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Abstract: Multivariate count data are often modeled via a multivariate Poisson distribution, but it
contains an underlying, constraining assumption of data equi-dispersion (where its variance equals
its mean). Real data are oftentimes over-dispersed and, as such, consider various advancements of a
negative binomial structure. While data over-dispersion is more prevalent than under-dispersion in
real data, however, examples containing under-dispersed data are surfacing with greater frequency.
Thus, there is a demonstrated need for a flexible model that can accommodate both data types. We
develop a multivariate Conway–Maxwell–Poisson (MCMP) distribution to serve as a flexible alterna-
tive for correlated count data that contain data dispersion. This structure contains the multivariate
Poisson, multivariate geometric, and the multivariate Bernoulli distributions as special cases, and
serves as a bridge distribution across these three classical models to address other levels of over- or
under-dispersion. In this work, we not only derive the distributional form and statistical properties
of this model, but we further address parameter estimation, establish informative hypothesis tests
to detect statistically significant data dispersion and aid in model parsimony, and illustrate the
distribution’s flexibility through several simulated and real-world data examples. These examples
demonstrate that the MCMP distribution performs on par with the multivariate negative binomial
distribution for over-dispersed data, and proves particularly beneficial in effectively representing
under-dispersed data. Thus, the MCMP distribution offers an effective, unifying framework for
modeling over- or under-dispersed multivariate correlated count data that do not necessarily adhere
to Poisson assumptions.

Keywords: multivariate Poisson; multivariate Bernoulli; multivariate geometric; Conway-Maxwell–
Poisson; confounding; over-dispersion; under-dispersion; dependence

1. Introduction

There exists a rich history of research regarding multivariate discrete distributions [1].
Krishnamoorthy [2] introduced a multivariate binomial (MB) distribution for the d-
dimensional vector B = (B1, B2, . . . , Bd)

′ from a 2d table with a factorial moment gen-
erating function (fmgf)

GB(α) =

[
1 +

d

∑
i=1

p∗i αi + ∑
1≤i<j≤d

p∗ijαiαj + . . . + p∗12···dα1α2 · · · αd

]n

, (1)

where p∗i is the probability of Bi, i = 1, . . . , d; p∗ij denotes the probability of BiBj; and so
on. Utilizing this form, Krishnamoorthy [2] further introduced the multivariate Poisson
(MP) distribution as the limiting distribution of the multivariate binomial distribution
wherein all of the probabilities appearing in Equation (1) have order O(1/n) and np∗◦ → λ◦
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as n → ∞, where ◦ denotes the corresponding probability subscripts in Equation (1).
Accordingly, the fmgf of the MP distribution for a random vector X = (X1, X2, . . . , Xd)

′ is

GX(α) = exp

[
d

∑
i=1

λiαi + ∑
1≤i<j≤d

λijαiαj + . . . + λ12···dα1α2 · · · αd

]
. (2)

Mahamunulu [3] noted that the MP distribution can likewise be derived by defining
X = (X1, X2, ..., Xd) as the sum of independent Poisson(A∗) random variables Y∗, where ∗
denotes all subscripts involving ∗ = i ∈ {1, 2, . . . , d} with Y∗ distributed as Poisson(A∗),
and X∗ as Poisson(µ∗) where µ∗ denotes the sum of the associated A∗ parameters with
subsets j1, j2, . . . , js for s ∈ {1, 2, . . . , d} such that j1 < j2 < . . . < js. The corresponding
joint probability generating function (pgf) has the form

ΠX(s) = exp

[
d

∑
i=1

Aisi + ∑
1≤i<j≤d

Aijsisj + . . . + A12···ds1s2 · · · sd − A

]
, (3)

where A = ∑d
i=1 Ai + ∑1≤i<j≤d Aij + . . . + A12···d [3,4]. From (3), it is evident that the

variables X1, X2, ..., Xd have marginal Poisson distributions, and it can be further shown
that all pairs of variables Xi’s are positively correlated.

While the MP distribution is a popular model for describing correlated discrete ran-
dom variables, it is well known that Poisson models are constrained by their underlying
assumption of equi-dispersion; analogous negative binomial (NB) models serve as a popu-
lar alternative due to their ability to address data over-dispersion [5]. Doss [6] discussed a
multivariate negative binomial (MNB) distribution with joint pgf

Π(s) =

[
a0 +

d

∑
i=1

aisi + ∑
1≤i<j≤d

aijsisj + . . . + a12···ds1s2 . . . sd

]−k

(4)

for k > 0. From (4), it is evident that the variables X1, X2, ..., Xd have marginal NB
distributions which are known to be over-dispersed. For this reason, the MNB distribu-
tion can only accommodate data over-dispersion; accordingly, correlated under-dispersed
data structures are only at best fitted by a MP model where the associated model pa-
rameters will still be biased. Therefore, in this work, we introduce the reader to the
Conway–Maxwell–Poisson (CMP) distribution and develop a multivariate CMP (MCMP)
distribution as a flexible alternative distribution for modeling correlated discrete count data.
Section 2 introduces the reader to the CMP distribution and its bivariate analog as motiva-
tion. Section 3 develops the MCMP distribution and discusses its associated properties,
and also introduces approaches for parameter estimation and hypothesis testing. Section 4
demonstrates the model flexibility by means of simulated and real data examples. Finally,
Section 5 concludes the manuscript with discussion, while the appendices contain more
detailed derivations and the datasets referenced in this work.

2. Conway–Maxwell–Poisson Distribution

The CMP(λ, ν) distribution [7] has the probability mass function (pmf)

P(Y = y | λ, ν) =
λy

(y!)νZ(λ, ν)
, y = 0, 1, 2, . . .

for a random variable Y, where ν ≥ 0 is the dispersion parameter, λ = E(Yν) generalizes
the Poisson rate parameter, and Z(λ, ν) = ∑∞

j=0
λj

(j!)ν denotes the normalizing constant.
Equi-dispersion relative to the Poisson distribution is represented when ν = 1 while data
over-dispersion (under-dispersion) occurs when ν < (>)1. The CMP(λ, ν) distribution
contains three well-known distributions as special cases: Poisson with rate parameter λ
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when ν = 1; geometric with success probability 1− λ when ν = 0 and λ < 1; and Bernoulli
with success probability λ

1+λ when ν→ ∞ [8].
The distribution’s moments can be represented recursively as

E(Yr+1) =

{
λ[E(Y + 1)]1−ν, r = 0
λ ∂

∂λ E(Yr) + E(Y)E(Yr), r > 0;

in particular, its expected value and variance are

E(Y) =
∂ log Z(λ, ν)

∂ log λ
≈ λ1/ν − ν− 1

2ν
, and (5)

Var(Y) =
∂E(Y)
∂ log λ

≈ 1
ν

λ1/ν, (6)

where the approximations provided in Equations (5) and (6) hold for ν ≤ 1 or λ > 10ν [9,10].

