,D. Alternatively, the bagging estimate of the causal effect is
∆̃IPTW and the 95% smoothed confidence interval is ∆̃IPTW ± 1.96s̃dIPTW,D, where the
smoothed standard error s̃dIPTW,D is computed based on Equation (2) [20].

2.5. Augmented Inverse Probability Treatment Weighted Estimator (AIPTW)

An alternative to IPTW is augmented IPTW estimation (AIPTW). AIPTW uses the
estimated propensity score as a weight like IPTW but also incorporates predictions from
a regression model for the outcome. Incorporating covariates predictive of the outcome
in the outcome model can improve efficacy and reduce variability, especially when the
weights are variable. The AIPTW estimator consistently estimates causal effects if the
propensity score model or the outcome model is correctly specified under the assumptions
stated in Section 2.1.

Each subject i is weighted by the balancing weight Wi = 1/
{

ZiP1(Xi, α̂) + (1 −

Zi)(1− P1(Xi, α̂))

}
. The AIPTW estimate is calculated on the original dataset S [21]:

∆̂AIPTW =
∑n

i=1{m1(Xi, β1)−m0(Xi, β0)}
n

+
∑n

i=1 WiZi{Yi −m1(Xi, β1)}
∑n

i=1 WiZi

−∑n
i=1 Wi(1− Zi){Yi −m0(Xi, β0)}

∑n
i=1 Wi(1− Zi)

,

where m1(Xi, β1) = E(Yi|Xi, Zi = 1, β1) and m0(Xi, β0) = E(Yi|Xi, Zi = 0, β0). Similar
procedures as in IPTW can be used to obtain point estimates and standard 95% confi-
dence intervals. Alternatively, the bagging estimate of the causal effect is ∆̃AIPTW and the
95% smoothed confidence interval ∆̃AIPTW ± 1.96s̃dAIPTW,D, can be obtained using the
smoothed standard error s̃dAIPTW,D from Equation (2) [20].

3. Model Selection

We consider scenarios where there are some pre-treatment variables that are predictors
of the outcome, some that are predictors of the treatment, some that are predictors of
both the treatment and the outcome, and some that are spurious, in the sense that they
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affect neither the treatment or the outcome. We consider two strategies for building the
propensity score model: (1) without seeing the outcome [6], and (2) taking into account the
relationships between the covariates and the outcome.

For strategy 1, one simple approach is to use the stepwise variable selection algorithm
with the Bayesian Information Criterion (BIC) to select the variables that are predictive
of the treatment, regardless of how well they predict the outcome. Separately, we use the
same stepwise algorithm to select the outcome model for PENCOMP and AIPTW. The
algorithm, abbreviated as SW, does not use outcome data and, hence, satisfies Rubin’s
recommendation of separating analysis from design.

In strategy 2, we use the outcome adaptive lasso approach proposed by Shortreed
and Ertefaie (2017) [9]. By penalizing each covariate according to the strength of the
relationship between the covariate and the outcome, the outcome adaptive lasso tends
to select covariates that are predictive of the outcome and excludes covariates that are
associated only with the treatment. The outcome adaptive lasso estimates for the propensity
score model are:

α̂OAL = argminα

n

∑
i=1
−Zi(XT

i α) + log(1 + eXT
i α) + λn

p

∑
j=1

ŵαj |αj|, (4)

where ŵαj = 1/|β̂ j|γ such that γ > 1 and minimizes the mean weighted standardized
difference between the treated and control. β̂ j is the coefficient estimate for covariate
Xj from ordinary least square or ridge regression by regressing the outcome Y on the
covariates and the treatment. Similarly, the outcome model can be selected via adaptive
lasso. The adaptive lasso estimates are given as follows [22].

β̂AL = argminβ||y−
p

∑
j=1

Xjβ j||2 + λ
p

∑
j=1

ŵj|β j|,

where ŵj = 1/|β̂ j|γ and γ > 0.
This method is subject to Rubin’s criticism. Excluding the treatment variable in the

regressions during variable selection might reduce the potential for biasing results.

4. Simulation

We simulate each dataset as described in Zigler and Dominici (2014) and Shortreed
and Ertefaie (2017) [9,23]. Each simulated dataset contains N subjects and p covariates
X. The treatment Z1 is Bernoulli distributed with logit of P(Z1 = 1|X) = ∑

p
j=1 αjXj.

