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Abstract: This paper deals with measuring the Bayesian robustness of classes of contaminated priors.
Two different classes of priors in the neighborhood of the elicited prior are considered. The first
one is the well-known e-contaminated class, while the second one is the geometric mixing class.
The proposed measure of robustness is based on computing the curvature of Rényi divergence
between posterior distributions. Examples are used to illustrate the results by using simulated and
real data sets.
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1. Introduction

Bayesian inferences require the specification of a prior, which contains a priori knowl-
edge about the parameter(s). If the selected prior, for instance, is flawed, this may yield
erroneous inferences.

The goal of this paper is to measure the sensitivity of inferences to a chosen prior
(known as robustness). Since, in most cases, it becomes very challenging to come up with
only a sole prior distribution, we consider a class, I, of all possible priors over the parameter
space. To construct I', a preliminary prior 71 is elicited. Then robustness for all priors 7 in
a neighborhood of 7y is intended. A commonly accepted way to construct neighborhoods
around 71 is through contamination. Specifically, we will consider two different classes of
contaminated or mixture of priors, which are given by

Lo = {7e(6) : 7(6) = (1 - €)mo(6) + eq(8),q € Q} M

and

Tg = {7(6) : 7(6) = c(e) s ~<(0)¢°(0),9 € Q}, @)

where 71 is the elicited prior, Q is a class of distributions, c¢(€) is normalizing constant
and 0 < e < 1is a small given number denoting the amount of contamination. For other
possible classes of priors, see for instance, De Robertis and Hartigan (1981) [1] and Das
Gupta and Studden (1988a, 1988b) [2,3].

The class (1) is known as the e-contaminated class of priors. Many papers about
the class (1) are found in the literature. For instance, Berger (1984, 1990) [4,5], Berger
and Berliner (1986) [6], and Sivaganesan and Berger (1989) [7] used various choices of Q.
Wasserman (1989) [8] used (1) to study robustness of likelihood regions. Dey and Birmiwal
(1994) [9] studied robustness based on the curvature. Al-Labadi and Evans (2017) [10]
studied robustness of relative belief ratios (Evans, 2015 [11]) under class (1).

On the other hand, the class (2) will be referred as geometric contamination or mixture
class. This class was first studied, in the context of Bayesian Robustness, by Gelfand and
Dey (1991) [12], where the posterior robustness was measured using Kullback-Leibler
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divergence. Dey and Birmiwal (1994) [9] generalized the results of Gelfand and Dey
(1991) [12] under (1) and (2) by using the ¢ divergence defined by

dg(71(6]x), 7o (0]x)) = /710(9IX)4’(7T(9|9€)/7fo(9|X))d9 ®)

for a smooth convex function ¢. For example, ¢(x) = x In x gives Kullbak-Leibler divergence.

In this paper, we extend the results of Gelfand and Dey (1991) [12] and Dey and
Birmiwal (1994) [9] by applying Rényi divergence on both classes (1) and (2). This will
give local sensitivity analysis on the effect of small perturbation to the prior. Rényi entropy,
developed by Hungarian mathematician Alfréd Rényi in 1961, generalizes the Shannon
entropy and includes other entropy measures as special cases. It finds applications, for
instance, in statistics [13], pattern recognition [14], economics [15] and biomedicine [16].

Although the focus of this paper is on Rényi divergence, it also contains (1, ¢) family
of divergence measures (Menéndez et al., 1995 [17]). Examples of (h, ¢) divergence include
Rényi divergence, Shama-Mittal divergence and Bhattacharyya divergence. We refer the
reader to Pardo (2006) [18] for more details about (%, ¢) divergence.

An outline of this paper is as follows. In Section 2, we give definitions, notations
and some properties of Rényi divergence. In Section 3, we develop curvature formulas
for measuring robustness based on Rényi divergence and (, ¢) divergence. In Section 4,
three examples are studied to illustrate the results numerically. Section 5 ends with a brief
summary of the results.

2. Definitions and Notations

Suppose we have a statistical model that is given by the density function fy(x) (with
respect to some measure), where 6 is an unknown parameter that belongs to the parameter
space ©. Let 77(6) be the prior distribution of 6. After observing the data x, by Bayes’
theorem, the posterior distribution of 8 is given by the density

(0]x) = fig’(c)”n)e)

7

where
mxlm) = [ falx)(@)d0

is the prior predictive density of the data.