Further, the CMP has the moment generating function (mgf) MY(t) = E(eYt) = Z(λet ,ν)
Z(λ,ν)

and pgf E(tY) = Z(λt,ν)
Z(λ,ν) .

Sellers et al. [11] construct a bivariate CMP model by means of the compounding
method, wherein the joint conditional distribution of {(X1, X2) | n} has a bivariate binomial
distribution and the number of trials n is CMP(λ, ν) distributed. The pmf of (X1, X2) is

P(X1 = x1, X2 = x2) =
1

Z(λ, ν)

∞

∑
n=0

λn

(n!)ν

×
n

∑
a=n−x1−x2

(
n

a, n− a− x2, n− a− x1, x1 + x2 + a− n

)
pa

00 pn−a−x2
10 pn−a−x1

01 px1+x2+a−n
11 ,

where ( n
a,n−a−x2,n−a−x1,x1+x2+a−n) is the multinomial coefficient, and it has the joint pgf

Π(t∗1 , t∗2) =
Z
(
λ[1 + p1+(t∗1 − 1) + p+1(t∗2 − 1) + p11(t∗1 − 1)(t∗2 − 1)], ν

)
Z(λ, ν)

(7)

for some parameters, λ, ν, and probabilities p00, p10, p01, p11 such that p00 + p10 + p01 +
p11 = 1, pi+ = pi0 + pi1 for i = 0, 1, and p+j = p0j + p1j for j = 0, 1. This bivariate CMP
distribution yields the three special bivariate cases that are achieved in their univariate
analogs: for ν = 1, the bivariate CMP distribution reduces to the bivariate Poisson [12,13];
when ν→ ∞, we obtain the bivariate Bernoulli distribution [14]; and, for ν = 0, λ < 1, and
λ{p1+(t∗1 − 1) + p+1(t∗2 − 1) + p11(t∗1 − 1)(t∗2 − 1)} < 1, the bivariate CMP distribution
reduces to a bivariate geometric model [11].

3. Multivariate Conway–Maxwell–Poisson Distribution

Generalizing the compounding approach in [11], we develop a convenient form for
the MCMP distribution. Consider d random variables X =(X1, X2, . . . , Xd) that, given
some number of trials n, jointly have a conditional MB distribution with pgf

Π(t∗1 , . . . , t∗d |n) =
(

1

∑
x1=0

1

∑
x2=0
· · ·

1

∑
xd=0

px1x2···xd

d

∏
i=1

(t∗i )
xi

)n

(Equation (37.71) of [1]), where n is a CMP(λ, ν) random variable. The compounding
technique that is formulated as a CMP-stopped MB (i.e., where the MB index parameter is
CMP distributed) can then be applied, resulting in the corresponding MCMP distribution’s
pgf as
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Π(t∗1 , . . . , t∗d) =
∞

∑
n=0

λn

(n!)νZ(λ, ν)
Π(t∗1 , . . . , t∗d | n)

=
Z
[
λ
(

∑1
x1=0 · · ·∑1

xd=0 px1x2···xd ∏d
i=1(t

∗
i )

xi
)

, ν
]

Z(λ, ν)
, (8)

where Z(ψ, ν) = ∑∞
s=0

ψs

(s!)ν for some ψ > 0. Equation (8) contains 2d + 2 parameters, but its

degrees of freedom equals 2d + 1 due to the restriction, ∑1
x1=0 · · ·∑1

xd=0 px1x2···xd = 1; this
adds difficulty in the determination of model parameter maximum likelihood estimates
(MLEs). We circumvent this issue through the reparametrization, λx1x2···xd = λpx1x2···xd .
Each variable is independent under this parameterization, where

λ = λ

(
1

∑
x1=0
· · ·

1

∑
xd=0

px1x2···xd

)
=

1

∑
x1=0
· · ·

1

∑
xd=0

λpx1x2···xd =
1

∑
x1=0
· · ·

1

∑
xd=0

λx1x2···xd

and px1x2···xd =
λx1x2 ···xd

λ . For simplicity, we use λ to denote ∑1
x1=0 · · ·∑1

xd=0 λx1x2···xd but
recognize that λ is no longer an independent parameter in the ensuing discussion. The pgf
of the MCMP distribution can now be parameterized as

Π(t∗1 , . . . , t∗d) =
Z
[(

∑1
x1=0 · · ·∑1

xd=0 λx1x2···xd ∏d
i=1(t

∗
i )

xi
)

, ν
]

Z(λ, ν)
. (9)

As is the case of the univariate and bivariate CMP, this MCMP includes the MP,
multivariate geometric, and multivariate Bernoulli distributions all as special cases, where
ν maintains representation as the dispersion parameter. When ν = 1, this MCMP pgf
reduces to the form of the MP joint pgf (see Equation (3)). When ν = 0 and λ < 1, its
pgf becomes

Π(t∗1 , . . . , t∗d ; ν = 0, λ < 1) =

(
a0 +

d

∑
i=1

ait∗i + ∑
1≤i<j≤d

aijt∗i t∗j + . . . + a12...dt∗1t∗2 ...t∗d

)−1

,

where a0 = 1−λ00···0
1−λ ; ai =

−λ0···01i0···0
1−λ where 1i denotes a 1 in the ith position, i = 1, 2, . . . , d;

aij =
−λ0···01i0···01j0···0

1−λ where 1i, 1j denote 1s in the 1 ≤ i 6= j ≤ d locations; . . . ; a12···d = −λ11···1
1−λ .

This is the pgf of a multivariate geometric distribution (i.e., the MNB distribution pgf in
Equation (4) with k = 1). Finally, when ν → ∞, this MCMP becomes a multivariate
Bernoulli (i.e., the MB in [2] with n = 1) with p∗00···0 = 1+λ00···0

1+λ and all remaining probabili-

ties are p∗x1x2···xd
=

λx1x2 ···xd
1+λ where at least one of xi equals 1, i = 1, 2, . . . , d. More broadly,

ν = 1 denotes the equi-dispersion case while ν < (>)1 reflects data over-dispersion
(under-dispersion), both for the joint distribution and the respective marginal distributions.

