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Abstract: The GNSS LABoratory tool (gLAB) is an interactive educational suite of applications for
processing data from the Global Navigation Satellite System (GNSS). gLAB is composed of several
data analysis modules that compute the solution of the problem of determining a position by means
of GNSS measurements. The present work aimed to improve the pre-fit outlier detection function of
gLAB since outliers, if undetected, deteriorate the obtained position coordinates. The methodology
exploits robust statistical tools for regression provided by the Flexible Statistics and Data Analysis
(FSDA) toolbox, an extension of MATLAB for the analysis of complex datasets. Our results show
how the robust analysis FSDA technique improves the capability of detecting actual outliers in GNSS
measurements, with respect to the present gLAB pre-fit outlier detection function. This study concludes
that robust statistical analysis techniques, when applied to the pre-fit layer of gLAB, improve the
overall reliability and accuracy of the positioning solution.

Keywords: GNSS positioning; robust statistics; GNSS LABoratory—gLAB; Flexible Statistics and
Data Analysis toolbox—FSDA

1. Introduction

The Global Navigation Satellite System (GNSS) provides positioning, velocity and
timing (PVT) services to users equipped with appropriate hardware (i.e., an antenna and
a receiver) [1]. There are four GNSS constellations that allow users to compute their
PVT on a global basis (i.e., worldwide), two of which have already declared their full
operational capability (FOC). Namely, the Global Positioning System (GPS, US Air Force),
completed in 1994; the Global Navigation Satellite System (GLONASS, Russian Federal
Space Agency) completed in 1995 (and restored in 2011). Two additional constellations
are being completed and thus have not reached FOC: the BeiDou Navigation Satellite
System (BDS, China National Space Administration) and Galileo (European Union). The
Multi-GNSS Experiment (MGEX) [2] of the International GNSS Service (IGS) [3] monitors
the rapid development of GNSS constellations. The processing of GNSS data is an essential
part of PVT determination [4]. Once the receiver has acquired and demodulated the
radio frequency GNSS signals from the antenna, it generates the code and carrier-phase
measurements (the so-called observables). Then, these observables undergo a series of
processing steps so that they can be used to estimate the PVT of the GNSS receiver by
means of least squares (LS) or the Kalman filter [5], among other methods. Several software
packages exist that are capable of processing GNSS data automatically.

The GNSS LABoratory tool (gLAB) is an advanced educational multi-purpose soft-
ware used for processing and analyzing GNSS data [6]. The research group of Astronomy
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and Geomatics (gAGE) started developing gLAB in 2009, in the context of the European
Space Agency (ESA) educational program on satellite navigation (EDUNAV). After one
decade of evolution, gLAB capabilities include the most common GNSS navigation modes:
stand-alone positioning, differential-mode, and augmented positioning with integrity.
gLAB is open source and allows to fully control its internal processing through its many
configuration options. This is a great advantage with respect to proprietary GNSS data
processing programs produced by receiver manufacturers, which do not allow any modifi-
cation and hence, from the user/scientific point of view, are black boxes. The processing
core of gLAB is structured in five highly configurable modules. These modules mimic the
aforementioned processing steps, being quite standard in commercial software receiver
packages. For completeness, those modules are briefly summarized as follows:

• The INPUT module: interfaces with the standard input files and the rest of the
program. It implements all the reading capabilities and stores the data in the mem-
ory structures of gLAB, that contain, as minimum, the raw measurements and the
pseudo-Keplerian elements that allow computing the GNSS satellite position and its
clock offset.

• The PREPROCESSING module: checks and selects the read data to be further pro-
cessed. It detects cycle-slips (i.e., discontinuities) in the carrier-phase measurements,
decimates the input data to a lower processing rate (if required) and selects which
satellites and which constellations are used in the following modules, among other
functions.

• The MODELLING module: provides an accurate model of the measurements from
the receiver to each tracked satellite. In this regard, the pseudorange measurements
Psat

rec can be written according to [4] as

Psat
rec = ρsat

rec + c(δtrec − δtsat) + Tropsat
rec + Ionsat

rec + IFBsat + εsat
rec ; sat = 1, . . . , n (1)

where ρsat
rec is the geometric distance between the receiver and the satellite, c stands for

the velocity of light, δtrec and δtsat are the receiver and satellite clock offsets, Tropsat
rec

and Ionsat
rec are the propagation delays occurring at the troposphere and ionosphere

respectively, IFBsat is the satellite inter-frequency biases (IFB), and εsat
rec accounts for

the measurement noise. The output of the MODELLING module are the pre-fit
residuals, i.e., the difference between the preprocessed measurements and the sum of
the model terms:

pre f itsat
rec = Psat

rec − Pmodelsat
rec ; sat = 1, . . . , n (2)

Considering the model terms described in the standard point positioning (SPP) [7],
the pre-fit residuals result in:

pre f itsat
rec = ρsat

rec + cδtrec + εsat
rec ; sat = 1, . . . , n (3)

where Equation (3) contains four unknowns: three receiver coordinates in the geo-

metric distance ρsat
rec =

√(
(xrec − xsat)2 + (yrec − ysat)2 + (zrec − zsat)2) and the time

offset of the receiver clock offset δtrec, with respect to GNSS time.
• The FILTER module: implements an extended Kalman filter to obtain the estimations

of the receiver PVT from the pre-fit residuals. The filter outputs the values of the
estimated unknowns together with its co-variance, as a measure of the uncertainty in
the estimation process.