To measure the divergence between two posterior distributions, we consider Rényi
divergence (Rényi, 1961 [19]). Rényi divergence of order a between two posterior densities
7(0|x) and 71 (0|x) is defined as:

d = d(m(6]x), mo(0]x)) = ailln(/(n(ex))“(no(9|x))1_”d9>

1 (0]x) \*

- (| Gam) ) e
where a > 0 and E (|, denotes the expectation with respect to the density 77p(6]x). It is
known that d(7t(6|x), 7to(0]x)) > 0forall t(6|x), 7p(0]x),a > 0and d(7t(6|x), 7p(0]x)) =0
if and only if 71(0]x) = 7p(6|x). Please note that the case 2 = 1 is defined by letting a — 1.
Other values of a of a particular interest are 2 = 0,0.5,2 and co (van Erven and Har-
remoés, 2014 [20]). For further properties of Rényi divergence consult, for example, Li and
Turner (2016) [21].

Rényi divergence belongs to the following general class of family of divergence
measures called the (1, ¢) divergence (Menéndez et al., 1995 [17]).
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Definition 1. Let h be a differentiable increasing real function mapping from {O, $(0) + lim;e0 @}

to [0,00). The (h, ¢) divergence measure between two posterior distributions 7t(6|x) and 1ty(6)|x) is
defined as

iy (70(6]x), 70(6]x)) = h(dy (7(6]x), 70(6]))),
where dy(7t(0|x), 710(0]x)) is the ¢ divergence defined in (3).

Please note that Rényi divergenceis a (1, ¢) divergence measure with h(x) = -1 In[a(a —

Dx +1], ¢(x) = % for a # 0, 1. To see this, from Definition 1, we have
1
(dg (e(61), mo(612))) = — = Infa(a ~ Ddg(n(00), @) +1]  6)

_ 1 ;I [a(al)/ﬂo(ﬂx){

q—
A —al] “1}
a(a—1)

d9+1}
IR
JE

)
SYET

+a/7r09|x dQ—/ (0]x) d9+1}

= (| (Zi3) ])

which is Rényi divergence as defined in (4).

Similar to McCulloch (1989) [22] and Dey and Birmiwal (1994) [9] for calibrating,
respectively, the Kullback-Leibler divergence and the ¢ divergence, it is also possible to
calibrate Rényi divergence as follows. Consider a biased coin where X = 1 (heads) occurs
with probability p. Then Rényi divergence between an unbiased and a biased coin is

1 a— a
d(fo, fr) = —5 271 (p"+ (1= p)")],
where for x = 0,1, fo(x) = 0.5 and f1(x) = p*(1 — p)'~*. Now, setting d( fo, f1) = d gives
zl—ae(u—l)do — pa + (1 _ p)a. (6)

Then the number p is the calibration of d. In general, Equation (6) needs to be solved
numerically for p. Please note that for the case a = 1 (i.e., the Kullback-Leibler divergence)
one may use the following explicit formula for p due to McCulloch (1989) [22]:

p=05+05 (1 - e*ZdO) 2, @)

Values of p close to 1 indicate that fy and f; are quite different, while values of p close
to 0.5 implies that they are similar. It is restricted that p is chosen so that it is between 0.5
and 1 there is a one-to-one correspondence between p and dj.

A motivating key fact about Rényi divergence follows from its Taylor expansion. Let

fe) = d(m(el), mo(61)) = = In( [ Ge(el)* (mofel))'~“ae ),
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where 77(6|x) is the posterior distribution of 6 given the data x under the prior 7t defined
in (1) and (2). Assuming differentiability with respect to €, the Taylor expansion of f(¢)
about € = 0 is given by

4+ -
e=0

d 282
f(e) :f(0)+e% e_0+€zafe(z€)

Clearly, f(0) = 0. If integration and differentiation are interchangeable, we have

af(e) _ _a_ Jmo(0lx)'(m(8]x))" i dp
e 1—a  [(mo(0]x) " (n(0]x))'d0
Hence,
ST A
_ 1fa;€</n(9|x)d9> - lfa%(l) ~o.
On the other hand,

*f(e) _ 3( a f(no(9|x))1_”(7r(9|x))”_1a”(gg")de>
0e? oe\1l—a f(n0(9|x))1ia(7f(9‘x))”d9 ,

which at € = 0, reduces to

?*f(e)

0€?

udCIE3) 0

87r§6|x) 2
_ —a/(n(()'x)) e(oldo]

B [(6“75(9))]

= —aly(g|x)(€)

e=0

e=0

is the Fisher information function for

al 2
Here I (gx)(€) = Ex(ox) [( “7529‘”) }
7(6|x) (Lehmann and Casella, 1998 [23]). Thus, for € ~ 0, we have

ae?
A((61), 70(81) & ~ Ly (). ®
Please note that 9?f (¢) /0e?| = 9?d/0e?|  is known as the local curvature ate = 0

of Rényi divergence. Formula (8)€ju%tiﬁes the use o(f] the curvature to measure the Bayesian
robustness of the two classes of priors I'; and I'q as defined in (1) and (2), respectively. Also
this formula provide a direct relationship between Fisher’s information and the curvature
of Rényi divergence.