Given the joint pgf in Equation (8), this MCMP model has the joint mgf

M(t1, t2, · · · , td) = Π(et1 , et2 , · · · , etd)

=
Z
[(

∑1
x1=0 · · ·∑1

xd=0 λx1x2···xd e∑d
i=1 tixi

)
, ν
]

Z(λ, ν)
, (10)

and the joint fmgf as

G(t1, t2, ..., td) = Π(t1 + 1, t2 + 1, ..., td + 1)

=
Z
[(

∑1
x1=0 · · ·∑1

xd=0 λx1x2···xd ∏d
i=1(ti + 1)xi

)
, ν
]

Z(λ, ν)
. (11)
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We derive the MCMP pmf by taking partial derivatives of the pgf, i.e.,

p(x1, x2, . . . , xd) =
1

x1!x2! · · · xd!
∂x1+x2+...+xd

∂tx1
1 ∂tx2

2 · · · ∂txd
d

Π(t1, t2, . . . , td)
∣∣t1=t2=···=td=0 ; (12)

see Appendix A for pertinent details. Moving forward, we shall illustrate the MCMP results
using the trivariate case as motivation, where the joint fmgf reduces to G(t1, t2, t3) from which
we can obtain the moments and product moments, respectively; see Appendix B for all relevant
details. These results confirm that the dispersion parameter ν denotes the type of data-dispersion
for the joint and marginal distributions, and the correlations between any two random variables
is non-negative with 0 ≤ ρXiXj ≤ 1 for any variables i, j = 1, 2, 3.

3.1. Parameter Estimation

We perform parameter estimation by the method of maximum likelihood (ML). Con-
sidering the trivariate case of Equations (9) and (12), there are nine parameters required
to specify a trivariate CMP distribution, namely, λx1x2x3 for xi = 0, 1; i = 1, 2, 3; and ν.
Accordingly, the log-likelihood has the form

ln L(λ000, . . . , λ111, ν; (x1, x2, x3)) = ln
n

∏
j=1

p(x1j, x2j, x3j) =
n

∑
j=1

ln p(x1j, x2j, x3j), (13)

where xij denotes the jth observation in the ith data dimension, xi denotes the vector
of the entire data set in the ith dimension; the precise form of p(x1j, x2j, x3j) is provided
in Equation (A4) in Appendix A. The resulting score equations, however, do not have a
closed form solution. For this reason, we carry out the statistical computations by using
optimizing routines in R [15].

To perform the parameter estimation, we use the optim function where the negated
form of the log-likelihood (Equation (13)) serves as the function to be optimized, and
the L-BFGS-B method and its default convergence criteria are applied. Additionally, we
approximate the standard errors of the estimated parameters by calculating the square root
of the diagonal of the inverse Hessian matrix based on the approximate form obtained
from optim. The complexity of the MCMP distribution, however, brings with it some
computational difficulties when applying optim. The resulting MLE can vary considerably
depending on the choice of starting values. To avert this, we consider several starting
points including an exhaustive search in order to potentially improve the estimation result.
Meanwhile, the resulting Hessian matrix provided from optim sometimes produces an
inverse matrix containing negative diagonal elements; this violates the presumed positive
semidefinite form of the Fisher information matrix. For these reasons, we recommend uti-
lizing a parametric bootstrap method as an alternative approach for quantifying variability
in the parameter estimates.

3.2. Hypothesis Testing

To check if a multivariate count data set suffers from any statistically significant data
dispersion such that the MP distribution is unsuitable (favoring the MCMP distribution),
we conduct the hypothesis test, H0: ν = 1 versus H1: ν 6= 1. We do not concern ourselves
with the direction of the data dispersion because the MCMP distribution can accommodate
both over- and under-dispersion. Nonetheless, the resulting statistical inference, along
with the estimate for ν, offers guidance regarding the type of dispersion present in the
data. We use the likelihood ratio test (LRT) statistic, Λν=1 =

supν=1 ln L
sup ln L , where supν=1 ln L

and sup ln L, respectively, denote the maximum log-likelihoods associated with the MP
and MCMP models. Theoretically, −2 log(Λν=1) follows a χ2

1 distribution and thus can
be used to assess whether the data are reasonably distributed as a MP distribution, or if
statistically significant dispersion exists such that it warrants using the MCMP model. In
a similar vein, one can consider hypothesis tests, H0 : ν = 0 or H0 : ν → ∞ (versus H1 :



Stats 2021, 4 313

otherwise) to determine whether the multivariate data satisfy a multivariate geometric
or multivariate Bernoulli distribution, respectively; their associated LRTs have adjusted
distributional forms based on a mixture involving χ2

1 to account for being at the respective
boundaries for ν [16].

4. Examples

This section considers various simulated and real data examples to illustrate the
flexibility of the MCMP model. For the real data sets, we compare model performance
via the respective log-likelihood and Akaike Information Criterion (AIC) values. We
particularly consider ∆i = AICi −AICmin as introduced in Burnham and Anderson [17],
where AICi denotes the AIC associated with Model i, and AICmin is the minimum AIC
among the considered models. [17] provides model support levels based on recommended
∆i ranges; see Table 1 for details.

Table 1. Model support levels based on AIC difference values, ∆i = AICi −AICmin, for Model i [17].

∆i Empirical Support Level for Model i

[0, 2] Substantial
[4, 7] Considerably less

(10, ∞) Essentially none

4.1. Simulated Data

Here, we provide simulated data examples to illustrate the MCMP model’s ability to
correctly distinguish the MP distribution. Without loss of generality, we proceed with the
use of the trivariate case. To evaluate the robustness of the simulation process, we consider
data simulations of size {100, 250, 500, 1000} and simulate data 500 times at each size level.

We first consider a simulated trivariate Poisson distribution where the joint pgf
(Equation (3)) is defined with A1 = 1.5, A2 = 2, A3 = 1.3, A12 = 1.2, A13 = 0.6, A23 = 0.7
and A123 = 0.3, and obtain the MLEs for the trivariate CMP under two conditions: the
unconstrained case, and the restricted case where ν = 1. The latter case serves to reflect the
trivariate Poisson model with λ100 = A1, λ010 = A2, λ001 = A3, λ110 = A12, λ101 = A13,
λ011 = A23, λ111 = A123; thus, the value of λ000 no longer affects the model. Table 2
displays the proportion of −2 log Λ statistics that fall within the respective 95% or 99%
confidence bounds across the simulations. As expected, the proportion of −2 log Λ values
that are within the respective bounds, χ2