• The OUTPUT module: is in charge of printing intermediate and final results in a
structured manner. This allows extracting useful and complete information at any
point in the GNSS data processing chain.

Both in gLAB and in commercial software packages, PVT estimation can be deterio-
rated by outliers. Outliers can be intuitively defined as elements of a sample qualitatively
distinct as ‘bad’ compared to the majority of the sample considered as ‘good’. Note that
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it is not said that outliers are ‘wrong’ data; they are data needing a ‘careful look’, since
their ’being distinct’ from the majority could lead to unreliable estimates. Outlier detection,
by a comparative or quantitative evaluation of their quality of ’being distinct’, is a central
component of PVT estimation.

The aim of the present work was to improve the outlier detection capabilities of gLAB
by working at the intermediate step between the MODELLING and the FILTER modules.
To this aim, we considered as basic dataset the pre-fit residuals as in Equation (2) above. In
this GNSS context, outliers can be more precisely defined as pre-fit residual values from
a particular satellite that are too different from the pre-fit residuals median (computed
including all satellites). Note that by pre-fit residuals we mean something distinct from
residuals in regression theory; the different use of the word residuals should be clear from
the context. The most common reason for the presence of outliers in the pre-fit residuals is
the multipath effect, when GNSS signals from low-elevation satellites reach the antenna
along multiple paths, following a reflection in the ground or surrounding structure. Other
outlier sources are the malfunctioning of the receiver or satellite hardware. For the latter,
the ground segment (GS) of each constellation constantly monitors the status of its satellites
using a worldwide distribution of permanent stations. Thus, the GS can inform users of
satellite anomalies by means of the healthy flag broadcast in the navigation message that
is typically refreshed every two hours. In contrast, anomalies at one particular isolated
receiver are more difficult to detect, as there is no redundancy of measurements. In this
case, receiver autonomous integrity monitoring (RAIM) must be applied, following [8].
In the simplest form of position computation, as described in standard point positioning
(SPP) [7], the pre-fit residuals of all satellites in view are fit by ordinary least squares,
OLS, to three coordinates and one time-offset unknowns in an over-determined system of
equations. The severity of outlier mis-detection depends on the magnitude of the outlier,
on satellite geometry and on the user application. Safety of life (SoL) applications such as
civil aviation or autonomous driving require specialized techniques to ensure positioning
integrity (i.e., the measure of trust that can be placed in the correctness of the information
supplied by a navigation system).

The qualitative distinction of outliers from the majority of the sample is immediately
remarked when values are graphically represented in an appropriate way. For example,
with reference to Figure 1, the ‘V-shaped’ set of points in the lower-left part is promptly
perceived as ‘distinct from the majority of the sample’; the appropriate graphical represen-
tation of data remains today, when possible, an instrument for outlier detection by visual
screening. When visual screening is not possible, or a fine-drawn decision has to be taken,
automated techniques must be used. George Edward Pelham Box, in 1953, coined the
term robust in relation to this need, but this (certainly older) concept was formalized in a
proper discipline only later, starting from the mid-1960s. Roughly speaking, robust statistics
can now be seen as an operational approach to the treatment of outliers; treatment that
can range from the detection and elimination of outliers from the sample to some degree
of mitigation of their effects on the choice and computation of estimators. The standard
example of resistance to outliers of an estimator is given by comparing the effect of a single
diverging value y → ∞ on the sample mean and the sample median: the mean being
immediately influenced by this value of y, while the median is resistant. The degree of
resistance to the outliers of an estimator is represented by a parameter called breakdown
point. The breakdown point of the sample mean is 0% while the breakdown point for the
median is 50% since it can tolerate up to 50% of ’gross errors’ in data before diverging.

The use of robust statistics techniques for GNSS positioning is a growing field both
in applications and in methodological aspects. Examples of the applications of robust
statistics to positioning problems can be found in artificial intelligence [9] and geodesy [10].
Concerning the methodological aspects, an example of improvement of the SPP algorithm
by using Huber M-estimators can be found in [11] while in [12] a form of robust Kalman
filtering is used in the kinematic positioning component. These two methodological aspects
can be referred to the MODELLING and FILTER modules of gLAB. To our knowledge,
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there are no other attempts in the literature to improve the position solution with robust
statistics by exploiting the pre-fit residuals, i.e., by working at the connection between the
MODELLING and the FILTER modules, as in the gLAB architecture.

Figure 1. Raw actual pre-fit residuals recorded by station KIR0 on 4 November 2018. The pre-fit
residuals for all satellites are depicted in blue color, while pre-fit residuals for GPS satellites 3 and 32
are depicted in red and black, respectively, to highlight some outliers.

