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Abstract: In this paper, we propose the classical and Bayesian regression models for use in conjunction
with the inverted Weibull (IW) distribution; there are the inverted Weibull Regression model (IW-Reg)
and inverted Weibull Bayesian regression model (IW-BReg). In the proposed models, we suggest the
logarithm and identity link functions, while in the Bayesian approach, we use a gamma prior and
two loss functions, namely zero-one and modified general entropy (MGE) loss functions. To deal
with the outliers in the proposed models, we apply Huber and Tukey’s bisquare (biweight) functions.
In addition, we use the iteratively reweighted least squares (IRLS) algorithm to estimate Bayesian
regression coefficients. Further, we compare IW-Reg and IW-BReg using some performance criteria,
such as Akaike’s information criterion (AIC), deviance (D), and mean squared error (MSE). Finally,
we apply the some real datasets collected from Saudi Arabia with the corresponding explanatory
variables to the theoretical findings. The Bayesian approach shows better performance compare to
the classical approach in terms of the considered performance criteria.

Keywords: Bayesian generalized linear models; Huber’s function; identity link function; log link
function; modified general entropy loss function; Tukey’s bisquare function; zero-one loss function

1. Introduction

McCullagh and Nelder [1] published a book on the generalized linear models (GLMs)
that led to their widespread use and appreciation. They extended the scoring method to
maximum likelihood estimation (MLE) in exponential families. Nelder and Pregibon [2]
described methods of jointly estimating the parameters of both the link and variance
functions. The iteratively reweighted least squares (IRLS) algorithm is amenable to some
statistics and measures that are common to all the GLMs. Nelder and Wedderburn [3] used
the Newton-Raphson process for regression coefficients estimates. They reported that the
Newton-Raphson process with expected second derivatives is equivalent to the Fisher’s
scoring technique. Additionally, De Jong and Heller [4] reported that the Newton-Raphson
iteration equation leads to a sequence that often rapidly converges. These include the D
statistic, along with some specific residuals and influence measures. Yuan and Bentler [5]
reported that the convergence properties of the Fisher-scoring algorithm are affected by
many factors. One of them is multicollinearity among the observed variables. If the sample
or model implied covariance matrix is close to being singular, the Fisher-scoring algorithm
may have difficulty reaching a set of converged solutions. Liao [6] introduced a systematic
way of interpreting commonly used probability models: logit, probit, and the other GLMs.

The inverse Weibull (IW) model that was derived by Keller and Kamath [7] based on
physical considerations on some mechanical components’ failures subject to degradation
phenomena, assuming that the strength of a component decreases with time with a power
law. Calabria and Pulcini [8] proposed the IW distribution as a suitable model to describe
mechanical degradation phenomena. They investigated a statistical property of the maxi-
mum likelihood estimator of the IW reliability. Jiang et al. [9] derived the Weibull (W) and
IW mixture models with a common shape parameter for a system’s components. They also
used an example to illustrate that the proposed mixture model can be used to approximate
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the reliability behaviors of the consecutive-k-out-of-n systems. Mahmoud et al. [10] consid-
ered the order statistics arising from IW distribution. They also derived an exact expression
for the single moments of order statistics. Pasari and Dikshit [11] investigated the suitability
of W distribution in the probabilistic assessment of earthquake hazards. The performance
is also compared with two other popular models from the same W family, namely the
two-parameter W model and the IW model. Jazi et al. [12] proposed a discrete IW distribu-
tion, a discrete version of the continuous IW variable of fitting discrete-time reliability and
survival data sets. Kundu and Howlader [13] considered the Bayesian inference and pre-
diction problems of the IW distribution based on Type-II censored data. Qingtian et al. [14]
discussed the definition of environmental factors and restricting conditions of constant
failure mechanism Based on generally accepted basic hypotheses. They estimated the IW
distribution environment factor using the MLE and Bayes estimation methods. Musleh and
Helu [15] considered two types of inference procedures: the classical (MLE, Approximate
MLE and the least square method (LSE)) and the Bayesians (the squared error loss function
(SQR), Linex loss function (LIN), General entropy loss function (GE), the Precautionary
loss function (PRE)) to estimate the unknown parameters of the IW distribution when
data under consideration are progressively type-II censoring. Akgul et al. [16] used IW
distribution for modeling the seasonal wind speed using the modified maximum likeli-
hood (MML) estimators of the parameters. The MML estimators’ efficiencies are compared
with the well-known maximum likelihood (ML) and the least-squares (LS) estimators via
the Monte-Carlo simulation study. Nassar and Abo-Kasem [17] discussed the estimation
problem of the unknown parameters of the IW distribution based on adaptive type-II
progressively hybrid censored data. They used classical and Bayesian estimation methods
to estimate the unknown parameters.

The Bayesian approach to modelling provides an alternative to the standard GLMs.
The posterior mode estimation is an alternative to full posterior analysis or posterior
mean estimation, which avoids numerical integrations or simulation methods. It has
been proposed by many authors; see References [18,19]. Dey et al. [20] described how to
conceptualize, perform, and critique the traditional GLMs from a Bayesian perspective
and how to use modern computational methods to summarize inferences using simulation.
Olsson [21] given an overview of the GLMs and has presented practical examples. The
exponential family of distributions are discussed along with the maximum likelihood
estimation and ways of assessing the fit of the model. Dobson and Barnett [22] presented a
theoretical background of the GLMs. For the Bayesian estimation in this context, a useful
asymmetric loss function, known as the LINEX loss function, was introduced by Varian
(1975) and has been widely used by several authors. A suitable alternative to the modified
LINEX loss is the general entropy (GE) loss function proposed by [23]. This loss function is
a generalization of the entropy loss function used by several authors [23–25]. One highly
used one is the zero-one loss function (for more details, see Reference [26]).

In order to reduce the influence of outliers on the estimate, some robust measures
were proposed in the literature. The common robust estimation method can be divided
into several categories: M, MM, median, L1, Msplit, R, S, least-trimmed squares, and
sign-constraint robust least squares estimation. Among these, Huber’s M estimation has
become one of the main robust estimation methods by virtue of its simple calculation
and convenience to implement [27]. The key aspect is the involvement of a loss function
that is applied to data errors that was selected to less rapidly increase than the square
loss function that is used in least-squares or maximum-likelihood procedures. There exist
several well-known families of loss functions, such as Huber, Hampel, and Tukey’s biweight
(or bisquare) that can be used for the computation of M estimators [28]. The IW distribution
is flexible distribution can be used as a competing to gamma and Weibull distributions
to describe more widely real life data, failure characteristics, such as infant mortality,
useful life and wear-out periods, applications in medicine and ecology, determining the
cost-effectiveness, maintenance periods of reliability centered maintenance activities, and
biological research (for more details, see References [7,9,13,29–35]).
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This paper is structured as follows: In Section 2, we present an overview of the GLMs
and propose the IW-Reg model under various link functions for estimating the model
parameters. In Section 3, we estimate the IW-Bayesian regression (IW-BReg) model under a
gamma prior, various link and two loss functions. In Section 4, we apply the theoretical
results of both of IW-Reg and IW-BReg models to some real datasets collected from Saudi
Arabia. Next, we investigate the performance of the proposed models in terms of some
criteria, such as Akaike’s information criterion (AIC), mean squared error (MSE), and
deviance (D). In addition, we propose Huber and Tukey’s bisquare (biweight) functions to
improve IW-BReg models . In addition, we adopt the iteratively reweighted least squares
(IRLS) algorithm to estimate the Bayesian regression coefficients. Finally, Section 5 draws a
succinct conclusion to the findings.