1(0.95) = 3.841 and χ2
1(0.99) = 6.635, is quite close

to their respective nominal levels, regardless of size level.
To assess the power of the test, H0: ν = 1 versus H1: ν 6= 1, we further generate data

from the trivariate geometric (a1 = −0.3, a2 = −0.5, a3 = −0.7, a12 = −0.2, a13 = −1,
a23 = −1.3, a123 = −0.1), the trivariate Bernoulli (p000 = 0.1, p001 = 0.07, p010 = 0.23,
p100 = 0.15, p011 = 0.08, p101 = 0.11, p110 = 0.17, p111 = 0.09), and the trivariate CMP
expressing over-dispersion (λ000 = 0.07, λ100 = 0.13, λ010 = 0.22, λ001 = 0.15, λ110 = 0.08,
λ101 = 0.06, λ011 = 0.12, λ111 = 0.11, ν = 0.5) and under-dispersion (λ000 = 2, λ100 = 0.8,
λ010 = 1.4, λ001 = 1.7, λ110 = 2.2, λ101 = 1.3, λ011 = 0.6, λ111 = 0.9, ν = 2), respectively. All
simulation results obtained are presented in Table 3. As the generating distribution has a
measure of dispersion that moves away from 1 (i.e., the data deviate from the Poisson), we
see the power increase in both directions. Meanwhile, the power likewise increases with
the sample size in association with all of the respective distributions.
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Table 2. Proportion of −2 log Λ values that lie within the χ2
1(0.95) and χ2

1(0.99) bounds, respectively,
given various sample sizes, {100, 250, 500, 1000}.

Sample Size Within χ2
1(0.95) Within χ2

1(0.99)

100 93.0% 99.2%

250 93.4% 99.4%

500 94.2% 98.8%

1000 94.8% 98.6%

Table 3. Power of the likelihood ratio test (at 5% level) when data are generated from the trivariate
geometric, the trivariate CMP with ν = 0.5, the trivariate CMP with ν = 2 and the trivariate Bernoulli,
respectively, for various sample sizes, {100, 250, 500, 1000}.

Sample Size Geometric CMP (ν = 0.5) CMP (ν = 2) Bernoulli

100 100% 37.0% 82.8% 100%

250 100% 62.6% 99.4% 100%

500 100% 75.4% 100.0% 100%

1000 100% 99.2% 100.0% 100%

4.2. Real Data: Corporación Favorita Grocery Sales

The Corporación Favorita grocery sales data [18] include information regarding the
number of unit items sold daily to more than 4000 items in 35 different stores over a
five-year period. To illustrate the MCMP distribution’s flexibility for describing real count
data, we consider the unit sales regarding a particular item (Item ID:103665) over 100 days
in each of three stores (Stores 1, 2 and 3, respectively); the data are provided in Table A2
in Appendix D. This dataset is over-dispersed due to the weekly and monthly periodic
fluctuation; the number of sales often tend to be high at the beginning of each month
as well as on weekends. Table 4 summarizes the results that stem from considering
various trivariate models to describe the data, namely, the trivariate Poisson, trivariate
NB [6], trivariate geometric, and trivariate CMP. For each of the assumed models, this table
provides the respective MLEs, resulting log-likelihood, and AIC values.

Although the trivariate Poisson distribution has the least number of parameters (i.e., 7)
among the models considered, it has the largest AIC (1748.5), suggesting its unsuitability
for these data [17]. Meanwhile, the MLEs of the trivariate CMP model include ν̂ ≈ 0.25,
implying that the data are over-dispersed. The trivariate CMP produces a considerably
smaller AIC (1627.9) relative to the trivariate Poisson; this further demonstrates the appar-
ent data over-dispersion that should be addressed, but with ∆ = 6.2 relative to the AIC
from the trivariate NB, the trivariate CMP (while second best among the four considered
models) still has model support that is “considerably less” than that of the trivariate NB
(AIC = 1621.7); this result is still substantially better than the difference between the
trivariate NB and Poisson models (∆ = 126.8), clearly inferring no support for the trivari-
ate Poisson. Further, applying the trivariate CMP model introduces consideration of the
trivariate geometric and NB models, respectively, as possible parsimonious models. The re-
spective LRT statistics, −2 log Λν=1 = 124.6 for the test H0 : ν = 1 and −2 log Λν=0 = 79.4
for H0 : ν = 0, both have p-values smaller than 0.005 which indicate that neither the trivari-
ate Poisson nor the trivariate geometric fits the data well. Even still, ν̂ ≈ 0.25 serves as an
indication of data over-dispersion, hence consideration of the general MNB distribution as
a possible model.



Stats 2021, 4 315

Table 4. Estimation results associated with the Corporación Favorita grocery sales data based on various assumed trivariate
models: Conway–Maxwell–Poisson (CMP), trivariate Poisson, trivariate geometric and trivariate negative binomial (NB).
Respective log-likelihood and Akaike Information Criterion (AIC) values are also provided, along with the number of free
parameters for AIC determination.

Log No. of Free
Model Estimated Parameters Likelihood Parameters AIC

λ̂000 = 0.00 λ̂111 = 0.00 λ̂100 = 0.32
CMP λ̂010 = 0.47 λ̂001 = 1.17 λ̂110 = 0.00 −804.9 9 1627.9

λ̂101 = 0.00 λ̂011 = 0.00 ν̂ = 0.25

Â1 = 2.32 Â2 = 2.97 Â3 = 8.94
Poisson Â12 = 0.19 Â13 = 0.00 Â23 = 0.62 −867.3 7 1748.5

Â123 = 0.11

â1 = −2.62 â2 = −3.89 â3 = −9.67
geometric â12 = 0.00 â13 = 0.00 â23 = 0.00 −844.6 7 1703.2

â123 = 0.00 â0 = 17.18

â1 = −0.44 â2 = −0.65 â3 = −1.61
NB â12 = 0.00 â13 = 0.00 â23 = 0.00 −802.8 8 1621.7

â123 = 0.00 â0 = 3.69 k̂ = 6.01

Table 4 further shows that λ̂110, λ̂101, λ̂011 and λ̂111 for the CMP model are all 0; a
similar situation appears on the estimation of the geometric and NB models, where â12, â13,
â23 and â123 are also all 0. This indicates that there is no significant correlation within the
data; this is true because the correlation coefficients between Stores 1 and 2, Stores 1 and 3,
and Stores 2 and 3 are 0.15, 0.02, 0.21, respectively.

Figure 1 compares the marginal pmfs associated with each of the four models with
the marginal relative frequencies associated with the number of unit sales for each of the
three stores (Stores 1, 2, 3). These images show that the trivariate CMP and NB models
produce very similar estimated marginal distributions with modes that are close to the
observed mode, and have sufficiently wide tails to reflect the observed marginal frequencies,
particularly for Store 2. Goodness-of-fit tests are likewise performed for comparing the
aforementioned models to assess how well their marginal pmfs fit the marginal data
frequencies. Following [19], we modify our observed frequencies by grouping observations
greater than 8 on Store 1, greater than 9 on Store 2, and observations greater than 21 on
Store 3. This allows the respective tail bins associated with each store to have a sufficiently
large observed frequency to allow for the goodness-of-fit test to be conducted and the
associated asymptotic chi-square distribution to be used. As a result, resulting statistics for
the goodness-of-fit tests are expected to follow the chi-square distribution with 10, 11 and
23 degrees of freedom, respectively, for Stores 1, 2 and 3.