The outcome of interest Y is normally distributed with a mean of ηZ1 + ∑
p
j=1 β jXj and

a variance of 1. The treatment effect η is equal to 2, without loss of generality. We
set all the coefficients 0, except the first 6 covariates X1, · · · , X6. X1 and X2 are true
confounders. X3 and X4 are predictors of the outcome only. X5 and X6 are predictors of
the treatment only. All the other d− 6 covariates are spurious. We vary the strength of the
relationships among the covariates, the outcome and the treatment. In the first scenario,
β and α are set as: β = (0.6, 0.6, 0.6, 0.6, 0, 0, 0, · · · , 0), and α = (1, 1, 0, 0, 1, 1, 0, · · · , 0).
In the second scenario, confounders X1 and X2 have a weaker relationship with the
treatment: β = (0.6, 0.6, 0.6, 0.6, 0, 0, 0, · · · , 0) and α = (0.4, 0.4, 0, 0, 1, 1, 0, · · · , 0). In the
third scenario, confounders X1 and X2 have a weaker relationship with the outcome:
β = (0.2, 0.2, 0.6, 0.6, 0, 0, 0, · · · , 0) and α = (1, 1, 0, 0, 1, 1, 0, · · · , 0). We also vary the sample
sizes: N = 200 and N = 1000.

We consider four different specifications of the propensity score model: (1) True in-
cludes the true propensity score model used to generate the data; (2) trueConf includes
only the true confounders; (3) outcomePred includes both the confounders and the pre-
dictors of the outcome; (4) allPoten includes all 20 variables. For these four specifications,
the outcome models for PENCOMP and AIPTW are correctly specified. In addition, we
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consider the following variable selection techniques for the propensity score model and
the outcome model.

(a) SW: stepwise variable selection algorithm with the Bayesian Information Criterion
(BIC) separately for the propensity score mode and the outcome model.

(b) OAL: outcome adaptive lasso [9] for the propensity score model, and adaptive lasso
for the outcome model [22].

(c) Step-ALT: outcome adaptive lasso for the propensity score model at the first stage
and then adaptive lasso for the outcome model at the second stage using only the
variables that are selected at the first stage.

(d) Step-ALY: adaptive lasso for the outcome model at the first stage and then logistic
regression model with all the variables selected at the first stage for the propensity
score model.

We evaluate the performance of the methods based on root mean squared error
(RMSE), empirical non-coverage rate of the 95% confidence interval, empirical bias, and
average length of 95% confidence intervals over 500 simulated datasets. For each dataset,
the standard errors and confidence intervals are estimated using 1000 bootstrap sam-
ples. Within PENCOMP, we compare the multiple imputation approach and the bagging
approach. Within AIPTW and IPTW, we compare the standard approach with the bag-
ging approach.

5. Results

Table 1 shows the results on RMSEs for sample size of 200. By comparing the four
propensity score models that were fixed within each bootstrap sample: true, trueConf,
outcomePred, and allPotent, we can see that excluding spurious variables or variables
that were associated only with the treatment reduced the RMSEs, and including variables
associated only with the outcome reduced the RMSEs. Incorporating the outcome model
as in PENCOMP and AIPTW attenuated the negative effect of including nonfounding
variables on RMSEs. For example, using the standard approach in scenario 1, IPTW had
RMSEs of 0.19, 0.22, 0.36, and 0.41 under outcomePred, trueConf, true, and allPotent,
respectively. AIPTW had RMSEs of 0.16, 0.16, 0.22, and 0.28, respectively. Using the
Rubin’s approach, PENCOMP had RMSEs of 0.16, 0.16, 0.21, and 0.21, respectively. Similar
patterns were observed in scenario 2 and 3.

Bagging reduced the RMSEs for IPTW and AIPTW, especially when irrelevant covari-
ates were included in the propensity score model, as in true and allPotent. The standard
approach and the bagging approach yielded similar RMSEs under outcomePred and true-
Conf but different RMSEs under true and allPotent. For example, in scenario 1 under
allPotent, IPTW had an RMSE of 0.34 when the bagging approach was used, but an RMSE
of 0.41 when the standard approach was used. AIPTW had an RMSE of 0.25 when the
bagging approach was used, but an RMSE of 0.28 when the standard approach was used.
PENCOMP had an RMSE of 0.22 when the bagging approach was used, but an RMSE of
0.21 when Rubin’s combining rule was used. For PENCOMP, the bagging approach had
slightly higher RMSEs than Rubin’s multiple imputation combining rule when many irrele-
vant variables were included as in allPotent. Similar patterns were observed in scenario 2
and 3.