2. Classical Approach

Nelder and Wedderburn [36] introduced the class of the GLMs, defined according to
the assumption that y1, y2, ...yn are observations of the response variable, with the density
function of yi as follows:

f (yi; θi) = eθiyi−ψ(θi)+c(yi), i = 1, 2, ..., n, (1)

where ψ(·), c(·) are known functions, with θi being the canonical parameter. A link function,
g(.), relating to the regression coefficients, is given by

g(µi) = ηi = x′i β, i = 1, 2, ..., n, (2)

where g(µi) = θi, β = (β1, ..., βp)′ is a vector of p unknown regression parameters,
x′i = (xi1, xi2, ..., xip) is a vector of explanatory variables, and ηi is a linear predictor of
the vectors x′i and β. Here, the g(.) is a link function, which is a monotonic differentiable
invertible function. The model given by (1) and (2) is called the GLM. The GLM class
includes, as special cases, linear regression and analysis of variance models, logit and
probit models for quantal responses, log-linear models, and multinomial response models
for counts; for more details, see Reference [36].

Consider that the probability density function of the IW distribution as follows [37]

f (y; α, γ) = αγy−(γ+1)e−αy−γ
; y > 0, α, γ > 0; (3)

here, α > 0 and γ > 0 are the shape and scale parameters, respectively. The mean value of
the response variable is given by

E(y) = µ = α
1
γ Γ
(

1− 1
γ

)
. (4)

The cumulative function of IW distribution is given by

F(y; α) = e−αy−γ
; y > 0.

Let yi be a random sample from IW, and αi =

(
µi

Γ
(

1− 1
γ

)
)γ

, the log-likelihood function

based on yi, is given by

li = l(µi|yi) = log

 µi

Γ
(

1− 1
γ

)
γ

+ log(γ)− (γ + 1) log(yi)−

 µi

Γ
(

1− 1
γ

)
γ

y−γ
i . (5)

The regression coefficients are estimated using the Fisher’s scoring technique [3,36]. In
order to develop the GLMs for our models, the IW-Reg are similar to GLMs, except that the



Stats 2021, 4 272

distribution of the response variable is not a member of the exponential family [38]. We also
suggest some convenient link functions of g(.), in view of (2), as in the following lemmas.

Lemma 1 (The IW-Reg model with a log link function). Let the response variable Y have an
IW distribution, i = 1, 2, ..., n, and let the link function of the form be

g(µi) = log(µi) = ηi = x′i β, i = 1, 2, ..., n. (6)

Thus, the estimated coefficients β̂′ = (β̂0, β̂1, . . . , β̂p) using Fisher’s scoring technique at the sth

iteration is given by

β̂(s) =
(

X′W
(

β̂(s−1)
)

X
)−1

X′W
(

β̂(s−1)
)

Z, s = 1, 2, 3, ..., (7)

where X is a covariates matrix, β̂
(0)
j is an initial vector, W = diag(w1, w2, . . . , wn),

wi = [γ]2, (8)

and Z′ = (z1, z2, . . . , zn), and

zi =
p

∑
j=1

xij β̂
(s−1)
j + w−1

i γ

1−

[
µ
(s−1)
i

]γ

[
Γ
(

1− 1
γ

)
yi

]γ

. (9)

The procedure in (7) can be repeated until |β̂(s) − β̂(s−1)| ≤ ε. The IW-Reg model in this case is
given by

µ̂
(s)
i = e

(
β̂
(s)
0 +β̂

(s)
1 xi1+....+β̂

(s)
p xip

)
. (10)

Proof. Suppose that, in yi ∼ f (yi; α, γ), as in (3), the parameter γ is assumed to be known.
The log-likelihood function based on yi, i = 1, 2, ..., n is given as in (5). The link function
connecting the µi with the linear model x′i β, in this case, is given as in (6). Ur for the
log-likelihood is written from one observation as

Ur(β) =
∂l(β)

∂βr
=

n

∑
i=1

∂li
∂µi

∂µi
∂ηi

∂ηi
∂βr

, r = 1, 2, ..., p. (11)

From (5) and (6), we have

Ur(β) =
n

∑
i

γ

 1
µi
−

µ
γ−1
i[

Γ
(

1− 1
γ

)
yi

]γ

µixir, (12)

which can be written in the matrix notation as

U
(

β̂
)
= XtQ

(
y, µ
(

β̂
))

. (13)

Taking the second derivatives of l(β), we have

∂Ur(β)

∂β j
=

∂2l(β)

∂β j∂βr
=

n

∑
i

γ

−1
µ2

i
−

(γ− 1)µγ−2
i[

Γ
(

1− 1
γ

)
yi

]γ

µ2
i xijxir, j = 1, 2, ..., p;
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hence,

−E

(
∂Ur(β)

∂β j

)
=

n

∑
i=1

γ

 1
µ2

i
+

(γ− 1)µγ−2
i E(y−γ

i )[
Γ
(

1− 1
γ

)]γ

µ2
i xirxij.

Since E(y−γ
i ) =

[
µi

Γ
(

1− 1
γ

)
]−γ

and ∂µi
∂β j

= µixij, then Irj = −E
(

∂Ur(β)
∂β j

)
= ∑n

i γ2xij xir, and

I
(

β̂
)
= X′W

(
β̂
)
X, (14)

where W
(

β̂
)

is the diagonal matrix of weights, and wi is as it is in (8). Then,

I
(

β̂(s−1)
)

β̂(s) = I
(

β̂(s−1)
)

β̂(s−1) + U
(

β̂(s−1)
)

, s = 1, 2, 3, ....

From (13) and (14), we have(
X′W

(
β̂(s−1)

)
X
)

β̂(s) =
(

X′W
(

β̂(s−1)
)

X
)

β̂(s−1) + X′Q
(

y, µ
(

β̂(s−1)
))

. (15)

Finally, the estimated coefficients β̂ is given by

β̂(s) =
(

X′W
(

β̂(s−1)
)

X
)−1

X′W
(

β̂(s−1)
)[

Xβ̂(s−1) + W−1
(

β̂(s−1)
)

Q
(

y, µ
(

β̂(s−1)
))]

,

and

β̂(s) =
(

X′W
(

β̂(s−1)
)

X
)−1

X′W
(

β̂(s−1)
)

Z,

as given in (7).
To derive the MLS of β, the IRLS is used. Under certain regularity conditions on the

likelihood function, the MLE β̂(s) are asymptotically normal, unbiased, and efficient, with
covariance matrix equal to the inverse of Fisher’s information matrix [39]. Thus, β̂ has
asymptotically normal distribution,

β̂ ≡ N
[

β,
(
X′WX

)−1
]
,

where (X′WX)−1 is the inverse of Fisher’s information matrix.