3. Measuring Robustness Using Rényi Divergence
In this section, we explicitly obtain the local curvature at € = 0 of Rényi divergence

(i.e., 0%d/0€> ), to measure the Bayesian robustness of the two classes of priors I'; and
e=0
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'y as defined in (1) and (2), respectively. The resulting quantities are presumably much
easier to estimate than working directly with Rényi divergence.

Theorem 1. For the e-contaminated class defined in (1), the local curvature of Rényi divergence at
e=0is 5 ®
0°d 6
Ty _ — q
= 5,y = oo |

where Var . (g|) denotes the variance with respect to 1o(6]x).

Proof. Under the prior 7t defined in (1), the marginal m(6|x) and the posterior distribution
7t(6]x) can be written as

m(x|) = (1= e)m(x|mo) + em(x[q)

and
2(8x) = fii’(‘i@(f)
_ So(x) (1 —€)mo(6) +€eq(6))
m(x|7r)

= A(x)7mo(6]x) + (1 — A(x))q(6]x), )
where (xl0)

Ax) = (1 —e)m.

Define
fle) = d(m(0]x), o(6]x))
_ ail 1n{/(7t(6|x))”(7ro(6x))1”d@] - ullln{/'yde},

where

7 = (7(6]2))" (m0(6]x))' ™" = (A(x) 710 (6]x) + (1 = A(x))q(6]x))" (7r0(0]x))" "

Clearly,
= my(f|x) and dg =1. 10
7| =) ad [a] (10)
We have
97 _ m(x|q)m(x|7o)(q(6]x) — 7o (6]x))
de [eq(0]x)m(x|q) + (1 —e)m(x|mo) o (0]x)][(1 — €)m(x|mo) + em(x[q)]
and
dr|  _ mxlg)(g(8]x) — mo(8]x))
d€ | ._o m(x|7to) '
Thus,
oy _
/gde o (11)
Now,

24 0 ( 1 f32d9> 1 [[de)) Shde] - [[ SLao)?

9e2  de\a—1 [4do |  a-—1 [[ yd6)?
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By (10) and (11),
0%d 1 %y
de? e=0 Ca-1J) o2 e:Ode'
We have
827| ( 0(6]x) M(XINO —q(6]x)m(xlg) | m(x|mo) —m(xlq)
ez 1€=07 (0| x)m(x| 7o) m(x| 7o)
xlq)
a (q(6]x) — 70 (6]x))
(I 0\ (12)
70(0) )
m(x|q)
am(qwlx) — 710(8]x))-
Since
m(xlg) _ [ fox)a(0)do _ J folx)o(6) 2de
m(x|7mo) m(x|7to) m(x|mo)
—/no 6|x) no(?e))d()
_ q(6)
from (12), we get
Py q(6) q(0)
3|, =a (7- Eno(f)x)[ )]>Eno(9|x) {ﬂo(@} (q(0]x) — mo(8]x))
= a(Eno) | 0| (%) a(61) = mo(el)
q(6) 7 (q(6]x) — mo(0]x))?
+ (B [ o(6 )] e CE
Therefore,
Pd| 9(6) 1\ 9(8]x) \?
92| _ a(<En0(ex)[7To Q)D Em(ol) [(ﬂo((ﬂx)) ]
2
(Bnom [ ]) ) as
Please note that
q(01x) \* _ [ q(0)fo(x)/m(xlg) \* _ (q(6) \*( m(x|m0)
(ﬂo(ﬂﬂ) a (N(H)fe(X)/m(XIﬂo)> a (ﬂ(9)> ( m(x|q) >
Hence, by (13),
9(01x) \?| _ 9(0) \? 1
S| (5) | = | (55 Coaonl2])
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Thus, by (14) and (15),

=a (Enowx) l
e=0

= aVan(G\x) [7‘[0(6)] .

#a
0€?

7 N\
Jl=
|2
SN—
~~_
N
| IS
|
N
™
8
=
R
| — |
3=
—
|2
SN—
—_
"
N
~

O

Theorem 2. For the geometric contaminated class defined in (2), the local curvature of Rényi

divergence at € = 0 is
q(6) )}
= aVar In ,
o { (now)

Var . o|x) denotes the variance with respect to 7to(6]x).

r, 0%
' =%a

Proof. Define

v = (7(60]x))* (0 (6]2))* .