Table 5 summarizes the goodness-of-fit test statistics for each of the stores and mod-
els. While the trivariate geometric model best fits the Store 1 marginal distribution, the
goodness-of-fit scores for the trivariate CMP and NB models are considerably better
and outperform their peers for Stores 2 and 3. Table 5 confirms these assertions with
χ2

10(0.95) = 18.3, χ2
11(0.95) = 19.7 and χ2

23(0.95) = 35.2, respectively, for Stores 1, 2 and
3; we again see that the geometric model fits the data better for Store 1, and the trivariate
CMP and NB models produce closer fits for Stores 2 and 3.
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Figure 1. Estimated marginal distributions associated with the trivariate CMP (blue/square), the trivariate geometric
(purple/circle), the trivariate negative binomial (red/triangle), and the trivariate Poisson (green/diamond) compared with
the original data relative frequencies (histogram) regarding the number of unit sales for: (a) Store 1, (b) Store 2, (c) Store 3.

Table 5. The goodness-of-fit test measures to compare the considered trivariate model (i.e., trivariate
CMP, trivariate negative binomial (NB), trivariate Poisson, and trivariate geometric) marginal pmfs
to the marginal data regarding the number of unit sales for Stores 1, 2 and 3, respectively.

Store 1 Store 2 Store 3

CMP 26.0 8.9 30.6

NB 26.4 9.7 30.2

Poisson 82.7 57.7 857.0

Geometric 16.1 22.7 51.6

4.3. Real Data: NBA All-Star

To demonstrate that the trivariate CMP can also be suitable for under-dispersed data,
we consider data from the National Basketball Association (NBA) All-Star game rosters
from 2000 to 2016 and seek to model the distribution of the number of players selected
for the All-Star game each year in various positions [20]. For simplicity, we focus on the
number of players that can play as Center (C), Forward (F), or Forward-center (FC); the
data are provided in Table A3 of Appendix D. We again consider the trivariate CMP, the
trivariate Poisson, and the trivariate NB distributions as possible models to describe this
dataset. Table 6 contains a summary of the results including the respective MLEs, the
resulting maximized log-likelihood, the number of free parameters, and the associated AIC
for each of the three considered models.

The trivariate CMP model performs the best among the considered models, attaining
a maximum likelihood equaling −68.2 and AICmin = 154.4. The trivariate Poisson and
NB models meanwhile produce respective AICs equaling 180.6 and 182.7 such that both
respective difference values as defined in [17] (Table 1) are greater than 26, indicating no
empirical support in favor of either model. The difference between the respective AIC
values for the trivariate Poisson and NB models stems from the difference in the number
of free parameters while they attain the same maximized log-likelihood value (−83.3).
Neither of these models can accommodate data under-dispersion, and consequently the
optimal trivariate NB distribution is that model which converges to the trivariate Poisson
as k → ∞. Accordingly, the trivariate NB MLEs that best address data under-dispersion
are those under the constraint of data equi-dispersion.
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The trivariate CMP model successfully detects the data under-dispersion (ν̂ = 38.4� 1).
In fact, such a large ν̂ suggests that we should consider modeling the data via a trivariate
Bernoulli model. This would normally be true because the resulting CMP denominator includes
(m!)ν which becomes considerably large for m > 1 given large ν̂. This makes p(x,y,z) vanish for
any (x, y, z) such that at least one of the random variables exceeds 1. This is not the case here,
however, because this data example likewise produces extremely large λ̂ estimates. Reviewing
the raw data likewise suggests clearly that the trivariate Bernoulli distribution is not appropriate
because there exist count data that are larger than 1, thus violating the multivariate Bernoulli
structure. Therefore, the use of the trivariate CMP to analyze these data is duly justified.

Table 6. Estimation results associated with the NBA All-Star data based on various assumed trivariate models: Conway–
Maxwell–Poisson (CMP), Poisson, and negative binomial (NB). Respective log-likelihood and Akaike Information Criterion
(AIC) values are also provided.

Log No. of Free
Model Estimated Parameters Likelihood Params AIC

λ̂000 = 0.00× 100 λ̂111 = 0.36× 1028 λ̂100 = 1.53× 1028

CMP λ̂010 = 0.00× 100 λ̂001 = 1.38× 1028 λ̂110 = 2.17× 1028 −68.2 9 154.4
λ̂101 = 3.77× 1028 λ̂011 = 4.52× 1028 ν̂ = 3.84× 101

Â1 = 1.15 Â2 = 0.94 Â3 = 1.94
Poisson Â12 = 0.00 Â13 = 0.12 Â23 = 0.04 −83.3 7 180.6

Â123 = 1.66

â1 = −3.3× 10−5 â2 = −2.5× 10−5 â3 = −5.5× 10−5

NB â12 = −2.6× 10−6 â13 = −4.3× 10−6 â23 = −4.1× 10−6 −83.3 8 182.7
â123 = −4.5× 10−5 â0 = 1.00017 k̂ = 34856

5. Discussion

In this paper, we present a MCMP model that is developed via the compounding
method. The distribution is established as a CMP-stopped multivariate binomial distribu-
tion, i.e., a multivariate binomial distribution where the associated index parameter is CMP
distributed. Along with an introduction to this resulting distribution, we discussed its
statistical properties which aid in better model interpretation. The CMP model can flexibly
accommodate both over- and under-dispersed count data, and it includes the Poisson,
Bernoulli, and geometric distributions all as special cases. Accordingly, the MCMP model
serves as a reliable tool for model determination because it can successfully recognize
these three multivariate special cases, and serve as an overarching distributional structure
connecting them. One can determine if significant data dispersion exists by calculating the
LRT statistic Λ discussed in Section 3.2, and analogous tests can be considered to determine
whether the data effectively approximate either of the other two special case distributions
(i.e., H0 : ν = 0 or H0 : ν→ ∞, respectively). The MCMP distribution is particularly useful
for modeling under-dispersed count data, as demonstrated through the simulated and real
data examples.