Lemma 2 (The IW-Reg model with identity link function). Let the response variable Y have
an IW distribution, i = 1, 2, ..., n, and let the link function of the form be

g(µi) = µi = ηi = x′i β, i = 1, 2, ..., n. (16)

Thus, the estimated coefficients β̂′ = (β̂0, β̂1, . . . , β̂p) using Fisher’s scoring technique at the sth

iteration is given by

β̂(s) =
(

X′W
(

β̂(s−1)
)

X
)−1

X′W
(

β̂(s−1)
)

Z, s = 1, 2, 3, ..., (17)

where X is a covariates matrix, β̂
(0)
j is an initial vector, W = diag(w1, w2, . . . , wn),

wi =

[
γ

µ
(s−1)
i

]2

, (18)
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and Z′ = (z1, z2, . . . , zn), and

zi =
p

∑
j=1

xij β̂
(s−1)
j + w−1

i γ

 1

µ
(s−1)
i

−

[
µ
(s−1)
i

]γ−1

[
Γ
(

1− 1
γ

)
yi

]γ

. (19)

The procedure in (17) can be repeated until |β̂(s) − β̂(s−1)| ≤ ε. The IW-Reg model in this case is
given by

µ̂
(s)
i = β̂

(s)
0 + β̂

(s)
1 xi1 + .... + β̂

(s)
p xip. (20)

Proof. Suppose that, in yi ∼ f (yi; α, γ), as in (3), the parameter γ is assumed to be known.
The log-likelihood function based on yi, i = 1, 2, ..., n is given as in (5). The link function
connecting the µi with the linear model x′i β, in this case, is given in (16). From (5), (11), and
(16), we have

Ur(β) =
n

∑
i=1

γ

 1
µi
−

µ
γ−1
i[

Γ
(

1− 1
γ

)
yi

]γ

xir,

which can be written in the matrix notation as in (13). Taking the second derivatives of
l(β), we have

∂2l(β)

∂β j∂βr
=

n

∑
i

γ

−1
µ2

i
−

(γ− 1)µγ−2
i[

Γ
(

1− 1
γ

)
yi

]γ

xirxir;

hence,

−E

(
∂Ur(β)

∂β j

)
= −E

(
∂2l(β)

∂β j∂βr

)
=

n

∑
i

γ

 1
µ2

i
+

(γ− 1)µγ−2
i E(y−γ

i )[
Γ
(

1− 1
γ

)]γ

xijxir,

since E(y−γ
i ) =

[
µi

Γ
(

1− 1
γ

)
]−γ

and ∂µi
∂β j

= xij, then Irj = −E
(

∂Ur(β)
∂β j

)
= ∑n

i xij

[
γ

µ
(s−1)
i

]2
xir

and I
(

β̂
)

is given as in (14), where W
(

β̂
)

is the diagonal matrix of weights, and wi is as it is
in (18). Using (15), we have β̂(s) as in (17).

Lemma 3 (Convergence estimates in the Fisher’s scoring process). Let the response variable
Y have an IW distribution, and let the link function of the form be g(µi) = ηi = x′i β i = 1,2,...,n,
the estimated coefficients β̂′ = (β̂0, β̂1, . . . , β̂p) using Fisher’s scoring technique at the sth iteration
is given by

β̂(s) =
(

X′W
(

β̂(s−1)
)

X
)−1

X′W
(

β̂(s−1)
)

Z, s = 1, 2, 3, ...,

Then, p
(
|β̂(s) − β̂(s−1)| ≤ ε

)
= 1, where X is a covariate matrix, W is the diagonal matrix of

weights, and Z is a vector of the response variable.

Proof. Suppose that, in yi ∼ f (yi; α, γ), as in (3), the parameter γ is assumed to be known.
The log-likelihood function based on yi, i = 1, 2, ..., n is given as in (5). Furthermore,
suppose that the link function g(µi) connecting the µi with the linear model x′i β is given as
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in (2). The Fisher’s scoring process to obtain the MLEs estimates β̂ is given by computing
the iterations:

β̂(s) = β̂(s−1) +
[

I
(

β̂(s−1)
)]−1

U
(

β̂(s−1)
)

, s = 1, 2, 3, ...., (21)

where U
(

β̂(s−1)
)

is the score vector for the log-likelihood (5), and I
(

β̂(s−1)
)

is the Fisher’s
information matrix. Taking the expectation of the Equation (21), we have

E
[

β̂(s−1)
]
= E

[
β̂(s−1)

]
= ξ, (22)

since the estimates β̂(s−1) are the MLEs, and E
[[

I
(

β̂(s−1)
)]−1

U
(

β̂(s−1)
)]

= 0. Hence, we

get E
[

β̂
(s)
j

]
= E

[
β̂
(s−1)
j

]
= ξi for all j = 1, 2, ..., p where ξ is a vector of expectations. From

(21), we have ∣∣∣β̂(s) − β̂(s−1)
∣∣∣ = ∣∣∣∣[I

(
β̂(s−1)

)]−1
U
(

β̂(s−1)
)∣∣∣∣. (23)

Using the Chebyshev inequality, for every ω > 0, we find

p
(∣∣∣β̂(s) − β̂(s−1)

∣∣∣ ≤ ω
)
≥ 1−

E
(∣∣∣β̂(s) − β̂(s−1)

∣∣∣)
ω

. (24)

Now, by the Jensen inequality,

p
(∣∣∣β̂(s) − β̂(s−1)

∣∣∣ ≤ ω
)
≥ 1−

∣∣∣E(β̂(s) − β̂(s−1)
)∣∣∣

ω
. (25)

Let ω = ε and, using (25), we then obtain

p
(∣∣∣β̂(s) − β̂(s−1)

∣∣∣ ≤ ε
)
= 1, (26)

since E
(

β̂(s) − β̂(s−1)
)
= 0. On the other hand, by choosing ω = ε

n into the Equation (26),

this becomes p
(∣∣∣β̂(s) − β̂(s−1)

∣∣∣ ≤ 0
)
= 1 as n→ ∞.