The Flexible Statistics and Data Analysis (FSDA) toolbox [13] is a MATLAB module
gathering a comprehensive set of statistical functions for the analysis of data. The original
aim of this library of functions was to extend the MATLAB Statistics Toolbox with forward
search analysis [14]. FSDA was subsequently extended and now includes all the main robust
multivariate and regression tools, complemented by instruments for robust transformations
and the interactive graphical exploration of data; it is available for Windows, Unix and
MacOS platforms. (FSDA is copyright of the European Commission and the University of
Parma. It is protected under European Union Public Licence (EUPL) [15], which is a free software
licence granting recipients rights to modify and redistribute the code. FSDA is distributed through
GitHub https://github.com/UniprJRC/FSDA—accessed on 15 May 2021— and the MATLAB
community https://www.mathworks.com/matlabcentral/fileexchange/72999-fsda (accessed on 15
May 2021). A complete documentation with examples, datasets and tutorials is available at http:
//rosa.unipr.it/FSDA (accessed on 15 May 2021). A version of the suite with selected functionalities
is also available in R at https://cran.r-project.org/web/packages/ fsdaR/index.html (accessed on 15
May 2021) and in SAS, upon request to the JRC co-authors.) The analysis of pre-fit datasets
reported in this article can be considered as our first attempt to apply robust statistical
techniques as provided by the FSDA toolbox to PVT estimation.

After a description of the typical data and the problems to be faced in Section 2,
with a first essay employing the traditional robust estimator least median of squares (LMS),
we proceeded with the use of other FSDA functions for outlier detection still applied to
relatively large samples of data. We did not use the full potential of FSDA, however, with
the aim of comparing the results obtained at the beginning of Section 2 with LMS, we
exploited least trimmed squares (LTS) and forward search (FS). In Section 3, a more precise
analysis is done by considering samples whose cardinality is coherent with practical use:
relatively short time windows of ten samples. In Section 4, the results of our analysis are
summarized together with an indication of the directions of future work.

https://github.com/UniprJRC/FSDA
https://www.mathworks.com/matlabcentral/fileexchange/72999-fsda
http://rosa.unipr.it/FSDA
http://rosa.unipr.it/FSDA
https://cran.r-project.org/web/packages/fsdaR/index.html
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2. Structure of the Dataset and Preliminary Analysis

In this section, our study uses actual and publicly available data collected by a Javad
‘TRE_G3TH’ receiver, installed at a permanent station named KIR0 in Sweden. This is a
standard geodetic-grade receiver as those usually found in the IGS network. (IGS data
can be downloaded from the URL https://www.igs.org/data/—accessed on 15 May 2021.) The
day of the experiment is the day of the year (DoY) 203 of 2018 (i.e., November 4th). Code
pseudorange C1C measurements are logged with a period of 30 s, i.e., the sampling frequency
is 1/30 Hz, so we have 2880 epochs for the entire day. Each epoch contains a record, as in
Table 1, for each satellite ‘visible’ and ‘tracked’ by the receiver.

Table 1. Excerpt from the pre-fit data table. Epoch in seconds, pre-fit and ranges in meters, elevation of the satellites
in degrees.

Year DoY Epoch Const. Satellite Pre-Fit Measured Range Modeled Range Elevation

2018 203 30.00 GPS 30 1.1285 20,774,695.8820 20,774,694.7535 62.830
2018 203 30.00 GPS 7 0.5062 20,902,305.0420 20,902,304.5358 62.107
2018 203 30.00 GPS 5 0.6373 21,449,496.2580 21,449,495.6207 48.474
2018 203 30.00 GPS 13 0.0678 22,580,115.9500 22,580,115.8822 32.131
2018 203 30.00 GPS 27 −0.7367 23,106,933.9460 23,106,934.6827 23.969
2018 203 30.00 GPS 21 1.5017 24,496,859.0780 24,496,857.5763 19.849
2018 203 30.00 GPS 9 −0.6624 23,870,542.7020 23,870,543.3644 16.482
2018 203 30.00 GPS 8 −0.3127 24,198,683.3000 24,198,683.6127 14.795
2018 203 30.00 GPS 28 −1.0963 24,119,609.3400 24,119,610.4363 13.659
2018 203 30.00 GPS 16 0.3602 24,836,613.8360 24,836,613.4758 9.066
2018 203 77,520.00 GPS 9 0.6399 20,249,609.7060 20,249,609.0661 72.297
2018 203 77,520.00 GPS 23 −0.2187 21,521,386.7380 21,521,386.9567 50.623
2018 203 77,520.00 GPS 2 2.2097 22,539,967.2700 22,539,965.0603 37.848
2018 203 77,520.00 GPS 26 −0.6910 22,878,625.4080 22,878,626.0990 29.222
2018 203 77,520.00 GPS 16 −0.4619 22,622,817.8300 22,622,818.2919 29.130
2018 203 77,520.00 GPS 6 −0.2707 22,930,857.2880 22,930,857.5587 27.353
2018 203 77,520.00 GPS 7 0.1535 23,373,509.6060 23,373,509.4525 26.341
2018 203 77,520.00 GPS 29 0.0111 23,390,396.5840 23,390,396.5729 21.900
2018 203 77,520.00 GPS 5 −0.8185 23,946,589.7820 23,946,590.6005 16.100
2018 203 77,520.00 GPS 3 −16.2497 25,180,666.6940 25,180,682.9437 5.478