A limitation of the MCMP model is that the correlation between any two of the d
random variables comprising the MCMP is constrained to be non-negative, and so it may
not be appropriate to consider this model to analyze multivariate count data containing
negative correlations. This is true, however, of several multivariate discrete distributions,
e.g., the [3] multivariate Poisson distribution. Meanwhile, this MCMP construct involves
only one parameter (ν) to describe data dispersion. Hence, this MCMP model is suitable
only for data with similar levels of data dispersion in each dimension, however the model
can be broadened to allow for dynamic dispersion. Future work will seek to define a
broader generalization of the MP distribution (or modification of this MCMP model) that
allows for a broader range of correlation and possesses greater flexibility with regard to
data dispersion. One proposed approach, for example, is to consider using copulas to
develop a multivariate CMP distribution, as described in [21]. Though this is a standard
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method for multivariate continuous variables, its use for modeling multivariate count
data has its own limitations, most importantly that copulas for discrete outcomes are not
identifiable, especially when those discrete outcomes follow count distributions [21–23].

Table 4 demonstrates another limitation of the MCMP model, namely that it cannot
accommodate as much data over-dispersion as the MNB; the MCMP distribution at best
contains the multivariate geometric distribution (which is a special case of MNB). The
MNB model, however, can be viewed as the convolution of independent and identically
distributed (iid) multivariate geometric distributions. This convolution structure will then
be able to capture greater over-dispersion. More broadly, the same idea can be used to
consider a multivariate version of the sum of CMPs (MSCMP) model [24] as a generalization
to accommodate broader dispersion, and use its trivariate form to revisit the Corporación
Favorita grocery sales dataset. Unfortunately, due to computational issues, we were only
able to perform parameter estimations for the trivariate SCMP model under the restriction
m = 1, 2, 3. Future work will further study the MSCMP model, for example, to determine
how to optimally and directly compute the MSCMP pmf, and more efficiently determine
the MLEs of model parameters. See Appendix C for more information about the MSCMP.
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sCMP sum of CMPs
MSCMP multivariate version of the sum of CMPs

Appendix A. Deriving the Probability Mass Function

In order to derive the general form of the pmf, we first introduce some notation.
Assuming a MCMP distribution with d dimensions, there exist 2d distinct probabilities
px1x2...xd in the pgf, where xi = {0, 1} for all i = 1, 2, . . . , d. The first derivation relies on
the identity (
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)n
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)
al1

1 al2
2 · · · a

ld
d , (A1)

where s∗ = {(l1, · · · , ld) : 0 ≤ li ≤ n for i = 1, · · · , d, and ∑d
i=1 li = n} and ( n
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l1!l2!···ld ! is the multinomial coefficient. We can express
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where s0 = p00...0, s1 = ∑d
i1=1 p0···010···0ti1 , s2 = ∑16i1<i26d p0···010···010···0ti1 ti2 , · · · , sd =

p11···1t1 · · · td, and li denotes the number of times out of n trials where we obtain exactly i
of the required elements, i = 1, . . . , d. Observe that the number of respective si elements
is d0 = #s0 = 1, d1 = #s1 = (d
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where we use the simplified notation, p(i1)
.
= p0···010···0 with 1 being in the i1th position, and

s∗1 = {(j11, j12, · · · , j1d1) : 0 6 j1i1 6 l1 for i1 = 1, · · · , d1, and ∑d1
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where s∗2 = {(j21, j22, · · · , j2,d2) : 0 6 j2i2 6 l2 for i2 = 1, · · · , d2, and ∑d2
i2=1 j2,i2 = l2},

etc.; finally,
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1 tld

2 · · · t
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d . (A3)

To illustrate this, consider the case when d = 3. In this case,
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The second derivation utilizes the direct approach of differentiating the pgf to obtain
the pmf. To simplify the notation, let λ = ∑1

x1=0 · · ·∑1
xd=0 λx1x2···xd as before and let

q1 = λ000...01
λ , q2 = λ000...10

λ , q3 = λ000...11
λ , . . ., q2d−1 = λ111...1

λ . As a result, the general joint pmf
is given by



Stats 2021, 4 321

p(x) =
1

Z(λ, ν)

∑ xi−max(x)

∑
a=0


∂aZ(λ000...0, ν)

∂(λ000...0)a ∑
k1,k2,...,k

(2d−1)∈N

∑j bijkj=xi
∑j(∑i bij−1)kj=a

qk1
1 qk2

2 · · · q
k
(2d−1)

(2d−1)

k1!k2! · · · k(2d−1)!


.

where x = (x1, x2, . . . , xd) and max(x) = max(x1, x2, . . . , xd). In the trivariate case, the
model simplifies to
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where x = (x1, x2, x3) and max(x) = max(x1, x2, x3).

Appendix B. Derivations of Moments

Let λij+ = λij1 + λij0 for i = 0, 1; and j = 0, 1 and λi++ = λi00 + λi01 + λi10 + λi11
for i = 0, 1; λi+j, λ+ij, λ+i+, λ++i are similarly defined. By differentiating the fmgf with
respect to t1, t2, t3, and then setting t1 = t2 = t3 = 0, we obtain the joint factorial moments
of the trivariate form, (X1, X2, X3). Accordingly, letting Z(k)(·) = ∂kZ

∂λk , the initial marginal
and product moments are obtained as
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The above moments demonstrate that dispersion definitions are maintained via ν for
the marginal distributions, where ν = 1 denotes equi-dispersion and ν < (>)1 capture
over- (under-) dispersion. For example, when ν = 1, Z(λ, ν = 1) = Z′(λ, ν = 1) =
Z′′(λ, ν = 1) = exp(λ) and ln(Z) = λ, thus one can see that µXi = σ2

Xi
for i = 1, 2, 3 (i.e.,

marginal equi-dispersion holds), while µXi < (>)σ2
Xi

for i = 1, 2, 3 when ν < (>)1.
Using the notation introduced in Section 3, we derive the expression below. Let
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.