Thus,
d —m ( / 'yd9>
We have
ad 1 L J 5o
de  a-— ffyde
and
2 2
2a 1 [rdo) o (f SLdo) )
% a1 ([ yd6)? '
Since «y = mo(0|x),
e=0
0%d

- [ ‘ < / 87d9>
e=0 86 e=

For the geometric class defined in (2),

(6l = F0OO) _ falx)e(e) (mo(0)'<(q(0))°

€2

and 7p(0)x) = folx)mo(6) () (17)

m(x|7) m(x|7) m(x[m)
Thus,
v - fo(x)(c(€))*(7m0(6))' " (9(6))"
(m(x|m))2(m(x|mo))t =2~
Therefore,
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We have

= = (sm) (57 "

e (i ) = e[y )|

(Dey and Birmiwal, 1994 [9], Theorem 3.2), we get

e = (o ()| ()

As

Since y| = 71p(8]x), by (16) and (18), it follows that [ 92d6| = 0and
e=0 e=0
2 2
Pal P
de e=0 e=0
Now, by (18),
0%y d
2 = e (7o (557 ( 7))
_ 70 (6)
= on{Eann (55| - (7))
Using the 7y = 719(6]x) one more time, we obtain
e=0
92 Py 9(0)
@ » @ ezode = ﬂVﬂrﬂo(mx) |:1n(7_[0(0)):| .

O

The curvature of the family (%, ¢) of divergence measures under classes (1) and (2) is
derived in the next theorem.

Theorem 3. The local curvature for the (h, ¢) divergence under classes (1) and (2) are respectively
given by

. 92d (70(6]x),m0(6]x))
i C};a _ (7T aZz 70 (0|x . — g¢//(1)VaT7TO(9|x) {7?0(?9))}
€=
.. r 2dls (72(6]x),70(6]x))
ii. Cpf= P\t - TTo D — a¢//(1)Varn0(9‘x) [ln(ﬁo(?@)))],

where ¢’ (1) is the second derivation of smooth convex function ¢ at 1.

Proof. To prove (i), from Equation (5), we have

de ~a—1|a(a—1)dy(m(0]x), m(0]x)) + 1

J€

a(a—1)dy(m(6]x), mo(Blx)) +1°

ad (7 (0]x), mo(6]x)) 1 [ a(a — 1) Lo Ol)

=da



Stats 2021, 4 >
Now, we get
Pdl(e(61x), mo(01))  { [ala — 1)dy((Blx), mo(6]x)) + 1) 2Tl
de? [a(a —1)dg((6]x), o (0] x)) +1]2
[ad' elx )7 GIJC))}2
5 (19)
 [ala — 1)dg(7(0]x), 70(0]%)) + 1]

From Dey and Birmiwal (1994, Thm 3.1) [9], under class (1), we have

dy (71(6]x), 70 (6]x))
de

e=0

and
0%dg (7t(6]x), 1o (6] x))

oe?

= ¢/ (1)Var 4 opx) [11((9)} '

e=0 7-[0(9)

Therefore,

0+ 1]ag?” (1) Var o) {ﬁo%] 0

92}y (70(]x), 1o(6]x))
oe?

e=0 1

and the proof of (i) is concluded. To prove (ii), from Dey and Birmiwal (1994, Thm 3.2.) [9],
under class (2), we have
9y ((6x), 7o(01%))

de =0

e=0

O (9]

Similar to the proof of (i), by considering the above equations in (19) the proof of (ii) is
concluded. 0O

and )
0%dy(7(0]x), 710(0]x))
0€?

Please note that since for Rényi divergence ¢(x) = %, we have ¢”(1) = 1.

This implies that Theorems 1 and 2 can be obtained by Theorem 3. However, the proofs of

Theorems 1 and 2 are more general and could be applied to cases that are not a member of
(h,¢) divergence.

4. Examples

In this section, the derived results are explained through three examples: the Bernoulli
model, the multinomial model and the location normal model. In each example, the
curvature values for the two classes (1) and (2) are reported. Additionally, in Example 1, we
computed Rényi divergence between 77(6|x) and 77p(6|x) and reported the calibrated value
p as described in (6) and (7). Recall that curvature values close to zero indicate robustness
of the used prior whereas larger values suggest lack of robustness. On the other hand,
values of p close to 0.5 suggest robustness whereas values of p close to 1 means absence of
robustness.