3. Bayesian Approach

Diaconis and Ylvisker [40] introduced a conjugate prior distribution for the exponen-
tial family, which, as in (1), can be shown as

π(θi) = k1emµ0θi−mψ(θi), i = 1, 2, ..., n (27)

where k1 is a normalization constant, and m, µ0 are natural parameters. The θi values are
connected to the regression coefficients by the link function ηi = x′i β as

g∗(ηi) = θi. (28)

The posterior distribution of θi is given by

π(θi|yi) = k2e(yi+mµ0)θi−(1+m)ψ(θi). (29)
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Das and Dey [41] suggested a Jacobian transformation and rewrote (29) with the term ηi, as

π(ηi|yi) = K2e(yi+mµ0)g∗(ηi)−(1+m)ψ(g∗(ηi))
∂g∗(ηi)

∂ηi
, (30)

where k2 is a normalization constant, and ∂g∗(ηi)
∂ηi

6= 0. They used a zero-one loss func-
tion to attain the posterior mode of (30) as η̂i = h(yi); hence, the estimated coefficients
β̂∗ = (β̂∗0, β̂∗1, ..., β̂∗p)

′ are given by

β̂∗ = (X′X)−1X′η̂, (31)

where β̂∗ is the least square estimates, and η̂′ = (η̂1, η̂2, ..., η̂n) [40,41]. Under regularity
conditions, the estimator β̂∗ has a asymptotically normal distribution β̂ ≡ N

[
β, F−1], where

F−1 is the inverse of Bayesian Fisher’s information (BIF). Note that the BFI is given by

F =

[
∂

∂η
log π(η|y)

]2
,

where π(η|y) is the posterior pdf of η [39,42,43].
In order to develop the Bayesian approach, we propose a modified loss function of

the general entropy (MGE) loss function to be appropriate for the Bayesian estimates. The
MGE loss function is introduced in the following lemma.

Lemma 4 (The MGE loss function). Consider that the posterior distribution of the ηi is π(ηi|yi),
η̂i is an estimate of ηi, and yi, i = 1, 2, ..., n are independent observations. A suitable alternative
loss function to the GE loss is the MGE loss function, given as

l(g∗(η̂i); g∗(ηi)) ∝
(

g∗(η̂i)

g∗(ηi)

)κ

− κ log
(

g∗(η̂i)

g∗(ηi)

)
− 1, κ 6= 0. (32)

Thus, the posterior Bayes estimates of ηi is given by solving the equation

E
(
[g∗(ηi)]

−κ |yi
)
= [g∗(η̂i)]

−κ ∂g∗(η̂i)

∂η̂i
. (33)

Proof. Consider the MGE loss function is given as in (32). The posterior expectation of the
loss function with respect to the posterior π(ηi|yi) is given as

E[l(g∗(η̂i); g∗(ηi)|yi)] =
∫ −∞

∞

[(
g∗(η̂i)

g∗(ηi)

)κ

− κ log
(

g∗(η̂i)

g∗(ηi)

)
− 1
]

π(ηi|yi)dηi,

= [g∗(η̂i)]
κ
∫ −∞

∞

[(
1

g∗(ηi)

)κ]
π(ηi|yi)dηi − κ

∫ −∞

∞
[log g∗(η̂i)− log g∗(ηi)]π(ηi|yi)dηi − 1.

The value of η̂i that minimizes the posterior expectation of the MGE loss function is obtained by
solving the equation

∂E[l(g∗(η̂i); g∗(ηi)|yi)]

∂η̂i
= κ[g∗(η̂i)]

κ−1E
(
[g∗(ηi)]

−κ |yi
)
− κ

1
g∗(η̂i)

∂g∗(η̂i)

∂η̂i
= 0;

hence,

[g∗(η̂i)]
κ−1E

(
[g∗(ηi)]

−κ |yi
)
=

1
g∗(η̂i)

∂g∗(η̂i)

∂η̂i
,
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and

E
(
[g∗(ηi)]

−κ |yi
)
= [g∗(η̂i)]

−κ ∂g∗(η̂i)

∂η̂i
,

as given in (33).

In order to develop a Bayesian approach, we suggest inverted Weibull Bayesian
generalized linear models (IW-BReg) that are similar to the approach in Section 3, except
that the distribution of the response variable is not a member of the exponential family. We
use the general form of the posterior in (30), and since g(·) is a monotonic differentiable
function, then we attain the posterior Bayes estimates. Moreover, we use the a log and
identity link functions with different loss functions. The IW-BReg estimates correspond to
the link functions using different loss functions, as in the following lemmas.

Lemma 5 (The IW-BReg model based on zero-one loss function). Let the response variable
Y have an IW distribution and let the link function of the form be as in (2). Consider that α has a
gamma prior G(ν, λ) with the following density function:

π(α) =
λν

Γ(ν)
e−λααν−1, α > 0, λ, ν > 0. (34)

Thus, the posterior mode of ηi by using a zero-one loss function can be derived by solving the
following equation:

ν

g∗(ηi)
− (yγ

i + λ) +
1[

∂g∗(ηi)
∂ηi

]2
∂2g∗(ηi)

∂η2
i

= 0, i = 1, 2, ..., n, (35)

where g∗(ηi) = µi, ηi is defined as in (6) and (16). The estimated coefficients β̂∗ are given as in
(31). The IW-BReg model in this case is given by

µ̂∗i = g−1(x′i β), i = 1, 2, ..., n. (36)

Proof. Suppose that yi ∼ f (yi; α, γ) is as it is in (3), the parameter γ is assumed to be
known, and the density function of yi is given by

f (yi; α, γ) = αγy−(γ+1)
i e−αy−γ

i . (37)

Consider a gamma prior for αi, which can be written as in (34). The posterior distribution
of αi is given by

π(αi|yi) =
αν

i γλν

Γ(ν)
y−(γ+1)

i e−αi(y
−γ
i +λ).

Using Jacobian transformation from αi to ηi, we have

π(ηi|yi) ∝ [g∗(ηi)]
νe−g∗(ηi)(y−γ

i +λ) ∂g∗(ηi)

∂ηi
. (38)

Taking the derivative of the log posterior, we have

∂ log(π(ηi|yi))

∂ηi
∝

ν

g∗(ηi)

∂g∗(ηi)

∂ηi
− (y−γ

i + λ)
∂g∗(ηi)

∂ηi
+

1
∂g∗(ηi)

∂ηi

∂2g∗(ηi)

∂η2
i

= 0;

hence, we get the equation as in (35), and the posterior mode of ηi is given by solving it.
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Lemma 6 (The IW-BReg model based on MGE loss function). Let the response variable Y
have an IW distribution, and let the link function of the form be as given in (2). Consider that αi
has a gamma prior with a density function as given in (34). Thus, the posterior Bayes estimates of
ηi, by using an MGE loss function, can be derived by solving the equation

−γλνy−(γ+1)
i

Γ(ν)
(

y−γ
i + λ

) lim
t→∞

e−g∗(t)(y−γ
i +λ)

∣∣∣∣t
0
− [g∗(ηi)]

−ν ∂g∗(ηi)

∂ηi
= 0. (39)

where g∗(ηi) = µi, ηi is defined as in (6) and (16). The estimated coefficients β̂∗ are given as in
(31). The IW-BReg model in this case is given by

µ̂∗i = g−1(x′i β), i = 1, 2, ..., n. (40)