Figure 1 illustrates the dataset which contains 24 h of pre-fit residuals, the output of
the gLAB MODELLING module. This dataset contains both the pseudorange data corrected
for some inconsistencies by the PREPROCESS module as briefly explained above, and the
pseudorange data as predicted by the model. The computation of the pseudorange takes
into account a number of model corrections following the SPP [7]. Note that, since we are
using a fixed station with known coordinates and the satellite positions can be obtained
from the broadcast navigation message of the satellites, we can compute the geometric
range, the measured range in Table 1, for each of the tracked satellites. Then, the pre-fit
residuals in Equation (3) turn into:

pre f itsat
rec = cδtrec + εsat

rec ; sat = 1, . . . , n (4)

Therefore, we should expect all pre-fit residuals from all satellites around the receiver clock
offset value cδtrec to be only distinguishable by the noise of the measurement, εsat

rec. Under
normal conditions, this pseudorange noise reaches one meter at the high elevation of the
satellite and few to several meters at low elevations.

In Table 1, an excerpt of two epochs from the complete data table of about 32,000
rows was reported; this table contains the satellite identifier and the pre-fit value, the plain
difference between modeled and measured range. Note that at the first epoch, 30.00, the
order of magnitude of the pre-fit is about 1 meter for all satellites while at epoch 77,520,

https://www.igs.org/data/
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corresponding to hours 21h32 in Figure 1, satellite 3 shows a pre-fit of about 16 m, probably
caused by its low elevation. It is remarked that it is general practice not to consider in
the solution of the positioning problem the satellites with ’low’ elevation. gLAB, while
operating in SPP mode, excludes by default satellites with an elevation below five degrees
already in the PREPROCESSING module.

As a first essay with the dataset, we apply a LMS regression. The least median of
squares estimator [16], described in more detail below, is historically among the first
improvements of OLS and is implemented in FSDA by the LXS function. For LXS, we
used a very conservative estimate, which was a Bonferroni-corrected [17] confidence level of
1− 0.01/N ' 0.9999997 where N is the number of observations—32,000 in the present case.
The quantity 0.01/N ' 3× 10−7 can be considered as the probability to falsely declare a
dataset as contaminated by outliers, when one is testing a large number of genuine datasets.

Figure 2 represents the outlier detection against LMS regression on 24 h of samples.
The result with respect to other estimators, compared to LMS below in this section, will
also be referred to in this Figure. With reference to Figure 2, the median pre-fit value for the
whole dataset is≈ 0.2183 m. This rather small value indicates that the receiver is steering its
clock to the GPS time, hence the receiver clock offset value cδtrec is close to 0 in Equation (4).
The confidence interval found corresponds to about±5 m. The two main groups of outliers
were already evident by visual inspection in Figure 1. The “V-shaped” subset between
hours 4 and 8 and the smaller group at about hour 22 are correctly identified by LMS. It is
remarked that three distinct points at about hours 9, 12 and 17, very close to the limits of
the confidence interval, are marked as outliers as well.

Figure 2. Dataset from 4th November 2018 (day 203 of year 2018). A single application to all data of
LMS, re-weighted LTS and FS produces the outliers in red. More precisely, the red ‘+’ symbols are
detected by all methods, while LMS also detects the red ‘∗’ associated to an absolute pre-fit of about
5 m. FS is applied in the standard form, calibrated to simultaneous 1% confidence level while, to
ensure same significance, we corrected the LMS and LTS with Bonferroni.

After this first essay on the data by LMS regression, three remarks can be made:
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1 The outlier detection by visual screening and LMS regression with Bonferroni correction
give comparable results;

2 Many robust methods (including those implemented in FSDA) are based on the
assumption that the error component of the data analyzed is normally distributed.
As the actual distribution can of course deviate from this common assumption, the
confidence intervals are just ’nominal’ in that the actual proportion of outliers detected
can differ from the expected one.

3 The outlier detection algorithm presently used by gLAB, based on an heuristic thresh-
old of 40 m:

epochs := set of considered epochs;
median := median of all pre-fit values in all epochs;
for each epoch in epochs

for each satellite s in epoch
if | prefit(s) - median | > treshold

then discard satellite s in current epoch.

would have not detected the obvious outliers.

We now exploit, on the same dataset, two other estimators in addition to LMS above:
least trimmed squares (LTS) and forward search (FS) as implemented in the FSDA toolkit.
A detailed description of these methods with their actual implementation in FSDA can
be found in [18]. The three robust regression methods build a linear model upon a set
of data points composed of a vector of independent variables and one dependent variable.
In our case, the data points would be structured, as shown in Table 1, as a vector of
independent variables containing at least (epoch, satellite, elevation) and with the pre-fit
as the dependent variable. This would lead to a multi-variate distribution. We adopted
a simplification, by considering the dataset as a sample from a uni-variate distribution
allowing, in each epoch, for the repetition of the observations. While computing the
linear model, we will not make distinctions among the individual satellites and we will not
consider the elevation and other information included in the complete satellite’s messages.