Example 1 (Bernoulli Model). Suppose x = (x1, ..., xy) is a sample from a Bernoulli distribu-
tion with a parameter 0. Let the prior 11y(6) be Beta(w, B), i.e.,

n(6) = W&“l(l —9)F L.
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Thus, 11p(0|x) is
Beta(a +t,p+n —1t),
where t =Y ' | x;. Let q(6) be Beta(ca, cp) for ¢ > 0.

Now consider the two samples x = (0,0,1,1,0,1,1,1,1,0,0,0,1,0,1,0,1,1,0,1) and
x=(0,0,1,1,0,1,1,1,1,0,0,0,1,0,1,0,1,1,0,1,1,0,1,0,0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,0, 1,
1,1,1,1,1,0,0,1,1) of sizes n = 20 and n = 50 generated from Bernoulli(0.5). For compari-
son purposes, we consider several values of «, § and c. Although it is possible to find exact
formulas of the curvature by some algebraic manipulation, it looks more convenient to
use a Monte Carlo approach in this example. The computational steps are summarized in
Algorithm 1.

Algorithm 1 Computing curvature based on Monte Carlo approach

1. Fors=1,---,10° generate ) from the posterior 7y(6]|x).

2. Foreach #1), find g(#)) and 7(6©)).

3. Compute the sample variance of the 10° values of (6()) /7o (6(*)).
Denote this value by V?zrno(e‘x) (q(0)/19(8)).
Return aVerno(e‘x) (q(0)/7mp(0)) as the curvature value under class (1).
Compute the sample variance of the 10° values of In (q(G(S) )/ 710(6(5) ))

Denote this values by V?zrﬂo(mx) (In(gq(0)/mo(6))).
6. Return thrﬂo(g‘x) (In(q(0)/mo(0))) as the curvature value under class (2).

The values of the curvature for both classes (1) and (2) are reported in Table 1. Remark-
ably, for the cases when & = p = 1 (uniform prior on [0, 1]) and « = = 0.5 (Jeffreys’ prior),
the curvature values are prominently small for all values of c. Also, it is clear that when
¢ = 1, the curvature values are 0. It worth noticing here that when fixing the parameters
«, B and c, the curvature decrease by increasing the sample size. This supports the fact that
the effect of the prior dissipates with increasing the sample.

While it is easier to quantify the curvature based on Theorems 1 and 2, in this ex-
ample, for comparison purposes, we computed Rényi divergence between 77(6|x) and
7o(0]x) under classes (1) and (2). It can be shown that under class (1) in (9), 7(0|x) =
A(x)Beta(a +t,p+n—1t) + (1 — A(x))Beta(ca + t,cf +n — t), where

I'(a+p) T(a+t)[(B—t+n)
T(@)l(B) T(a+p+n)
(1 . 6) T(a+pB) T(at+HT(B—t4n) +e I'(ca+cB) T(ca+t)I(cf—t+n) "
TWT(B)  Tlarpin) T(ca)[(cB)  Tlenteprm)

Ax) = (1—¢)

Also, from (17), it can be easily concluded that the posterior 77(6|x) under class (2) is
obtained as
6'(1—0)""![Beta(a, B)]

B

“¢[Beta(ca, cB)]¢

1
T'(ca+cp) } €
NEWNG

n(0]x) = K x

Ft+(1—e)(a—1)+e(ca—1)+1)I(n—t+(1—€)(B—1)+e(cB—1)+1)

K= I'((1—e)(a+p—2)+e(ca+cp—2)+n+2)
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Table 1. Values of the local curvature for two classes I'; and I'¢ for a sample generated from Bernoulli(0.5).