Proof. Suppose that yi ∼ f (yi; α, γ) is as it is in (3). The parameter γ is assumed to be
known, and the density function of yi is given as in (37). Consider the gamma prior for αi,
which can be written as given in (34). Using the posterior distribution of ηi that is given in
(38), we have

E
(
[g∗(ηi)]

−ν|yi

)
=
∫ ∞

0
[g∗(ηi)]

−νπ(ηi|yi)dηi,

E
(
[g∗(ηi)]

−ν|yi

)
=
−γλνy−(γ+1)

i

Γ(ν)
(

y−γ
i + λ

) ∫ ∞

0
−
(

y−γ
i + λ

)
e−g∗(ηi)(y−γ

i +λ) ∂g∗(ηi)

∂ηi
dηi;

hence,

E
(
[g∗(ηi)]

−ν|yi

)
=
−γλνy−(γ+1)

i

Γ(ν)
(

y−γ
i + λ

) lim
t→∞

e−g∗(t)(y−γ
i +λ)

∣∣∣∣t
0
.

Using Lemma (4), we have

−γλνy−(γ+1)
i

Γ(ν)
(

y−γ
i + λ

) lim
t→∞

e−g∗(t)(y−γ
i +λ)

∣∣∣∣t
0
= [g∗(ηi)]

−ν ∂g∗(ηi)

∂ηi
.

Thus, the posterior Bayes estimates of ηi by using the MGE loss function can be derived by
solving the Equation (39).

4. Data Analysis

In this section, we show the usefulness and performance of the IW-Reg and IW-BReg
models by applying the theoretical findings in Sections 2 and 3 to some real datasets.
For simplicity, we use the following notations for the proposed models used throughout
the applications.

Model Description

Model I IW-Reg model based on identity link function
Model II IW-Reg model based on log link function
Model III IW-BReg model based on identity link and zero-one loss function
Model IV IW-BReg model based on log link and zero-one loss
Model V IW-BReg model based on identity link and MGE loss
Model VI IW-BReg model based on log link and MGE loss
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4.1. Application 1: (The Minimum Temperatures)

Dataset in this application was collected from the meteorology station at King Khalid
International Airport, Saudi Arabia during (2014–2018). This data contains 54 observations
(monthly data), in which the response variable Y be the minimum of dry bulb temperatures
in Celsius. The explanatory variables are; X1; mean of relative humidity, X2; mean of vapor
pressure (mm), X3; mean of sky cover oktes, X4; maximum of station-level pressure (mm).

In order to aid in distributional assessment of the response variable Y, the empiri-
cal cumulative distribution function (ECDF) plot was proposed. Kolmogorov–Smirnov
goodness of fit test (K–S) was calculated based on IW, Gaussian, and gamma distributions.
The IW-Reg and IW-BReg models based on log and identity link, and loss functions were
fitted using the proved Lemmas in Sections 2 and 3. Bayes coefficients were obtained
using a gamma prior G(ν, λ) with some known values of the hyperparameters ν and λ. In
addition, Huber’s function was suggested to avoid such distortions due to an outlier in X2;
see Appendix A. In this case, under regularity conditions, estimator β̂∗ has asymptotically
normal distribution β̂∗ ≡ N

[
β∗, (X′WX)−1

]
[39,42]. The performance of all these models

were compared. Modeling performance is measured in terms of some criteria, such as AIC,

D, D/df, and MSE [4]. We also used Thiel’s inequality coefficient TIC =

√
∑(yi−ŷi)2√

∑ y2
i +
√

∑ ŷ2
i

to

compare the prediction accuracy of the selected models [44,45]. The backward-selection
method was used in the IW-BReg model to select the best fit in view of the covariates.

To check the adequacy for the selected models, we consider Pearson residuals [36,40].
R software was used to carry out calculations. In order to compare with known distribu-
tions, the glm() function in “stats” was used to fit the GLMs [46]. Functions qqPlot(), ecdf(),
boxplot, and ks.test() in R package “stats” were used for the assessment distributions [47].
To solves n roots of n nonlinear equations in Section 3, the function multiroot() in R package
“rootSolve” was used [48]. The fitting results and the relative errors (RE) of the selected
model, and other numerical results are shown in Tables 1–3.

Based on the results obtained from K–S test, the p-value = 0.315 for the test indicates
that the IW distribution fits the response variable in the given data quite well. Figure 1
provides the ECDF plot, and it is clear that the IW distribution fits these data well.

To compare between the Bayesian fitting results, we observe that the results based on
MGE loss function are better than zero-one loss function. Table 1 shows that the IW-BReg
models based on MGE loss function (Model V and VI) are good in terms of MSE, AIC, and
D statistics. Table 1 also shows that the D/d f of IW-Reg and IW-BReg models (I, II, III, IV, V,
and VI) are less than 1, indicating that the fitting degree is very good. If the model is correct,
the Pearson residuals ri =

yi−µ̂i√
V(µ̂i)

and Pearson statistics Q = ∑54
i=1 r2

i have an approximately

normal distribution with mean 0 and chi-square distribution χ2
n−k, respectively. For the

IW-BReg model based on identity link and MGE loss function (Model V), the Pearson
statistics is Q = 4.0396, the p-value for Anderson-Darling is 0.0001, and the Cox Stuart
test is 1, so the Pearson residuals are not normal but randomly scattered around zero at
the level of significant α = 0.05. For the IW-BReg model based on log link and MGE loss
function (Model VI), the Pearson statistics is Q = 0.4460, the p-value for Anderson-Darling
is 0.06379, and the Cox Stuart test is 1, so the Pearson residuals are normal and randomly
scattered around zero.
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Figure 1. The empirical cumulative distribution function (ECDF) plot of the minimum temperatures
(Y) based on IW distribution and some other distributions.

Table 1. Efficiency Gamma, Gaussian, inverted Weibull Regression (IW-Reg), IW-Bayesian regression
(IW-BReg) models.

Model AIC D D/df MSE Person K-S Test
Statistics p-Value

Model I 344.997 43.950 0.897 191.828 2.122
Model II 579.782 0.009 0.000 7.026
Model III 477.534 15.311 0.312 9.137
Model IV 484.655 24.183 0.494 20.282
Model V 294.264 0.459 0.009 1.774 4.040
Model VI 364.333 0.350 0.007 2.349 0.446 0.3149
Gaussian (log) 186.800 80.491 0.936 1.643 0.0000
Gamma (log) 215.040 0.437 0.005 2.412 0.0321

Table 2. Akaike’s information criterion (AIC), deviance (D), and mean squared error (MSE) of the Model VI (backward
selection method).