The formal expression of the linear model (with intercept) is: y = xθ1 + θ2 + ε, where ε
represents a normally distributed error and x represents now the pairs (epoch, satellite).
Given n as the cardinality of the dataset, the set of data points will be {xi, yi}1≤i≤n with yi
the pre-fit and xi representing a distinct pair (epoch, satellite). The model is then computed
by estimating with θ̂i the parameters θi with respect to an appropriate objective function of
the residuals: ri = yi − (xi θ̂1 + θ̂2). The objective functions to minimize are, respectively,
the sum of the squares of the residuals for OLS, the median of the squares of the residuals
for LMS and the sum of the squares of a selected subset of the residuals for LTS [16]:

min
θ̂

n

∑
i

r2
i min

θ̂
median

i
r2

i min
θ̂

h

∑
i

r2
i:n (5)

where r2
i:n is the ordered set of the squared residuals r2

1:n ≤ r2
2:n ≤ . . . ≤ r2

n:n and h decides
the appropriate subset of the points considered. Typically, for LTS, h is chosen with a
breakdown point of 50% (h = d0.5 · ne) but it can be automatically increased according to the
estimate of the residuals variance [16]. This re-weighting step allows keeping the desired
robustness while increasing the efficiency of the estimator θ̂i.

The forward search further exploits the re-weighting idea by building a sequence of
data subsets of increasing size, and fitting a sequence of estimators θ̂m

i , m0 ≤ m ≤ n, on
them. More precisely, the forward process starts with a first small subset of m0 data points,
where θ̂m0

i is estimated with LMS or LTS. Note that m0 can just be equal to the number of
parameters, so the computational burden required by the initial LMS or LTS application
is very limited. Then, the process continues by repeatedly computing θ̂m

i with the OLS
on the subsequent subsets of cardinality m0 < m ≤ n. Building the subset with the units
with smallest m + 1 squared residuals requires the computation of the m + 1 order statistic
in a vector of n numbers, which is known to have linear computational complexity (full
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or partial sorting of the residuals is not necessary). The process is iterated with OLS in
steps m := m + 1 until the cardinality of the subsets reaches the cardinality n of the dataset.
Figure 10 illustrates the signal detection mechanism of the FS using data in a window of
10 epochs.

Figure 2 reports the comprehensive result of the application of the estimators of LMS
as above, LTS with re-weighting and Bonferroni correction and FS to the whole dataset. The
outcomes of LTS and FS are identical and can be compared with the outcome of LMS. As in
Figure 2, the difference between LMS on one side and LTS and FS on the other are in the
three outliers close to the limits of the confidence interval of about 5 m. Overall, the three
estimators give the same results while LTS and FS yield a somewhat different performance
compared to LMS, in dependence of the judgment (outliers or main population) for the
points at the border of the confidence interval.

3. Analysis with Time Windows

In this section, we further deepened our investigation by applying the previous
methods to a sliding time window of ten epochs. The dataset used in this case belongs to
the permanent station named HUEG, located in Germany, for DoY 060 of 2019 (i.e., March
1st). Although the receiver is a Javad ‘TRE_G3TH’, the same model as the one used in the
preliminary analysis of Section 2 above, the clock of the receiver (i.e., δtrec in Equation (4))
is not steered to GPS time, presenting a rapid drift as illustrated in the left plot of Figure 3.
According to the interface control document (ICD) [19], the receiver clock offset can have
any value within a ±0.5 ms (i.e., ±150 km). When it reaches the minimum (or maximum)
limit, it must reset to remain within the prescribed range of ±0.5 ms Therefore, in order to
analyze the pre-fit residuals containing such clock behaviors, a detrending procedure must
be applied. Moreover, as a step towards real-time applications, in this section, we use a
sliding window rather than analyzing the complete time window of 24 h at once.

Figure 3. Actual pre-fit residuals recorded by station HUEG during 1 March 2019. The left plot depicts the raw pre-fit
residuals, whereas the right plot depicts the pre-fit residuals linearly detrended. All satellites are depicted in blue color,
while pre-fit residuals with outliers are depicted with colors.

Thus, in order to eliminate the clock drift prior to outlier detection, we performed a
linear detrending to all pre-fit residuals. This detrending is obtained by subtracting the
instantaneous median value at each epoch. The right plot of Figure 3 illustrates the result
of such detrending. We can observe few outliers at some particular satellites that were
hidden by the clock drift in the original ’raw’ pre-fit residuals depicted in the left plot of
Figure 3. While most of the outliers range within 100 m, GPS satellite 6 presents an outlier
that reaches more than 400 m. This outlier is simultaneously observed in other permanent
stations, thus it is attributable to some satellite anomaly. Indeed, the Notice Advisory to
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Navstar Users (NANU) number 2019029 [20] was issued, reporting that the GPS06 satellite
was unusable that day.

We now apply the outlier detection algorithms based on LMS, LTS and FS to the
HUEG dataset. With the aim of developing an efficient mechanism for outlier detection
of pre-fit values, we chose a relatively small time window of ten epochs. That is, the
window considers five minutes of data for each computation, sliding along the whole
24 h of observations. This choice is arbitrary and is done only as a kind of compromise
between the need for a decision about unreliable satellites within ‘few’ minutes and having
a meaningful set of data. The outliers, computed by using data of the whole window, are
assigned to the epoch ‘entering’ the window itself.