(D&) a=20.5 a=1 a=2

" B ‘ cle cls cle cls L cls

20 05 0.5 8x 1073 0.0002 0.0001 0.0004 0.0003 0.0008
<0.5) 1 0 0 0 0 0 0

1.5 0.0003 0.0002 0.0006 0.0004 0.0013 0.0008

3 0.0098 0.0033 0.0196 0.0067 0.0393 0.0135

5 0.0531 0.0135 0.1062 0.0271 0.2125 0.0543

1 0.5 0.0003 0.0007 0.0007 0.0015 0.0014 0.0030
<1) 1 0 0 0 0 0 0

1.5 0.0010 0.0007 0.0021 0.0015 0.0042 0.0030

3 0.0241 0.0121 0.0483 0.0243 0.0967 0.0486

5 0.1065 0.0486 0.2130 0.0972 0.4260 0.1945

1 0.5 0.0265 0.0235 0.0530 0.0470 0.1060 0.0941
(3) 1 0 0 0 0 0 0

1.5 0.0171 0.0235 0.0342 0.0470 0.0684 0.0941

3 0.1061 0.3767 0.2122 0.7535 0.4244 1.5070

5 0.1660 1.5070 0.3320 3.0141 0.6641 6.0282

3 0.5 0.0089 0.0113 0.0179 0.0227 0.0133 0.0454
(1) 1 0 0 0 0 0 0

1.5 0.0108 0.0113 0.0216 0.0227 0.0433 0.0454

3 0.1162 0.1819 0.2324 0.3638 0.4648 0.7277

5 0.2774 0.7277 0.5548 1.4555 1.1096 29110

50 05 0.5 105 4x107° 3x107° 8x 107> 6x107° 0.0001
(0.5) 1 0 0 0 0 0 0

1.5 6x107° 4x10°° 0.0001 8 x107° 0.0002 0.0001

3 0.0022 0.0006 0.0044 0.0013 0.0089 0.0026

5 0.0139 0.0026 0.0279 0.0052 0.0559 0.0104

1 0.5 6x1075 0.0001 0.0001 0.0003 0.0002 0.0006
(1) 1 0 0 0 0 0 0

1.5 0.0002 0.0001 0.0004 0.0003 0.0009 0.0006

3 0.0066 0.0024 0.0132 0.0049 0.0265 0.0099

5 0.0359 0.0099 0.0718 0.0198 0.1437 0.0397

1 0.5 0.0106 0.0112 0.0212 0.0225 0.0425 0.0451
<3) 1 0 0 0 0 0 0

1.5 0.0087 0.0112 0.0174 0.0225 0.0349 0.0451

3 0.0490 0.1805 0.0980 0.3610 0.1960 0.7221

5 0.0535 0.7221 0.1070 1.4442 0.2140 2.8885

3 0.5 0.0042 0.0060 0.0084 0.0121 0.0169 0.0243
(1) 1 0 0 0 0 0 0

1.5 0.0061 0.0060 0.0123 0.0121 0.0247 0.0243

3 0.0672 0.0972 0.1344 0.1944 0.2688 0.3889

5 0.1407 0.3889 0.2814 0.7779 0.5628 1.5559

Please note that since d(7t(0|x), 1o (0]x)) = 1 In (Eno(g‘x) [(%((%Il’;)) )a} ), it possible to

compute the distance based on a Monte Carlo approach. When a = 1, d(7t(0|x), mo(0|x)) =

E o (01%) [% ln( 7;;((99“’;)) ) } , the Kullback-Leibler divergence. We also calibrated Rényi