Function Variables β̂ Standard Error (SE) z p-Value AIC D MSE

Step 1
No weight Intercept 26.6539 6.5930 4.0427 0.0001 364.3330 0.3500 2.3490

X1 −0.0268 0.0036 −7.4222 0.0000
X2 0.1471 0.0180 8.1613 0.0000
X3 −0.0178 0.0282 −0.6296 0.5290
X4 −0.0255 0.0070 −3.6408 0.0003

Step 2
No weight Intercept 26.5295 6.6037 4.0174 0.0001 364.3539 0.3709 2.3463 *

X1 −0.0271 0.0036 −7.6350 0.0000
X2 0.1422 0.0160 8.8633 0.0000
X4 −0.0254 0.0070 −3.6132 0.0003

Huber Intercept 26.7509 6.7973 3.9355 0.0001 363.2006 0.8045 2.3451 **
X1 −0.0269 0.0037 −7.3672 0.0000
X2 0.1420 0.0165 8.6036 0.0000
X4 −0.0256 0.0072 −3.5423 0.0004

* The Model VI that was shown in Equation (41); ** The Model VI based on Huber’s function that was shown in Equation (42).
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Based on this analysis, we conclude that the Model VI is more appropriate for fitting
these data, leading to the following equation

Ŷ = e26.6539−0.0268xi1+0.1471xi2−0.0178xi3−0.0255xi4 , i = 1, 2, ..., 54.

For the backward selection method results, Table 2, we can conclude that the predictive
model is given as follows:

Ŷ = e26.5295−0.0271xi1+0.1422xi2−0.0254xi4 ; i = 1, 2, ..., 54. (41)

We also can see that, this model has AIC = 364.3539 and a low MSE = 2.3463, and there was
also a significant relationship among variables when using level of significance α = 0.05.
For the residuals, the Pearson statistics is Q = 0.4520, p-value for Anderson-Darling is
0.0443 and for the Cox Stuart test is 1.

Because of the presence of an outlier, we can conclude that the Model VI based on
Huber’s function is the best for our data, and it is given as follows:

Ŷ = e26.7509−0.0269xi1+0.1420xi2−0.0256xi4 ; i = 1, 2, ..., 54. (42)

From Table 2, we can see, this model has AIC = 363.2006 and a low MSE = 2.3451,
and there was also a significant relationship among variables when using the level of
significance α = 0.05. For the residuals, the Pearson statistics is Q = 0.4532, the p-value
for Anderson-Darling is 0.052, and the Cox Stuart test is 1. Hence, the Pearson residuals
are normal randomly scattered around zero; see Figure 2. The fitting results for this model
during the year 2014 are shown in Table 3. We can also see that the fitting accuracy is good
because the TIC value is closer to 0 than 1.

Figure 2. (a) Pearson residuals plot and (b) Normal Q-Q plot of the residuals using Model VI.
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Table 3. Fitting results ŷi of the Model VI based on Huber’s function (during fitting interval, 2014).

Months yi ŷi |yi− ŷi| RE Months yi ŷi |yi− ŷi| RE

1 7.813 7.790 0.023 0.295 7 27.484 27.202 0.282 1.027
2 9.626 10.749 1.123 11.668 8 27.435 30.610 3.174 11.571
3 15.671 16.080 0.409 2.607 9 24.677 25.372 0.694 2.813
4 20.177 19.730 0.448 2.218 10 21.335 21.765 0.430 2.014
5 24.665 24.721 0.056 0.229 11 13.410 12.967 0.443 3.301
6 25.842 24.066 1.776 6.872 12 9.426 9.639 0.213 2.262

TIC 0.011

4.2. Application 2: (Wind Speed Data)

The dataset in this application was taken again from the meteorology station at King
Khalid International Airport, Saudi Arabia, in 2016. This data contains 91 observations,
during 7 June and 5 September, (summer season), in which the response variable Y be the
mean wind speed (km/h). The explanatory variables are; X1; maximum’s wind direction,
X2; maximum of station-level pressure (mm), X3; mean of sea-level pressure (mm), X4;
mean of dry bulb temperatures of air (Celsius), X5; mean of wet bulb temperatures (Celsius),
X6; mean of relative humidity, X7; mean of vapor pressure (mm), X8; mean of sky cover
oktes, X9; maximum of station-level pressure (mm), X10; maximum of sea-level pressure
(mm), X11; maximum of dry bulb temperatures (Celsius), X12; maximum of the wet bulb
temperatures (Celsius), X13; maximum of relative humidity, X14; minimum of station-level
pressure (mm), X15; minimum of sea-level pressure (mm), X16; minimum of dry bulb
temperatures, X17; minimum of the wet bulb temperatures, X18; minimum of relative
humidity, X19; time of maximum daily wind (HH:MM).

Proceeding similarly, as in Application 1 to aid in the distributional assessment. In
this dataset, we identify the outliers, different plots as the quantile-quantile (Q-Q) plot,
ECDF, and box plot were proposed. Again, Lemmas in Sections 2 and 3 were applied to
these data to fit the IW-Reg based on log and identity link functions were used. Besides
being an alternative analysis, the IW-BReg models were obtained using a log, identity link,
and a gamma prior with known hyperparameters ν and λ parameters. We also compare
the performance of all these models. In addition, biweight function was suggested to avoid
such distortions due to outliers; see Appendix A. In this case, under regularity conditions,
estimator β̂∗ has asymptotically normal distribution β̂∗ ≡ N

[
β∗, (X′WX)−1

]
[39,42]. The

modeling performance was measured in terms of some criteria, such as AIC, D, D/df,
and MSE [4]. We also used Theil’s Inequality coefficient (TIC) to measure the prediction
accuracy of the selected models [44,45]. To compare the residual for all models, we consider
Pearson residuals to check the adequacy of the regression model fitted to the data [36,40].

Furthermore, to detect the influential cases, we use the Cook’s distance measure using

the formula C(i) =
(β̂−β̂(i))(X′X)(β̂−β̂(i))

kσ̂2 and σ̂2 = η̂′(I−X(X′X)X′)η̂
n−k in the case of Bayesian

analysis [40,49]. The backward selection method was used in the IW-Reg model to remove
the input variable; see Table 4. R software was used to carry out the calculations. In order
to compare with known distributions, the function glm in “stats” is used to fit the GLMs.
The functions qqPlot, ecdf, boxplot, and ks.test in the R package “stats” are used for the
assessment distributions [47]. To solves n roots of n nonlinear equations in Section 3, the
function multiroot() in R package “rootSolve” was used [48]. The fitting, predictive results
of these models and the other numerical results are shown on the Tables 4–8.

Based on the results obtained from K–S test, the p-value = 0.139 for the test indicates
that the IW distribution fits the response variable in the given data quite well. Figure 3
provides the Q-Q plot and ECDF, and it is clear that the IW distribution fits these data well.
Figure 4 provides box plot corresponding to the mean wind speed variable Y, and this
chart mapped one outlier (leverage point) that exceeds the values of Q3.
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Figure 3. (a) Q-Q plots of the wind speed (Y) based on IW distribution and (b) The ECDF plot of Y
based on IW and some other distributions.

Figure 4. Box plot of the wind speed variable (Y).