The results in the variable selection cases were similar to the results without variable
selection. The outcome adaptive selection procedure, such as OAL, resulted in smaller
RMSEs than the variable selection procedure, such as SW, that selected variables solely
based on how well they predicted the treatment. Figure A1 in the Appendix A presents
the results on variable selection. For example, in scenario 1 with sample size of 200, all the
variable selection procedures selected the confounders X1 and X2 about 99% of the time.
OAL, Step-ALT, and Step-ALY selected the non-confounders X3 and X4 about 99% of the
time, while SW selected them about 40% of the time. OAL selected X5 and X6 about 30%
of the time; Step-ALT and Step-ALY about 8% of the time; and SW about 99% of the time.
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SW, OAL, Step-ALT, and Step-ALY selected spurious variables about 40%, 34%, 8%, and
8% of the times, respectively.

An outcome adaptive selection procedure can fail to select confounders that are weakly
associated with the outcome, as seen in scenario 3 in Figure A1 in the Appendix A. Similarly,
the stepwise variable selection algorithm can fail to select confounders that are weakly
associated with the treatment, as seen in scenario 2. Excluding weak confounders increased
the bias, as seen in Table A1 in the Appendix A. However, the reduction in variance by
excluding irrelevant variables when using outcome adaptive selection procedure could
offset the bias and the RMSEs could still be smaller, as seen in Table 1. For example, in
scenario 3, the empirical bias for IPTW was 0.146 (7%) under Step-ALT and 0.033 (2%)
under SW. The RMSE for IPTW was 0.24 under Step-ALT and 0.33 under SW.

If the chosen selection procedure selects many irrelevant variables, especially the ones
that are strong predictors of the treatment only, the bagging approach could reduce the
RMSEs for IPTW and AIPTW. For example, in scenario 3, IPTW had an RMSE of 0.33
under SW when the standard approach was used, and an RMSE of 0.28 when the bagging
approach was used. AIPTW had an RMSE of 0.25 under SW when the standard approach
was used, and an RMSE of 0.23 when the bagging approach was used. PENCOMP had an
RMSE of 0.21 under SW when the Rubin’s combining rule was used, and an RMSE of 0.22
when the bagging approach was used. In addition, performing variable selection within
each bootstrap sample could increase the chance that weak confounders were selected in
some bootstrap samples. Thus, in scenario 3, the bagging IPTW and AIPTW estimators
had smaller empirical biases. For example, the empirical bias for IPTW under Step-ALT
was 0.146 (7%) when the standard approach was used, but 0.083 (4%) when the bagging
approach was used.

Table 2 shows the results on coverage probability for sample size of 200. The bagging
approach tended to have coverage rates closer to the nominal coverage than the multiple
imputation approach (PENCOMP) and the standard approach (AIPTW, IPTW) for small
samples. The smoothed standard errors (SE) were closer the empirical SEs so the coverage
rates were closer the nominal 95% coverage, and confidence interval widths were smaller.
When there were many spurious variables in the propensity score model and/or when the
different models could be selected across bootstrap samples, the distribution of the boot-
strap estimates could become “jumpy and erratic”. Consequently, the bagging approach
provided tighter confidence intervals.

As the sample size increased to 1000, the gain of using bootstrap smoothing attenuated,
as seen in Tables 3 and 4. Using the standard approach of calculating the confidence
intervals in the case of IPTW and AIPTW, or using multiple imputation combining rules in
the case of PENCOMP, performed better than using the bagging approach. In large sample
sizes, each covariate had less impact on the estimates and the selected models across the
bootstrap samples were similar, so there was little variability in the bootstrap estimates.
In such scenario, bagging led to greater confidence interval widths and overcoverage.
In summary, bagging was advantageous when the sample size was small and the data
were noisy.

Overall, both PENCOMP and AIPTW had smaller RMSEs than IPTW. PENCOMP had
smaller RMSEs than AIPTW, when the propensity score model included many irrelevant
covariates. Even when there was no model selection, but the sample size was small, and
the propensity score model included many irrelevant variables, especially variables that
were strong predictors of the treatment only, the bagging approach could stabilize the
IPTW and AIPTW estimators.
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Table 1. 1000× RMSE with sample size of 200. The treatment effects η = 2. S1, S2, and S3 denote
scenario 1, 2, and 3, respectively.