Figure 4 shows the comprehensive results of outlier detection for the defined time
window with LMS, LTS and FS and the evolution of mean and median in each case. The
plots of mean and median monitoring do not show big differences. This is not surprising
since the outliers are similar in the three cases. FS shows ‘more centered’ means and
medians, meaning a better selection of outliers, and possibly, a cleaner output. Moreover,
the mean shows, in the three cases, a ‘displacement’ towards negative values; a comment
on this will be given in Section 4.2 below.

Figure 5 shows the respective computing times for LMS, LTS and FS for each time
window lasting 10 epochs on a Quad Core Intel i7, 2.9 GHz machine. Table 2 reports
the respective computing times—cumulative and median—for all 10 epochs windows,
and shows a clear computational advantage in using FS in spite of its greater theoretical
complexity over LMS and LTS. This computational advantage is due to the efficient im-
plementation of the FS algorithm in FSDA. The three drops of LTS and LMS in computing
time are coincident with consecutive epochs containing the lowest number of satellites (i.e.,
7) included in the computation. The difference in performance between LMS and LTS on
one side and FS in these specific intervals, with a time drop on one hand and almost no
change on the other hand, is due to the different computational complexity of the methods,
as explained below.

Table 2. Computing times for the three estimators. The sliding window version of the MATLAB
script is applied to the same dataset and with the same MATLAB version.

Estimator Cumulative (s) Median of Ten Epochs Windows (ms)

LMS 54.16 18.65
LTS 58.26 20.12
FS 30.56 10.55

Table 2 and Figure 5 show the respective computing times for the three methods on
the HUEG dataset (24 h of measurements sampled every 30 s) and the same time window
length (of 10 epochs). The clear advantage of the FS might be surprising, given that the
method relies on a process that can iterate as many times as the size of the data sample to be
analyzed, say n. Several factors determine the advantage over LMS and LTS. The first one
is that LMS and LTS need a minimum number of random samples of size dn/2e selected
with computationally intensive ‘sampling without replacement’ methods. This explains
why Figure 5 shows a visible drop in computing corresponding to the three intervals where
data come from only 7 satellites instead of 9–10 as in the majority of cases.
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Figure 4. Outlier detection against LMS regression (top), LTS (middle) and FS (bottom) with a sliding time window of
10 epochs. The left column depicts the pre-fit residuals (blue) with outliers as marked in red, whereas the right column
depicts the evolution of mean (blue) and median (black) in each case. FS shows ‘more centered’ means and medians with
respect to LMS and LTS.
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Figure 5. Comparison of computing times for LMS, LTS and FS on time windows of 10 epochs.

Instead, the FS is initialized with an LMS/LTS regression estimated on very few
data points (those sufficient to fit the regression line, therefore two points as a minimum,
in our case) and this is computationally trivial. Then, it progresses with a sequence of
order statistics and OLS computations, which are also computationally simple. Finally,
FS can start monitoring for potential signals only in the final part of the search, and this
additionally reduces its computational burden. As a reference, on the same machine, the
computation of the SPP by gLAB with only the default outliers (satellites with a pre-fit
residual greater than forty meters and with elevation lower than five degrees) is done,
resulting in a median over eleven trials of 1.078 s on the same dataset. In this setting,
i.e., the MATLAB-interpreted version of FS, the time overhead for the FS computation in
the case of a moving window results in 30.56 s. However, it is noted that although in its
interpreted version (i.e., not compiled), FS processes 24 h of data in half a minute, which
enables real-time operations.

4. Results, Discussion and Proposal for Further Work
4.1. Positioning Results

This section illustrates how actual outliers present in the pre-fit residuals deteriorate
the PVT estimated within the FILTER module. The coordinates of permanent stations are
known with errors at the centimeter level. Then, because the magnitude of the outliers is at
the few meters level, we can use the positions of permanent receivers as a reference truth
to infer the impact of such outliers in the position estimates.

Figure 6 depicts, at every epoch, the 3D errors of KIR0, computed with the norm of
the difference between the XYZ coordinates estimated using the pre-fit residuals and the
reference coordinates. The red color depicts the positioning error without taking any action
to filter outliers, whereas the blue color shows the errors when outliers are identified and
removed following the preliminary analysis with the LMS of Section 2 above. It can be
seen how the original 3D errors grow up to 12 m, coincidentally with the time the GPS
satellite 32 is observed in Figure 1. Figure 6 and its numerical counterpart Table 3, show
that once these outliers are detected and removed, the 3D error is kept at the level of a few
meters, as expected in the typical SPP.
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Figure 6. 3D position errors of KIR0 using the SPP. In red, the original PVT obtained without detecting
and removing outliers. In blue, the PVT achieved detecting and filtering the outliers with LMS.

Table 3. Mean, median, 68th and 95th percentiles and RMS of the positioning errors obtained for the
two permanent stations, KIR0 and HUEG, applying different outlier detection methods. Note that
the ‘NONE’ method only excludes satellites with an elevation lower than 5 degrees.