From Table 4, we can observe that the variables X2, X5, X8, and X16 are significant
for the model, so there is a significant relationship among variables. In these models,
β̂(s) is stabilizes when the Fisher’s scoring procedure is converged at s = 6 and s = 15,
respectively, because of |β̂(s) − β̂(s−1)| < ε. To compare the Bayesian fitting results we
observe that the results based on MGE loss function (Model V and VI) better than zero-one
loss function (Model III and IV); see Table 5. Table 5 also shows that the D/d f of the models
I, II, III, IV, V, and VI are less than 1, indicating that the fitting degree is very good.
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Table 4. The Model I (backward selection method).

Step Variables β̂ SE z-Statistics p-Value AIC D MSE

Step 1 Intercept 385.557 129.470 2.978 0.0029 352.790 54.4782 3.549
X1 −0.013 0.014 −0.945 0.3446
X2 −0.883 0.851 −1.038 0.2993
X3 2.199 1.159 1.897 0.0579
X4 1.798 0.981 1.833 0.0668
X5 −4.039 2.254 −1.792 0.0732
X6 0.240 0.521 0.460 0.6456
X7 0.624 0.876 0.713 0.4760
X8 −0.537 0.188 −2.859 0.0042
X9 −0.741 0.882 −0.840 0.4010
X10 0.012 0.679 0.018 0.9855
X11 −0.555 0.225 −2.468 0.0136
X12 0.543 0.337 1.612 0.1070
X13 0.038 0.077 0.493 0.6218
X14 0.030 2.656 0.118 0.9065
X15 −1.110 0.690 −1.609 0.1075
X16 0.720 0.216 3.330 0.0009
X17 −0.124 0.386 −0.322 0.7475
X18 −0.055 0.271 −0.205 0.8376
X19 −0.048 0.062 −0.764 0.4447

Step 2 Intercept 385.734 128.470 3.003 0.0027 352.790 54.4785 3.735
X1 −0.014 0.014 −0.951 0.3414
X2 −0.884 0.847 −1.044 0.2964
X3 2.208 1.105 1.999 0.0456
X4 1.793 0.962 1.865 0.0622
X5 −4.034 2.248 −1.795 0.0727
X6 0.239 0.521 0.458 0.6466
X7 0.622 0.874 0.712 0.4765
X8 −0.537 0.188 −2.858 0.0043
X9 −0.731 0.590 −1.238 0.2155
X11 −0.555 0.225 −2.467 0.0136
X12 0.543 0.337 1.614 0.1065
X13 0.038 0.077 0.495 0.6205
X14 0.030 0.251 0.120 0.9048
X15 −1.116 0.647 −1.726 0.0844
X16 0.721 0.214 3.369 0.0008
X17 −0.126 0.368 −0.342 0.7324
X18 −0.055 0.270 −0.204 0.8385
X19 −0.048 0.062 −0.770 0.4415

.

.

.

Step 16 Intercept 355.1198 75.107 4.728 0.0000 369.9813 71.6697 3.192 *
X2 −0.3737 0.078 −4.798 0.0003
X5 −1.3347 0.227 −5.880 0.0000
X8 −0.6819 0.145 −4.711 0.0000
X16 0.7912 0.116 6.837 0.0000

* The Model I.
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Table 5. Efficiency Gaussian, inverted Wiebull (IW-Reg), IW-Bayesian regression (IW-BReg) models.

Model AIC D D/df MSE Person Statistics

Model I 369.981 71.670 0.833 3.192 57.937
Model II 818.882 0.232 0.003 3.008
Model III 372.847 26.195 0.305 3.275 19.807
Model IV 447.162 3.152 0.037 3.627 0.011
Model V 369.476 48.737 0.567 3.181 33.636
Model VI 446.981 3.312 0.039 3.093 0.103

Gaussian (ldentity) 369.357 270.422 3.144 3.144
Gaussian (log) 364.041 255.077 2.966 2.966

Based on this analysis, we also conclude that the Model VI is more appropriate for
fitting these data, leading to the following equation

Ŷ = e42.8281−0.0443xi2−0.2023xi5−0.0976xi8+0.1308xi16 , i = 1, 2, ..., 91. (43)

For the residuals, the Pearson statistics is Q = 0.1032, p-value for Anderson-Darling is
0.0496, and for the Cox Stuart test is 1; see Table 5. This residuals have a large positive
residual at the observation 91. However, for the model, this case is non-influential according
to C91 = 0.1065 < F(0.05,1,n−k) where F(0.05,1,n−k) corresponding to upper α-percentile from
the F distribution [50].

Because of the presence of an outlier, we can conclude that the Model VI based on
biweight function is the best for our data, and it is given as follows:

Ŷ = e47.259−0.049xi2−0.196xi5−0.112xi8+0.136xi16 , i = 1, 2, ..., 91. (44)

From Table 6, we can see that this model has AIC = 446.515 and a low MSE = 3.046,
and there was also a significant relationship among variables when using the level of
significance α = 0.05. For the residuals, the Pearson statistics is Q = 0.1049, the p-value for
Anderson-Darling is 0.0612, and the Cox Stuart test is 1. Hence, the Pearson residuals are
normal randomly scattered around zero at the level of significant α = 0.05; see Table 7 and
Figure 5. This Figure shows no large positive residual. The fitting and predicted results for
this model during 2016 and 2017 are shown in Table 8. We can also see that the prediction
accuracy is good because the TIC value is closer to 0 than 1.

Table 6. AIC, BIC, D, and MSE of the Model VI based biweight function.

Function Variables Coefficient Estimate SE z-Statistics p-Value AIC D MSE

No weight Intercept 42.8281 13.437 3.187 0.0014 446.9806 3.3117 3.093 *
X2 −0.0443 0.014 −3.161 0.0016
X5 −0.2023 0.042 −4.867 0.0000
X8 −0.0976 0.026 −3.702 0.0002
X16 0.1308 0.018 7.267 0.0000

Biweight Intercept 47.259 13.956 3.386 0.0007 446.515 3.777 3.046 **
X2 −0.049 0.015 −3.385 0.0007
X5 −0.196 0.043 −4.571 0.0000
X8 −0.112 0.027 −4.070 0.0000
X16 0.136 0.019 7.326 0.0000

* The Model VI that was shown in Equation (43). ** The Model VI based on biweight function that was shown in Equation (44).
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Figure 5. (a) Pearson residuals plot and (b) Normal Q-Q plot of the Pearson residuals for the Model
VI based on biweight function as mentioned in Table 6.

Table 7. Anderson-Darling and Cox Stuart test for Pearson residuals of the Model VI.

Function Anderson-Darling Cox Stuart
Statistcs p-Value Statistcs p-Value

No weight function 0.7483 0.0496 25, n = 45 0.5515
Biweight function 0.7117 0.0612 26, n = 45 0.3713

Table 8. Fitting and Predicted results ŷi for the Model VI based on biweight function.