We then obtain the derivatives,
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+
Z′{h(t1, t2, t3), ν}

Z(λ, ν)
[λ110 + λ111(t3 + 1)],

∂2Gx1,x2,x3(t1, t2, t3)

∂t1∂t3
=

Z′′{h(t1, t2, t3), ν}
Z(λ, ν)

[λ100 + λ110(t2 + 1) + λ101(t3 + 1) + λ111(t2 + 1)(t3 + 1)]

·[λ001 + λ101(t1 + 1) + λ011(t2 + 1) + λ111(t1 + 1)(t2 + 1)]

+
Z′{h(t1, t2, t3), ν}

Z(λ, ν)
[λ101 + λ111(t2 + 1)],

∂2Gx1,x2,x3(t1, t2, t3)

∂t2∂t3
=

Z′′{h(t1, t2, t3), ν}
Z(λ, ν)

[(λ010 + λ110(t1 + 1) + λ011(t3 + 1) + λ111(t1 + 1)(t3 + 1)]

·[λ001 + λ101(t1 + 1) + λ011(t2 + 1) + λ111(t1 + 1)(t2 + 1)]

+
Z′{h(t1, t2, t3), ν}

Z(λ, ν)
[λ011 + λ111(t1 + 1)],

∂2Gx1,x2,x3(t1, t2, t3)

∂t2
1

=
Z′′{h(t1, t2, t3), ν}

Z(λ, ν)
[λ100 + λ110(t2 + 1) + λ101(t3 + 1) + λ111(t2 + 1)(t3 + 1)]2,

∂2Gx1,x2,x3(t1, t2, t3)

∂t2
2

=
Z′′{h(t1, t2, t3), ν}

Z(λ, ν)
[λ010 + λ110(t1 + 1) + λ011(t3 + 1) + λ111(t1 + 1)(t3 + 1)]2,

∂2Gx1,x2,x3(t1, t2, t3)

∂t2
3

=
Z′′{h(t1, t2, t3), ν}

Z(λ, ν)
[λ001 + λ101(t1 + 1) + λ011(t2 + 1) + λ111(t1 + 1)(t2 + 1)]2.



Stats 2021, 4 323

Then, the expected value of X1 is

µX1 =
Z′{h(t1, t2, t3), ν}

Z(λ, ν)
[λ100 + λ110(t2 + 1) + λ101(t3 + 1) + λ111(t2 + 1)(t3 + 1)]

∣∣∣∣
t1=t2=t3=0

=
Z′(λ, ν)

Z(λ, ν)
λ1++

=

{
∂ ln Z(λ, ν)

∂λ

}
λ1++;

similarly, µX2 =
{

∂ ln Z(λ,ν)
∂λ

}
λ+1+, and µX3 =

{
∂ ln Z(λ,ν)

∂λ

}
λ++1. Meanwhile,

µX1X2 = E(X1X2) =
∂2Gx1,x2,x3(t1, t2, t3)

∂t1∂t2

∣∣∣∣
t1=t2=t3=0

=
Z′′{h(t1, t2, t3), ν}

Z(λ, ν)
[λ100 + λ110(t2 + 1) + λ101(t3 + 1) + λ111(t2 + 1)(t3 + 1)]

·[λ010 + λ110(t1 + 1) + λ011(t3 + 1) + λ111(t1 + 1)(t3 + 1)]

+
Z′{h(t1, t2, t3), ν}

Z(λ, ν)
[λ110 + λ111(t3 + 1)]

∣∣∣∣
t1=t2=t3=0

=
Z′′(λ, ν)

Z(λ, ν)
λ1++ λ+1+ +

Z′(λ, ν)

Z(λ, ν)
λ11+;

similarly, µX1X3 = Z′′(λ,ν)
Z(λ,ν) λ1++ λ++1 + Z′(λ,ν)

Z(λ,ν) λ1+1 and µX2X3 = Z′′(λ,ν)
Z(λ,ν) λ+1+ λ++1 +

Z′(λ,ν)
Z(λ,ν) λ+11. Consequently, we obtain the covariances to be

σX1X2 = Cov(X1, X2) = E(X1X2)− E(X1)E(X2)

=

{
Z′′(λ, ν)

Z(λ, ν)
λ1++ λ+1+ +

Z′(λ, ν)

Z(λ, ν)
λ11+

}
−
{

Z′(λ, ν)

Z(λ, ν)
λ1++

Z′(λ, ν)

Z(λ, ν)
λ+1+

}
=

{
Z′′(λ, ν)

Z(λ, ν)
λ1++ λ+1+ +

Z′(λ, ν)

Z(λ, ν)
λ11+

}
−
{(

Z′(λ, ν)

Z(λ, ν)

)2

λ1++ λ+1+

}
=

[
Z′′(λ, ν)Z(λ, ν)− {Z′(λ, ν)}2

{Z(λ, ν)}2

]
λ1++ λ+1+ +

Z′(λ, ν)

Z(λ, ν)
λ11+;

similarly,

σX1X3 =

[
Z′′(λ, ν)Z(λ, ν)− {Z′(λ, ν)}2

{Z(λ, ν)}2

]
λ1++ λ++1 +

Z′(λ, ν)

Z(λ, ν)
λ1+1, and

σX2X3 =

[
Z′′(λ, ν)Z(λ, ν)− {Z′(λ, ν)}2

{Z(λ, ν)}2

]
λ+1+ λ++1 +

Z′(λ, ν)

Z(λ, ν)
λ+11.

Finally, noting that E{X1(X1 − 1)} = ∂2Gx1,x2,x3 (t1,t2,t3)

∂t2
1

∣∣∣∣
t1=t2=t3=0

, we obtain the vari-

ances as

σ2
X1

= Var(X1) = E{X1(X1 − 1)}+ E(X1)− {E(X1)}2

=
Z′′(λ, ν)

Z(λ, ν)
λ2

1++ +
Z′(λ, ν)

Z(λ, ν)
λ1++ −

{
Z′(λ, ν)

Z(λ, ν)

}2

λ2
1++

=

[
Z′′(λ, ν)Z(λ, ν)− {Z′(λ, ν)}2

{Z(λ, ν)}2

]
λ2

1++ +
Z′(λ, ν)

Z(λ, ν)
λ1++;
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similarly,

σ2
X2

=

[
Z′′(λ, ν)Z(λ, ν)− {Z′(λ, ν)}2

{Z(λ, ν)}2

]
λ2
+1+ +

Z′(λ, ν)

Z(λ, ν)
λ+1+, and

σ2
X3

=

[
Z′′(λ, ν)Z(λ, ν)− {Z′(λ, ν)}2

{Z(λ, ν)}2

]
λ2
++1 +

Z′(λ, ν)

Z(λ, ν)
λ++1.

Appendix C. Introduction to the Multivariate sCMP Model

A multivariate form of the sum of CMPs (MSCMP) distribution is an extension of the
sCMP model in [24]. This section applies various MSCMP forms as alternative models to
analyze the Corporación Favorita grocery sales data. The MSCMP distribution is defined as
follows: given iid random variables W1, W2, . . . , Wm that are MCMP(λ00...0, . . . , λ11...1, ν)
distributed, Y = ∑m

i=1 W i has a MSCMP(λ00...0, . . . , λ11...1, ν, m) distribution with pgf

Π(t∗1 , . . . , t∗d) =

Z
[(

∑1
x1=0 · · ·∑1

xd=0 λx1x2···xd ∏d
i=1(t

∗
i )

xi
)

, ν
]

Z(λ, ν)

m

. (A5)

Though the sCMP is defined as the sum of multiple CMPs, m need not be integer-valued
since the pgf is valid for all m ≥ 0. This MSCMP distribution includes the MNB (when
ν = 0), the MP (ν = 1), and the MB (ν→ ∞) distributions all as special cases, and serves as
an over-arching distribution that connects the three special cases.