1000 × Empirical RMSE

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 215 190 215 278 242 278 412 313 344
Bagging allPotent 221 196 221 251 232 251 344 294 299

Standard/Rubin true 207 189 207 222 203 222 356 291 308
Bagging true 207 190 207 206 193 206 329 278 286

Standard/Rubin outcomePred 159 142 159 163 143 163 187 145 171
Bagging outcomePred 159 142 159 161 143 161 186 145 170

Standard/Rubin trueConf 159 143 159 161 144 161 219 186 209
Bagging trueConf 159 143 159 159 144 159 219 186 208

Standard/Rubin SW 214 194 213 249 231 250 382 317 327
Bagging SW 217 196 216 230 217 230 326 280 283

Standard/Rubin OAL 177 166 183 183 172 193 217 180 202
Bagging OAL 178 167 184 179 168 185 206 178 193

Standard/Rubin Step-ALT 164 149 181 165 145 234 189 147 242
Bagging Step-ALT 164 148 181 166 149 182 189 151 188

Standard/Rubin Step-ALY 164 148 182 164 145 236 187 146 246
Bagging Step-ALY 164 148 182 166 149 183 190 150 191

Table 2. 1000× noncoverage rate (5%) with sample size of 200. The nominal coverage is 95%. The
treatment effects η = 2. S1, S2, and S3 denote scenario 1, 2, and 3, respectively.

1000 × Noncoverage Rate

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 8 16 8 16 16 16 14 14 8
Bagging allPotent 34 40 34 42 52 42 60 28 40

Standard/Rubin true 16 34 16 44 52 44 74 64 60
Bagging true 32 36 32 34 38 34 66 62 50

Standard/Rubin outcomePred 28 36 28 44 44 44 56 40 58
Bagging outcomePred 24 26 24 36 32 36 48 28 48

Standard/Rubin trueConf 30 40 30 40 46 40 54 38 34
Bagging trueConf 24 30 24 32 42 32 38 20 30

Standard/Rubin SW 6 18 6 10 20 10 12 12 14
Bagging SW 32 38 32 38 54 42 60 42 46

Standard/Rubin OAL 16 26 20 20 32 24 18 16 24
Bagging OAL 30 40 32 38 38 36 38 30 38

Standard/Rubin Step-ALT 24 26 32 36 36 96 40 22 106
Bagging Step-ALT 24 24 46 38 30 56 44 32 66

Standard/Rubin Step-ALY 24 26 34 32 34 104 36 22 108
Bagging Step-ALY 26 22 54 36 30 58 44 30 66
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Table 3. 1000× RMSE with sample size of 1000. The treatment effects η = 2. S1, S2, and S3 denote
scenario 1, 2, and 3, respectively.

1000 × Empirical RMSE

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 94 81 94 130 93 130 180 112 146
Bagging allPotent 95 81 95 122 92 122 172 111 142

Standard/Rubin true 94 80 94 117 89 117 186 124 157
Bagging true 94 80 94 112 87 112 178 122 152

Standard/Rubin outcomePred 72 64 72 74 64 74 86 65 78
Bagging outcomePred 72 64 72 74 64 74 86 65 78

Standard/Rubin trueConf 72 64 72 74 64 74 104 84 98
Bagging trueConf 72 64 72 73 64 73 104 84 98

Standard/Rubin SW 94 80 94 127 92 127 191 117 156
Bagging SW 94 81 94 118 90 118 171 109 141

Standard/Rubin OAL 76 67 78 78 67 81 91 69 87
Bagging OAL 76 68 78 77 67 80 91 68 84

Standard/Rubin Step-ALT 72 64 80 74 64 94 86 65 108
Bagging Step-ALT 72 64 80 74 64 81 86 65 90

Standard/Rubin Step-ALY 72 64 81 74 64 94 86 65 109
Bagging Step-ALY 72 64 81 74 64 81 86 65 90

Table 4. 1000× noncoverage rate (5%) with sample size of 1000. The nominal coverage is 95%. The
treatment effects η = 2. S1, S2, and S3 denote scenario 1, 2, and 3, respectively.