Station Outlier Detection Method 3D Positioning Error (m)
Mean 50% 68% 95% RMS

KIR0 NONE 2.21 1.61 2.13 6.83 2.93
KIR0 LMS 1.55 1.44 1.76 2.90 1.70

HUEG NONE 5.23 2.57 3.05 6.00 15.21
HUEG LMS 2.23 2.15 2.67 3.84 2.41
HUEG LTS 2.45 2.39 2.84 3.96 2.60
HUEG FS 2.26 2.18 2.67 3.87 2.44

Figure 7 depicts the 3D errors of HUEG, following the same method to produce
Figure 6 for KIR0. In this case, the original 3D error obtained with SPP reaches almost
120 m, due to the presence of the outliers previously depicted in Figure 3. In contrast, 3D
errors obtained with robust statistics present an accuracy of about one order of magnitude
better in terms of RMS, as confirmed in Table 3. There are some discrepancies between the
positioning errors obtained by the LTS, LMS and FS methods, which witness an overall
good performance of all the three robust estimators and confirm the good trade-off between
results and computational efficiency provided by the FS.
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Figure 7. 3D position errors of HUEG using the SPP. In red, the original PVT obtained without
detecting outliers. The PVT obtained after removing the outliers detected by LMS (blue), LTS (green)
and FS (black).

4.2. Discussion

Figure 8 is a detail of Figure 7 for small position errors; Figure 9 is a zoom of Figure 8
for the time period between 18 and 23 h. As can be seen in the upper part of the plot, most
of the time, robust outlier detection methods improve the 3D position errors of the original
SPP obtained from pre-fit residuals with outliers.

Figure 8. Zoom of Figure 7 for positioning errors smaller than 10 m. 3D position errors of HUEG
using the SPP. In red, the original PVT obtained without detecting outliers. The PVT obtained after
removing the outliers detected by LMS (blue), LTS (green) and FS (black).

However, there are four epochs between 21h00 and 21h30, in which the solution,
especially when the outliers found with FS are removed, is deteriorated compared to
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the original one. In order to explain such a result, the bottom plot depicts the geometric
dilution of precision (GDOP), which is a measure of how the measurement noise impacts
(i.e., dilutes) the positioning accuracy (see, for instance [4,7]).

The GDOP metric evaluates the geometric distribution of the satellites over the sky,
only being computed with the elevation and azimuth of the satellites whose measurements
determine the position in the FILTER module. The GDOP depends not only on the number
of satellites used to compute the coordinates, but also on its distribution in the sky. In
this regard, discarding satellites typically increases the GDOP and the positioning error.
At 21h15, it can be seen that the GDOP values for the FS reach four times the GDOP
values of the original solution, which uses nine satellites in view with an elevation greater
than 5 degrees. The reason is that the FS discards two low-elevation satellites that greatly
contribute to the positioning estimation. Fortunately, these high GDOP values are an
indication to the user that the coordinates are being estimated with a weak geometry and
consequently should be used with caution.

There are a number of measures to mitigate the deterioration in the positioning error.
First, one should use a more accurate modeling of the measurements than the one used
in SPP, as in [21]. This would, in principle, reduce the dispersion of the pre-fit residuals,
easing outlier detection. Second, one should consider the pre-fit residuals obtained from
distributions other than the normal one for detecting outliers. Third, the information of
the satellite geometry (elevation and azimuth) should be included in the robust methods,
since the present exercise has done a blind examination taking into consideration only
pre-fit residuals, but not, for instance, their possible correlations. Fourth and finally, the
robustness of the Kalman filter itself should be increased, coordinating the effort of the
outlier detection in the pre-fit residuals domain and in the final filtering module domain.

Figure 10 shows in detail the behavior of FS during one of the computations described
in Section 3 on a time window of 5 min, starting at 20h34. The horizontal axis represents the
size m of the subset used at a given step of the FS process to fit the regression model. The
FS process is such that outliers enter the subset ‘towards the end’. The vertical purple lines
show the moment when the monitored statistic (minimum deletion residual—rmin(m, n)—
among the observations not yet included in the subset) exceeds the confidence bands at
different levels of significance. The FS algorithm checks whether the exceedance from the
bands is not spurious (that is, it remains persistently out of the confidence limits in the
sense formalized by [22]), identifies its precise position, in addition to the units forming a
homogeneous subset, and ultimately those to be declared outliers. Note that the progression
of rmin(m, n) (m = 45, . . . , 90 in the example) re-enters in the middle of the confidence
bands at the end of the FS: this is the so-called ‘masking effect’ occurring in presence of
outliers if all the data fit, such as the case of OLS. In this case, outliers mask each other and
one cannot detect them. In a nutshell: OLS provides only rmin(n, n), which is excellent if
all the n data points are good; LTS/LMS only provide the very robust fit for rmin(dn/2e, n),
which is excellent if there are many outliers (up to dn/2e); FS mediates between the two
extremes by providing a sequence of fits with rmin(m, n), m = m0, . . . , n and by identifying
the optimal subset with m∗ good units.
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Figure 9. Zoom of Figure 8 for the time period comprised between 18 and 23 h. The top plot depicts
the 3D position errors, whereas the bottom plot the GDOP.
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Figure 10. The FS outlier detection mechanism. The top panel enlarges Figure 4 (third row, first column) in an interesting
zone between hours 19 and 22, where three somewhat deviating satellites were detected as outliers. The zone refers
to the window of 10 epochs starting at iteration 2470 of 2879, that is at time 20h34m. The bottom-left panel shows the
n = 90 observations (9 satellites for 10 epochs) monitored in that zone; here, the x axis tick marks are unique observation
identifiers (index-numbers) not necessarily ordered in time: they refer to the random order the satellites enter in the sliding
window. The red crosses were detected as outliers by the FS, whose progress is shown on the right panel; the x axis ticks of
the right panel refer in fact to the FS steps.