divergence values as described in (6) and (7).To save space, the results based on class (1)
and (2) of the sample of size n = 20 are reported in Tables 2 and 3, respectively.
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Table 2. Values of dy and p in (6) (for a # 1) and (7) (for a = 1) under class (1) for a sample generated from Bernoulli(0.5).
" a=0.5 a=1 a=2
(ﬁ) € € = 0.05 € =05 e=1 € = 0.05 € =05 e=1 € = 0.05 € =05 e=1
05 05 dy 2x107 4x10° 9x10° 5x107 3x10°°  0.0002 1076 7x107°  0.0004
(0'5) p  (0.5003)  (0.5022) (0.51) (0.5005)  (0.5042)  (0.5107)  (0.5003)  (0.5041)  (0.5106)
1 do 0 0 0 0 0 0 0 0 0
P (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)
15 dy 2x107® 4x10"> 00001 2x107 5x10"> 00001 3x107  0.0001 0.0003
p  (05013)  (0.5068)  (0.5104)  (0.5003)  (0.5054)  (0.5098)  (0.5003)  (0.5053)  (0.5096)
3 dy 4x107%  0.0004 0.0015 105 0.0012 0.0028 3x107°  0.0023 0.0054
p  (05022)  (0.5204)  (0.5393)  (0.5031)  (0.5244)  (0.5379)  (0.5030)  (0.5239)  (0.5367)
5 dy 5x107° 0.0019 0.0055 0.0001 0.0048 0.0102 0.0002 0.0090 0.0181
p  (05071)  (0.5437)  (0.5741)  (0.5074)  (0.5493)  (0.5711)  (0.5074)  (0.5476)  (0.5676)
1 05 dy 7x107 5x107° 0.0003 10~ 0.0001 0.0008 3x107° 0.0002 0.0017
(1> p  (05007)  (0.5071)  (0.5193)  (0.5009)  (0.5083)  (0.5204)  (0.5007)  (0.5084)  (0.5207)
1 dy 0 0 0 0 0 0 0 0 0
P (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)
15 dy 2x1077 7x10°° 0.0003 10~° 0.0002 0.0006 2x107° 0.0003 0.0013
p  (0.5003)  (0.5084)  (0.5193)  (0.5008)  (0.5100)  (0.5185)  (0.5007) (0.51) (0.5180)
3 dy 107> 0.0013 0.0050 5x107°  0.0034 0.0092 0.0001 0.0065 0.0165
p  (0.5042)  (0.5364)  (0.5706)  (0.5050)  (0.5416)  (0.5677)  (0.505) (0.5405)  (0.5645)
5 dy 8x107° 0.0050 0.0167 0.0002 0.0124 0.0297 0.0004 0.0225 0.0494
p  (05092)  (0.5708)  (0.6279)  (0.5107)  (0.5785)  (0.6201)  (0.5106)  (0.5755)  (0.6125)
1 05 dy 2x107° 0.0032 0.0133  7x10"°  0.0067 0.0282 0.0001 0.0145 0.0623
(3) p  (05053)  (0.5565)  (0.6143)  (0.5059)  (0.5580)  (0.6171)  (0.5060)  (0.5604)  (0.6268)
1 dy 0 0 0 0 0 0 0 0 0
P (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)
15 dy 2x107° 0.0023 0.0104 3x1073  0.0045 00199 7x10"°  0.0088 0.0370
P (0.505) (0.5484)  (0.6015)  (0.5044)  (0.5476)  (0.5989)  (0.5044)  (0.5472)  (0.5971)
p  (0.5081)  (0.5846)  (0.6878)  (0.5077)  (0.5834)  (0.6795)  (0.5077)  (0.5833)  (0.6793)
3 dy  0.0001 0.0175 01213 0.0002 0.0349 0.2125 0.0005 0.0691 0.3421
p  (05119)  (0.6308)  (0.8181)  (0.5115)  (0.6299)  (0.7942)  (0.5117)  (0.6337)  (0.8193)
5 dy  0.0002 0.0308 0.3423 0.0004 0.0638 0.5519 0.0008 0.1337 0.6003
p  (05145)  (0.6715)  (0.9536)  (0.5146)  (0.6731)  (0.9087)  (0.5144)  (0.6891)  (0.9535)
3 05 dy 7x107° 0.0012 0.0063 2x107° 0.0027 00135 5x10°° 0.0057 0.0295
(1) p  (05026)  (0.5356)  (0.5791)  (0.5036)  (0.5369)  (0.5816)  (0.5034)  (0.5379)  (0.5866)
1 dy 0 0 0 0 0 0 0 0 0
P (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)
1.5  dy 10~5 0.0013 0.0051 2x1073  0.0025 0.0096 4x10~°  0.0048 0.0180
p  (0.5040)  (0.5364)  (0.5713)  (0.5034)  (0.5354)  (0.5692)  (0.5032) (0.535)  (0.5674)
3 dy  0.0001 0.0139 0.0600 0.0002 0.0286 0.1054 0.0005 0.0505 0.1711
p (05125  (0.6168)  (0.7342)  (0.5117)  (0.6143)  (0.7180)  (0.5119)  (0.6137)  (0.7160)
5 dy  0.0003 0.0340 0.1724 0.0006 0.0657 0.2786 0.0012 0.1231 0.4062
p  (0.5196) (0.68) (0.865) (0.5183)  (0.6754)  (0.8268)  (0.5177)  (0.6809)  (0.8539)
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Table 3. Values of dy and p in (6) (for a # 1) and (7) (for a = 1) under class (2) for a sample generated from Bernoulli(0.5).
" a=05 a=1 a=2
(ﬁ) € € = 0.05 € =05 e=1 € = 0.05 € =05 e=1 € = 0.05 € =05 e=1
05 05 dy 2x107 2x10° 9x107° 1076 5x107°  0.0002 2x10°° 0.0001 0.0004