1000 × Noncoverage Rate

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 34 44 34 50 38 50 70 54 52
Bagging allPotent 6 10 6 10 12 10 28 10 4

Standard/Rubin true 38 34 38 58 36 58 90 48 54
Bagging true 4 8 4 6 12 6 28 4 10

Standard/Rubin outcomePred 48 46 48 48 42 48 62 48 62
Bagging outcomePred 4 2 4 8 2 8 12 6 10

Standard/Rubin trueConf 46 48 46 52 44 52 48 60 52
Bagging trueConf 4 0 4 6 4 6 6 6 8

Standard/Rubin SW 34 40 34 54 44 54 76 42 54
Bagging SW 6 8 6 8 12 8 28 6 6

Standard/Rubin OAL 24 34 26 30 22 30 28 18 26
Bagging OAL 4 2 4 6 4 6 6 4 6

Standard/Rubin Step-ALT 44 36 24 48 40 60 60 44 84
Bagging Step-ALT 4 2 2 8 4 4 12 6 6

Standard/Rubin Step-ALY 44 36 24 48 40 56 60 44 84
Bagging Step-ALY 4 2 2 8 4 4 12 6 6
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6. Application

The Multicenter AIDS Cohort study (MACS) was started in 1984 [1]. A total of 4954
gay and bisexual men were enrolled in the study and followed up semi-annually. At
each visit, data from physical examination, questionnaires about medical and behavioral
history, and blood test results were collected. The primary outcome of interest was the
CD4 count, a continuous measure of how well the immune system functions. We used this
dataset to analyze the short term effects of using antiretroviral treatment. We restricted
our analyses to visit 12. Treatment was coded as 1 if the patient reported taking any of
antiretroviral treatment (ART) or enrolling in clinical trials of such drugs. We estimated the
short-term (6-month) effects of using any antiretroviral treatment for HIV+ subjects. We
excluded subjects with missing values on any of the covariates included in the models. We
log-transformed the blood counts in this analysis.

We treated each visit as a single time point treatment. Let t = 1 denote the time when
the treatment was administered, and t = 2 the time 6-month later when the outcome was
measured. In addition, let t = −1,−2,−3 denote 1, 2, and 3 visits before the current visit
t = 1, respectively. Let X(t = 1,−1,−2,−3) denote the blood count histories prior to treat-
ment assignment. Let Z be the binary treatment indicator. Let Y(t = 2) be the CD4 count
6 months after the treatment. For the outcome model, we considered blood counts-CD4,
CD8, white blood cell (WBC), red blood cell (RBC), and platelets and treatment histories
from the last 4 visits. For the propensity score model, we considered the same covariates
as those in the outcome model, as well as demographic variables-college education, age,
and race. The treatment Z was modeled using a logistic regression. We estimated the mean
CD4 count difference between the treated and the control, denoted as ∆. For PENCOMP,
we replaced the simulated/imputed transformed CD4 values that were < 0 with 0 (i.e.,
below detection level). A total of 15 equally spaced knots and B spline were used.

Figure 1 shows that the propensity score distributions were skewed, as the treated
had propensity of treatment close 1 and the control close to 0. Here, we considered
the variable selection methods in the simulation studies to select the relevant variables
for the propensity score model. To quantify the amount of overlap, we measured the
proportion of subjects in the control group whose propensity scores were between the
95th and 5th quantiles of the propensity score distribution of the treated group, denoted
as π0.95

z=0 = Fz=0(F−1
z=1(0.95))− Fz=0(F−1

z=1(0.05)), where F is the cumulative distribution.
Similarly, π0.95

z=1 denotes the proportion of the treated subjects whose propensity scores were
between the 95th and 5th quantiles of the propensity score distribution of the control group.
Including only the covariates that were selected more than 20% of times by Step_ALT
among 1000 bootstrap samples improved the overlap, as shown in Figure 1.

Table A5 in the Appendix B shows the proportion that each variable was selected
across 1000 bootstrap samples. Because subjects who were treated during the recent visits
were more likely to get treated again, prior treatments were highly predictive of future
treatment. However, prior CD4 counts were more predictive of future CD4 count because
those earlier antiretrovial treatments were not as effective. Thus, when we accounted for
the outcome-covariate relationship when selecting propensity score model, prior treatment
variables were selected less than 10% of the times, compared to close to 100% of the time in
SW, and 58% of the time in OAL.
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Figure 1. Propensity score distributions between the treated (grey) and control (black) if (A) including
all covariates in the propensity score model, π0.95

z=1 = 18% and π0.95
z=0 = 22%; (B) if including only the

covariates that were selected more than 20% of times by Step_ALT among 1000 bootstrap samples,
π0.95