Date yi ŷi |yi− ŷi| RE% Date yi ŷi |yi− ŷi| RE%

Fitting results, 2016 Predicted results, 2017
7/21 5 5.685 0.685 13.708 8/21 8 10.553 2.553 31.915
7/22 7 5.867 1.133 16.190 8/22 8 7.211 0.789 9.862
7/23 11 8.784 2.217 20.150 8/23 6 6.974 0.974 16.238
7/24 6 6.859 0.859 14.322 8/24 4 3.657 0.343 8.571
7/25 5 4.880 0.120 2.393 8/25 5 4.510 0.491 9.811
7/26 4 5.067 1.067 26.686 8/26 7 7.082 0.082 1.165
7/27 5 5.672 0.672 13.433

TIC 0.087 0.088

5. Conclusions

In this paper, the regression models IW-Reg and IW-BReg for modeling Saudi datasets
are considered. Zero-one and MGE loss functions were used to attain the Bayesian estimates
based on a log and identity functions. In the classical approach, parameter estimation
is done by the Fisher’s scoring technique, and closed-form expressions are provided for
the score function, and for Fisher’s information matrix and its inverse. In the Bayesian
approach, parameter estimation is performed using a gamma prior distribution, Jacobian
transformation, and least-squares estimates. The IW-Reg and IW-BReg models were
compared to find which model predicted better. To deal with outlier problems, IW-BReg
based on Huber’s and biweight functions, and the adopted algorithm based on IRLS to
find the estimates, were proposed. For distributional assessment, Q-Q, ECDF, box plots,
and the K–S test were applied. Some criteria, namely AIC, D, D/df, and MSE, were also
computed for all regression models.

According to the results of the Application (1), the IW-BReg model based on Huber’s
and MGE loss with a log link function, performed the best in terms of the AIC, D, D/df,
and MSE statistics, so it is recommended for these data. In contrast, the IW-Reg model
showed poor results compared with those of the other models. Results indicated that
the IW-BReg model based on Huber’s and MGE loss is highly capable of improving
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regression models’ performance to a greater extent in predicting the minimum of dry
bulb temperatures (Celsius) in Saudi Arabia. It is found the following regressors are
significant for the model: Explanatory variables are: X1, the mean of relative humidity, X2,
the mean of vapor pressure (mm); and X4, the maximum of station-level pressure (mm).
Application (2), the IW-BReg model based on biweight function and MGE loss with a log
link function, performed the best in terms of the AIC, D, D/df, and MSE statistics, so it
is recommended for these data. In contrast, IW-Reg and IW-BReg based on zero-one loss
function showed poor results than those of the other models. Finally, the results in this
application indicated that the IW-BReg model based on biweight function and MGE loss
with a log link function is highly capable of improving regression models’ performance to
a greater extent in predicting the mean wind speed (km/h) in Saudi Arabia. It is found
the following regressors are significant for the model: Explanatory variables are: X2, the
mean of station-level pressure (mm); X5, the mean of wet–bulb temperatures (Celsius); X8,
the mean of sky cover oktes; and X16, the minimum of dry bulb temperatures. From these
discussions, we conclude that IW-BReg model based on log link and MGE loss has good
performance for the response variables in the considered applications.
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Appendix A. Robust IW-BReg Models

M-estimation is considered to be the most common method of robust regression. It
was proposed by [51,52] in the presence of outliers, and it is more efficient than ordinary
least squares (OLS) [53,54]. The Huber’s function takes the following form:

ρ(r) =

{
r2

2 , |r| ≤ k,
k(|r| − k

2 ), |r| > k,
(A1)

where k is the tuning constant, r is the residual corresponding to the observation in OLS, and
ρ(·) is the objective function that satisfies certain properties. Often, ρ(·) can be formed by
using a linear combination of the residuals. Defining function ∂

∂r ρ(r) and the corresponding
weight function in this case is as follows:

ψ(r)
r

= w(r) =

{
1, |r| ≤ k,
k
|r| , |r| > k. (A2)

Another M-estimation function is the Tukey bisquare (biweight) function. This is based on
Tukey’s function, taking the form of that in Reference [28]

https://ncm.gov.sa/Ar/About/Branches/Pages/default.aspx
https://ncm.gov.sa/Ar/About/Branches/Pages/default.aspx
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ρ(r) =

{
k2

6 (1− [1− ( r
k )

2]3), |r| ≤ k,
k2

6 , |r| > k,
(A3)

where k is the tuning constant, and r is the residual corresponding to the observation in
OLS. Defining function ∂

∂r ρ(r) = ψ(r) and the corresponding weight function in this case
is given as follows:

ψ(r)
r

= w(r) =
{

[1− ( r
k )

2]2, |r| ≤ k,
0, |r| > k.

(A4)

To make the IW-BReg models are robust, we suggest Huber’s and biweight functions for
these models. There are also many other versions of the M-estimation function that could
be used here.

Let the response variable Y have an IW distribution, and let the link function of the
form be as given in (2). Consider that α has a gamma prior with density function is given
as in (34). Using the Jacobian transformation from αi to ηi and using the link function, we
have the posterior distribution of ηi is given as in (38). Thus, the estimated coefficients
β̂∗ = (β̂∗0, β̂∗1, ..., β̂∗p)

′ are given as

β̂∗(q) =
(

X′W∗
(

β̂∗(q−1)
)

X
)−1

X′W∗
(

β̂∗(q−1)
)

η̂, q = 1, 2, 3, ..., (A5)

where η̂i = h(y) and η̂′ = (η̂1, η̂2, ..., η̂n) are the posterior Bayes estimates of ηi using
the zero-one or MGE loss functions, and W∗ = diag(w∗1 , w∗2 , . . . , w∗n), wi are the selected
weights depending on M-estimation functions. In this case, coefficients are estimated using
an adopted IRLS algorithm [27,55–57] as follows:

i. Setting the iteration counter at q = 0, finding an initial estimates of regression
coefficients β̂

∗(q)
j , j = 0, 1, 2, ..., p− 1 using IW-Reg estimates.

ii. The initial residuals r∗(q)
(i) = Yi − g−1(x′i β̂

∗(q)
j ) are based on the link function that is

given as in (2), and calculate an initial scale estimate s∗(q) = 1.4826(median|r∗(q)i |).

iii. An initial standardized residuals u∗(q)i =
r∗(q)i
s∗(q)

are calculated and used to calculate

initial estimates for the weight function. Preliminary weights are w∗(q)i = w(u∗(q)i ).

iv. Calculate Bayes estimates η̂i = h(y); i = 1, ..., n using a gamma prior G(ν, λ) with
known parameters and zero-one or MGE loss functions.

vii. Using weights from Steps i–iii and Step iv to find estimators in (A5).

viii. Set q = q + 1; then, go to Step ii. Steps ii to vii are repeated until the estimate of β̂∗(q)

is stabilized from the previous iteration, which means: |β̂∗(q+1) − β̂∗(q)| ≤ ε.
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