Figure 11 gives three views of the intercepts estimated as the moving window of
10 epochs progresses with time. The top panels represent the distribution of the deviations
of the estimated values from the desired one, which should be zero. The histogram suggests
that the fluctuations observed in the time representation of the bottom panel are rather
symmetrical. On the other hand, the view provided by the normal probability plot on
the top right, which compares the empirical distribution of the intercept estimates to the
normal, indicates the extent to which the left and right tails deviating from the normal differ.
This suggests the presence of a small systematic bias in the way positions are received.

This possibility is corroborated by the experiments performed with the robust esti-
mators in Section 3 above, which raise some questions. While considering the plots of the
mean and median in Figure 4, we already remarked that the mean looks ‘biased’ by the
negative outliers. These problematic data points correspond to pre-fit residuals of low-
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elevation satellites, when the receiver is rising or setting above the local horizon. In such
circumstances, the SPP cannot accurately model propagation delays (e.g., at troposphere
and at ionosphere). Moreover, the noise of the measurements increases due to multipath
(i.e., reflections of the GNSS signal on the ground or metallic structures). A more precise
modeling of the measurements to the one used in SPP (see for instance, [21]) would, in
principle, reduce the dispersion of the pre-fit residuals. This would probably ease the
detection of outliers, although new borderline cases (i.e., on the limit to be considered as
outliers) would appear.

Figure 11. Monitoring the intercept estimates obtained with the FS on the basis of a moving time
window of 10 epochs. Small deviances of the intercept estimates around zero indicate that the
estimated pre-fit position remains stable. The time monitoring of the deviances (bottom panel) is
complemented by views on the intercept fluctuations distribution (top left histogram) and normality
departure (top right normal probability plot). The x axes of the upper panels refer again to the
deviance, while the y axes refer, respectively, as it is customary, to the bin frequencies and the
cumulative normal distribution function evaluated at the empirical deviance values.

4.3. Further Work

There have been several attempts at using robust statistics techniques in GNSS posi-
tioning, as mentioned in Section 1. Our study relies on the specific gLAB module dealing
with the analysis of pre-fit data where the difference between the modeled and computed
range, the pre-fit residuals as in Table 1, is meaningful. In this case, we showed that outlier
detection via FS gives an advantage both in terms of number of true outliers found and
computational efficiency with respect to LMS and LTS. This advantage can be further
improved by considering all the information available, like elevation, geometric dilution of
precision and correlation between epochs and satellites. Moreover, it is quite natural to wonder
whether robust methods can be used in other modules of gLAB, namely the PREPROCESS-
ING and the FILTER modules, in order to distribute the effort of the outlier detection and
ultimately improve the quality of SPP and possibly, the precise point positioning (PPP) [23].
Another research direction would be to apply the FSDA functions to actual data collected
by a moving receiver, as for instance autonomous drones [24]. In this regard, we remark
that the current implementation of the Kalman filter in the FILTER module is the classical
one, hence it is not robust. This kind of analysis will probably involve the use of robust time
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series, a topic which will be the main subject for the continuation of the present work. By
aiming at ‘real-time’ applications, we note that the translation in C language of the FSDA
functions is a task currently in progress that should improve the time overhead in the use
of robust methods remarked at the end of Section 3. A subsequent analysis of the flow
of data in the C code could lead to a parallel implementation of the basic routines and a
subsequent translation in an appropriate high-level language for hardware design.

5. Conclusions

The position solution computed by means of satellite measurements strongly depends
on how the data are processed. The present study is concerned with thesStandard point
positioning employed in the mass-market receivers, and exploits the pre-fit residuals of
datasets referred to the position of permanent receivers. The normal flow of data through
software packages for GNSS processing is considered by using gLAB as a reference. In
the main steps of this flow of data, the treatment of pre-fit residuals comes immediately
before the final FILTER module that outputs the computed coordinates. The experiments
done in this specific case show positive results and pave the way for a number of further
improvements and studies, as indicated in Sections 4.2 and 4.3, on the potential use of
robust statistics for GNSS positioning. These improvements are in line with a present trend
in the use of robust statistics for GNSS positioning, as briefly mentioned in Section 1. The
element of novelty added in this work is in the use of forward search techniques and in the
exploitation of pre-fit residuals. The results on positioning presented in Section 4.1 prove
that the robust statistical methods used correctly identify the actual outliers present in the
GNSS measurements, contributing in this way to the improvement of accuracy and the
reliability of satellite-based positioning services. Among the points listed in Section 4.2 for
further reflection, it was remarked once more that users shall, as in any other positioning
method, observe the GDOP metric to decide whether the coordinates are being estimated
with a weak geometry, especially in the event of discarding multiple satellites.
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