z=1 = 33% and π0.95
z=0 = 49%

We estimated the short term effect of antiretroviral treatment on CD4 count using
PENCOMP, AIPTW, and IPTW, shown in Table 5. The standard errors were obtained using
1000 bootstrap samples. For PENCOMP, 1000 complete datasets were created. Overall, the
IPTW estimates had the biggest confidence interval widths. Incorporating the outcome
models as in AIPTW and PENCOMP decreased the standard errors and interval widths
significantly. PENCOMP tended to have slightly smaller interval widths than AIPTW.
The IPTW bootstrap estimates were much more variable, compared to the PENCOMP
or AIPTW bootstrap estimates. As seen in the simulation studies, the bagging approach
helped stabilize the IPTW and AIPTW estimators when the weights were variable. For
PENCOMP, the multiple imputation approach and the bagging approach yielded similar
results. Excluding irrelevant covariates from the propensity score model, as seen in Step-
ALT and Step-ALY, improved the performance of IPTW significantly, in terms of the
standard errors and confidence interval widths. Incorporating the outcome models in
the AIPTW and PENCOMP attenuated some of the effect of including many irrelevant
covariates.
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Table 5. Treatment effect estimates and 95% confidence intervals.

IPTW AIPTW PENCOMP

allPotent Rubin/standard 7.5 (−2.2, 17.1) 1.3 (−0.7, 3.3) 0.7 (−1.4, 2.7)
Bagging 5.8 (−3.0, 14.6) 0.9 (−0.9, 2.6) 0.7 (−1.0, 2.4)

SW Rubin/standard 11.9 (1.4, 22.4) 2.7 (−0.03, 5.4) 0.9 (−1.9, 3.7)
Bagging 6.7 (−2.7, 16.0) 1.7 (−0.5, 3.9) 0.9 (−1.3, 3.1)

OAL Rubin/standard 2.5 (−6.6, 11.5) 0.9 (−2.1, 3.9) 0.6 (−1.5, 2.7)
Bagging 4.9 (−3.2, 13.0) 1.6 (−0.9, 4.1) 0.6 (−1.3, 2.5)

Step-ALT Rubin/standard 0.5 (−6.9, 7.9) −0.4 (−2.5, 1.7) −0.05 (−1.8, 1.7)
Bagging 2.0 (−5.0, 9.0) 0.4 (−1.6, 2.3) −0.04 (−1.6, 1.5)

Step-ALY Rubin/standard 0.5 (−7.0, 7.9) −0.4 (−2.4, 1.6) −0.09 (−1.8, 1.7)
Bagging 1.9 (−5.3, 9.0) 0.3 (−1.6, 2.2) −0.08 (−1.7, 1.6)

7. Discussion

We propose a new version of PENCOMP via bagging that could improve confidence
interval width and coverage, compared to PENCOMP with Rubin’s multiple imputation
combining rules, when the sample size is small, and the data are noisy. However, when the
sample size is large and there is little variability in the bootstrap estimates, the bagging
approach seems to overcover. The bagging approach and the multiple imputation approach
in PENCOMP have similar RMSEs because both incorporate model selection and smooth
over the estimates. Similarly, bagging improves the performance of IPTW and AIPTW in
terms of RMSE, coverage and confidence interval width, especially when the sample size is
small, and the data are noisy. In practice, the propensity score model is often selected, and
inferences based on the selected model. This simple approach ignores model uncertainty.
Compared to the standard approach for AIPTW and IPTW, the bagging approach could
perform better because it incorporates model selection effects.

Our simulation studies show that excluding strong predictors of the treatment but not
of the outcome, or spurious variables, helps improve the performance of the propensity
score methods, especially for the weighted estimators. However, PENCOMP is less affected
by inclusion of many non-confounding variables in the propensity score model than
the weighted estimators because a propensity score model with many irrelevant non-
confounding variables could lead to extreme propensity scores and extreme weights.

An outcome adaptive approach could help exclude strong predictors of the treatment
only. However, one shortcoming of using the outcome adaptive approach is that it can
miss many weak confounders. While the outcome adaptive approach can decrease the
standard errors of the estimates, by excluding spurious variables and strong predictors of
the treatment only, it can potentially increase bias by excluding variables that are weakly
associated with the outcome, especially in small samples. This is also a shortcoming in
variable selection procedures that blind the outcome, such as stepwise variable selection
algorithm, because it can fail to select confounders that are weakly associated with the
treatment.