Given the difficulties associated with calculating the pmf for the SCMP model, we pur-
sue an alternative approach to compute its pmf for a positive integer, m. For simplicity, we
illustrate this approach in the trivariate case and consider m = 2: let W1 = (W11, W12, W13)
W2 = (W21, W22, W23) be iid trivariate CMP(λ000, . . . , λ111, ν), and let Y = (Y1, Y2, Y3) =
W1 + W2 ; then Y has a trivariate SCMP(λ000, . . . , λ111, ν, m = 2) distribution, and

p(Y1 = y1, Y2 = y2, Y3 = y3) = ∑
a,b,c

p(W11 = a, W12 = b, W13 = c)

·p(W21 = y1 − a, W22 = y2 − b, W23 = y3 − c), (A6)

where a, b, c are non-negative integers such that y1 − a ≥ 0, y2 − b ≥ 0, and y3 − c ≥ 0; simi-
larly, we can determine the pmf of the trivariate SCMP(λ000, . . . , λ111, ν, m = 3) distribution.

We fitted the Corporación Favorita grocery sales dataset with the trivariate SCMP
model so as to demonstrate its capability of dealing with trivariate count data.
Table A1 provides the resulting trivariate SCMP estimates with m = 2 and m = 3 where,
for comparison, we also include the results of the trivariate NB and CMP models. Ac-
cordingly, we find that the trivariate SCMP models fit the data better than the trivariate
CMP, with improvement growing with m. More precisely, we note that, as m increases,
the log-likelihood increases while the AIC decreases. In particular, ν̂ likewise decreases
toward 0 (which results in the trivariate NB model) as m increases. Unfortunately, current
computational issues prevent us from providing SCMP results for m > 3, but these results
do illustrate that the SCMP model will produce a log-likelihood no worse than that from
the trivariate NB as it is a special case of bivariate SCMP model.
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Table A1. Estimation results associated with the Corporación Favorita grocery sales data based
on various assumed trivariate models: CMP, sCMP (m = 2), sCMP (m = 3), and NB. Respective
log-likelihood and Akaike Information Criterion (AIC) values are also provided.

Log No. of
Model Estimated Parameters Likelihood Parameters AIC

λ̂000 = 0.00 λ̂111 = 0.00 λ̂100 = 0.32
CMP λ̂010 = 0.47 λ̂001 = 1.17 λ̂110 = 0.00 −804.9 9 1627.9

λ̂101 = 0.00 λ̂011 = 0.00 ν̂ = 0.25

λ̂000 = 0.05 λ̂111 = 0.00 λ̂100 = 0.22
sCMP (m = 2) λ̂010 = 0.33 λ̂001 = 0.82 λ̂110 = 0.00 −804.0 9 1626.0

λ̂101 = 0.00 λ̂011 = 0.00 ν̂ = 0.19

λ̂000 = 0.12 λ̂111 = 0.00 λ̂100 = 0.16
sCMP (m = 3) λ̂010 = 0.24 λ̂001 = 0.61 λ̂110 = 0.00 −803.5 9 1625.0

λ̂101 = 0.00 λ̂011 = 0.00 ν̂ = 0.13

â1 = −0.44 â2 = −0.65 â3 = −1.61
NB â12 = 0.00 â13 = 0.00 â23 = 0.00 −802.8 8 1621.7

â123 = 0.00 â0 = 3.69 k̂ = 6.01

Appendix D. Real Datasets

Table A2. Corporación Favorita sales data: Unit sales of an item in each of three stores over 100 days.

Day Store 1 Store 2 Store 3 Day Store 1 Store 2 Store 3 Day Store 1 Store 2 Store 3

1 2 5 6 35 2 3 3 68 1 3 5
2 3 8 23 36 4 2 6 69 1 2 3
3 2 8 21 37 3 2 16 70 0 4 4
4 4 5 8 38 7 12 12 71 1 4 10
5 2 7 13 39 6 0 13 72 1 0 14
6 1 4 15 40 2 2 4 73 0 1 14
7 0 0 11 41 1 0 13 74 0 2 19
8 1 6 2 42 3 6 4 75 0 4 6
9 6 6 7 43 2 0 3 76 7 2 12
10 3 8 13 44 7 2 4 77 1 4 7
11 3 8 16 45 5 7 3 78 1 0 7
12 0 1 7 46 8 1 19 79 3 1 8
13 0 5 11 47 1 6 17 80 4 3 17
14 6 8 7 48 1 2 5 81 4 7 7
15 1 2 4 49 3 6 5 82 3 3 13
16 8 4 4 50 5 2 9 83 1 0 9
17 3 10 20 51 10 1 0 84 1 1 11
18 6 6 12 52 4 4 11 85 0 2 8
19 0 1 6 53 1 5 25 86 6 5 11
20 3 7 10 54 3 5 4 87 0 0 9
21 0 2 5 55 1 7 3 88 0 4 8
22 3 4 1 56 2 1 4 89 1 2 15
23 3 4 3 57 1 5 2 90 1 6 4
24 7 17 13 58 0 3 7 91 0 2 11
25 2 4 11 59 6 4 12 92 0 2 5
26 0 5 9 60 8 1 11 93 8 2 11
27 3 1 2 61 3 4 12 94 3 3 21
28 2 3 1 62 1 2 5 95 3 9 21
29 2 9 4 63 5 0 3 96 0 8 8
30 4 2 7 64 2 1 3 97 4 5 27
31 6 4 12 65 0 3 7 98 5 3 15
32 1 6 18 66 1 2 26 99 1 2 4
33 0 11 15 67 0 1 17 100 4 3 6
34 2 7 12
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Table A3. NBA All-Star data: Number of players selected for the NBA all-star game each year in
each position (C = Center; F = Forward; FC = Forward-center).

Year C F FC Year C F FC Year C F FC

2000 6 1 4 2006 3 3 4 2012 3 2 4
2001 3 4 3 2007 2 3 3 2013 2 2 4
2002 4 3 4 2008 3 2 3 2014 2 2 5
2003 4 2 3 2009 2 3 5 2015 2 4 4
2004 3 4 4 2010 2 2 5 2016 3 4 2
2005 2 2 5 2011 4 2 2
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