Whether using an outcome adaptive approach can be beneficial depends on specific
studies. When there are many weak confounders in the data, the reduction in variance from
using an outcome adaptive approach might not offset the increase in bias. For example,
when studying a new disease, researchers might decide to include all pretreatment variables.
When there are many potential confounding variables, including those that are strongly
associated with the treatment only, in the propensity score model and the weights are
highly variable, PENCOMP provides a valuable approach for estimating causal effects.
When variable selection is involved, smoothing over bootstrap samples can reduce the
chance of excluding important confounders, which results in bias.
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In high dimensional settings, including all the observed variables in the propensity
score model can lead to highly unstable or even infeasible estimation. One criticism of
focusing on confounders rather than just predictors of treatment assignment (i.e., balancing
covariates between the treatment arms) is that incorporating the outcome in the estimation
procedure, whether via prognostic score [24] or as we have done here, violates the principle
that causal inference methods using observational data should mimic, as closely as possible,
randomized trial designs, where outcomes are not considered until the final estimation
step. Following such a rule avoids both overt and inadvertent attempts to bias model
building toward preferred outcomes (“the garden of forking paths” [25], per Gelman and
Loken, 2013). One approach to reducing this potential for bias is to select variables into
the propensity model based a regression on the outcome that excludes variables indicating
the treatments. However, with the advent of advanced “automatic” penalized regression
methods, such as adaptive lasso, the risk of such “model shopping” may be sufficiently
reduced, though not eliminated, so that analysts that follow the approach outlined here
should endeavor to pre-specify the procedures before the analysis begins.
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Appendix A. Additional Simulation Results
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Figure A1. Proportions of each variable selected for propensity model across 500 simulated datasets
and 1000 bootstrap samples for each simulated dataset for sample size of 200 and 1000. X1 and X2

are the true confounders; X3 and X4 are predictors of the outcome but not of the treatment; and X5

and X6 are predictors of the treatment but not of the outcome; all the other 14 covariates are spurious.
Average across the spurious variables.
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Figure A2. Proportions of each variable selected for prediction model across 500 simulated datasets
and 1000 bootstrap samples for each simulated dataset for sample size of 200 and 1000. X1 and X2

are the true confounders; X3 and X4 are predictors of the outcome but not of the treatment; and X5

and X6 are predictors of the treatment but not of the outcome; all the other 14 covariates are spurious.
Average across the spurious variables.
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Table A1. 1000× empirical bias with sample size of 200. The treatment effects η = 2. S1, S2, and S3
denote scenario 1, 2, and 3, respectively.

1000 × Empirical Bias

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 5 −2 5 2 4 2 60 11 26
Bagging allPotent 2 −6 2 2 2 2 63 5 26

Standard/Rubin true 6 4 6 6 3 6 61 11 27
Bagging true 3 1 3 5 3 5 82 18 33

Standard/Rubin outcomePred 10 7 10 8 7 8 33 9 19
Bagging outcomePred 7 4 7 8 7 8 39 9 21

Standard/Rubin trueConf 8 7 8 8 7 8 32 6 18
Bagging trueConf 5 4 5 8 7 8 39 6 20

Standard/Rubin SW 5 −2 6 4 −4 7 66 39 33
Bagging SW 2 −5 3 1 0 5 68 37 27

Standard/Rubin OAL 6 0 25 4 −1 17 35 2 26
Bagging OAL 5 −1 22 2 −1 23 47 5 33

Standard/Rubin Step-ALT 2 -4 65 7 6 132 33 8 146
Bagging Step-ALT 3 −3 65 3 −3 66 40 2 83

Standard/Rubin Step-ALY 2 −4 70 8 7 138 33 9 160
Bagging Step-ALY 2 −4 70 2 −3 70 36 1 90

Table A2. 100×mean 95% confidence interval width with sample size of 200. The treatment effects
η = 2. S1, S2, and S3 denote scenario 1, 2, and 3, respectively.

100 × Mean 95% Confidence Width

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 129 101 129 131 112 131 195 158 166
Bagging allPotent 95 81 95 98 88 98 138 117 119

Standard/Rubin true 102 85 102 83 75 83 120 103 109
Bagging true 92 80 92 83 76 83 118 105 110

Standard/Rubin outcomePred 70 58 70 66 58 66 76 60 70
Bagging outcomePred 71 63 71 69 62 69 78 63 72

Standard/Rubin trueConf 69 58 69 65 57 65 89 76 84
Bagging trueConf 71 63 71 69 62 69 94 82 90

Standard/Rubin SW 129 101 128 121 104 121 180 147 154
Bagging SW 95 81 94 92 83 92 126 107 111

Standard/Rubin OAL 90 76 90 84 75 87 110 88 99
Bagging OAL 78 71 79 75 70 77 89 75 82

Standard/Rubin Step-ALT 77 66 81 73 65 78 86 69 82
Bagging Step-ALT 73 65 75 71 64 74 80 66 75

Standard/Rubin Step-ALY 77 65 80 73 65 78 87 68 82
Bagging Step-ALY 72 65 75 71 64 74 80 66 75
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Table A3. 1000× empirical bias with sample size of 1000. The treatment effects η = 2. S1, S2, and S3
denote scenario 1, 2, and 3, respectively.

1000 × Empirical Bias

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 4 1 4 4 1 4 20 4 11
Bagging allPotent 5 1 5 4 1 4 24 4 13

Standard/Rubin true 4 2 4 5 2 5 25 5 14
Bagging true 5 2 5 5 2 5 33 7 17

Standard/Rubin outcomePred 0 −0 0 2 −0 2 14 1 7
Bagging outcomePred 1 0 1 2 −0 2 16 1 7

Standard/Rubin trueConf 0 −0 0 2 −0 2 16 0 8
Bagging trueConf 1 0 1 2 0 2 17 1 9

Standard/Rubin SW 4 1 3 1 3 17 4 9
Bagging SW 5 1 5 4 1 4 25 5 13

Standard/Rubin OAL 2 0 3 4 1 5 17 2 9
Bagging OAL 3 1 4 3 1 5 21 3 12

Standard/Rubin Step-ALT 1 −0 20 2 −0 22 14 1 39
Bagging Step-ALT 0 −1 20 2 −0 21 16 1 36

Standard/Rubin Step-ALY 1 −0 21 2 −0 23 14 1 40
Bagging Step-ALY 0 −1 21 2 −0 22 16 1 36

Table A4. 100×mean 95% confidence interval width with sample size of 1000. The treatment effects
η = 2. S1, S2, and S3 denote scenario 1, 2, and 3, respectively.

100 × Mean 95% Confidence Interval Width

PENCOMP AIPTW IPTW

Model Select S1 S2 S3 S1 S2 S3 S1 S2 S3

Standard/Rubin allPotent 40 34 40 45 36 45 64 45 54
Bagging allPotent 55 48 55 61 50 61 85 61 72

Standard/Rubin true 40 33 40 42 35 42 63 48 55
Bagging true 55 47 55 58 48 58 87 67 77

Standard/Rubin outcomePred 29 25 29 29 25 29 33 26 30
Bagging outcomePred 42 38 42 41 36 41 46 36 43

Standard/Rubin trueConf 29 25 29 29 25 29 40 33 38
Bagging trueConf 42 38 42 41 36 41 56 47 53

Standard/Rubin SW 40 34 40 45 36 45 65 47 55
Bagging SW 55 48 55 60 49 60 86 62 73

Standard/Rubin OAL 33 30 34 34 30 35 41 32 39
Bagging OAL 46 42 47 45 41 47 53 42 51

Standard/Rubin Step-ALT 29 26 35 29 26 35 33 26 38
Bagging Step-ALT 42 38 48 41 36 47 46 36 50

Standard/Rubin Step-ALY 29 26 35 30 26 35 33 26 38
Bagging Step-ALY 42 38 48 41 36 47 46 36 50
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Appendix B. Application

Table A5. Proportion of each variable selected for prediction model across 1000 bootstrap samples.

Outcome Model Propensity Model

Covariate SW AL SW OAL Step_ALT Step_ALY

CD4 t = −1 100 100 26 100 100 100
CD4 t = 1 100 100 100 100 100 100

CD8 t = −1 71 20 20 77 20 20
RBC t = 1 65 28 35 76 30 28

RBC t = −2 64 7 41 81 8 7
WBC t = 1 59 24 16 61 23 25

college 57 9 19 38 8 9
CD4 t = −2 52 36 19 58 32 36

platelet t = −1 49 14 37 65 12 14
CD8 t = 1 46 13 62 56 14 13

treat t = −3 43 7 38 59 6 6
treat t = −1 42 11 100 58 12 11
treat t = −2 41 7 80 42 9 7

platelet t = −3 37 4 21 38 3 4
WBC t = −1 30 1 17 40 2 1

age 24 2 28 15 1 2
CD8 t = −2 23 1 11 35 2 1
RBC t = −1 22 3 17 45 5 3

white 21 1 25 13 1 1
platelet t = 1 19 1 20 36 1 1
CD4 t = −3 18 3 12 39 3 3
CD8 t = −3 17 2 28 25 2 2
WBC t = −2 14 1 19 30 1 1
WBC t = −3 13 1 29 25 1 1

platelet t = −2 12 1 15 27 1 1
RBC t = −3 10 0 21 15 1 0
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