(0'5) p  (0.5003)  (0.5043) (0.51) (0.5007)  (0.5054)  (0.5107)  (0.5007)  (0.5053)  (0.5106)
1 dy 0 0 0 0 0 0 0 0 0
P (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)
15 dy 7x1077 3x107% 00001 3x107% 4x107° 00001 6x1078 9x107>  0.0003
p  (05007)  (0.5053)  (0.5104)  (0.5001)  (0.5048)  (0.5098) (0.5) (0.505)  (0.5096)
3 dy 6x107°  0.0004 0.0015 6x10°®  0.0007 0.0028 105 0.0014 0.0054
p  (0.5023)  (0.5204)  (0.5393)  (0.5017)  (0.5195)  (0.5379)  (0.5014)  (0.5191)  (0.5367)
5 dy 2x1075  0.0015 0.0055 2x107°  0.0028 0.0102 5x107°  0.0054 0.0181
p  (0.5045)  (0.5393)  (0.5741)  (0.5038)  (0.5379)  (0.5711)  (0.5036)  (0.5367)  (0.5676)
1 05 dy 6x1078 8x107°  0.0003 2x107°  0.0002 0.0008 5x107°  0.0004 0.0017
(1> P (0.5) (0.5095)  (0.5193)  (0.5012)  (0.5101)  (0.5204)  (0.5011)  (0.5103)  (0.5207)
1 dy 0 0 0 0 0 0 0 0 0
P (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)
15  dy 10-° 0.0001 0.0003  8x10~7  0.0001 0.0006 10~ 0.0003 0.0013
p  (0.5013) (0.51) (0.5193)  (0.5006)  (0.5093)  (0.5185)  (0.5007)  (0.5093)  (0.5180)
3 dy 107> 0.0014 0.0050 2x107%  0.0026 0.0092 5x107°  0.0048 0.0165
p  (0.5043)  (0.5373)  (0.5706)  (0.5035)  (0.5360)  (0.5677)  (0.5037) (0.535)  (0.5645)
5 dy 6x1075  0.0050 0.0167 0.0001 0.0092 0.0297 0.0002 0.0165 0.0494
p  (0.5081)  (0.5706)  (0.6279)  (0.5074)  (0.5677)  (0.6201)  (0.5073)  (0.5645)  (0.6125)
1 05 dy 2x1075  0.0030 0.0133  6x107°  0.0064 0.0282 0.0001 0.0135 0.0623
(3) P (0.505) (0.5555)  (0.6143)  (0.5056)  (0.5566)  (0.6171)  (0.5054)  (0.5583)  (0.6268)
1 dy 0 0 0 0 0 0 0 0 0
P (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)
15 dy 3x107°  0.0028 0.0104 5x107°  0.0053 0.0199 0.0001 0.0103 0.0370
p  (05059)  (0.5527)  (0.6015)  (0.5022)  (0.5517)  (0.5989)  (0.5053)  (0.5509)  (0.5971)
3  dy  0.0004 0.0373 0.1213 0.0008 0.0690 0.2125 0.0017 0.1210 0.3421
p  (05216)  (0.6878)  (0.8181)  (0.5211)  (0.6795)  (0.7942)  (0.5209)  (0.6793)  (0.8193)
5 dy  0.0018 0.1213 0.3423 0.0034 0.2125 0.5519 0.0067 0.3421 0.6003
p  (0.5425)  (0.8181)  (0.9536)  (0.5417)  (0.7942)  (0.9087)  (0.5411)  (0.8193)  (0.9535)
3 05 dy 10-° 0.0014 0.0063  3x107°  0.0031 0.0135 6x107°  0.0065 0.0295
(1) p  (0.5031)  (0.5381)  (0.5791)  (0.5040)  (0.5394)  (0.5816)  (0.5039)  (0.5403)  (0.5866)
1 dy 0 0 0 0 0 0 0 0 0
P (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5) (0.5)
1.5 dy 107> 0.0014 0.0052  2x1075  0.0025 0.0096 4x107%  0.0049 0.0180
p  (0.5041)  (0.5376)  (0.5720)  (0.5034)  (0.5359)  (0.5692)  (0.5033)  (0.5353)  (0.5674)
3 dy  0.0002 0.0185 0.0604 0.0004 0.0338 0.1054 0.0008 0.0596 0.1711
p  (05153)  (0.6341) (0.735) (0.5145)  (0.6278)  (0.7180)  (0.5143)  (0.6239)  (0.7160)
5 dy  0.0008 0.0604 0.1724 0.0016 0.1054 0.2786 0.0032 0.1711 0.4074
P (0.53) (0.735) (0.865) (0.5289)  (0.7180)  (0.8268)  (0.5284)  (0.7160)  (0.8545)

Please note that from (8), by multiplying the curvature value in Table 1 by €2/2, one
may get the value of the corresponding distance in Tables 2 and 3. For instance, setting
a«=1,8=3,c=05a=05inTable 1, gives C,f * = 0.0265. The corresponding distance is
0.0265 x 0.52/2 = 0.0033, which close to the one reported in Table 2.

Now we consider the Australian AIDS survival data, available in the R package
“Mass”. There are 2843 patients diagnosed with AIDS in Australia before 1 July 1991. The
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data frame contains the following columns: state, sex, date of diagnosis, date of death
at end of observation, status (“A = 0” (alive) or “D = 1” (dead) at end of observation),
reported transmission category, and age at diagnosis. There are 1082 and 1761 alive
and dead cases. We consider the values of column status. Under the prior distribution
given above, the values of the curvatures for two classes (1) and (2) are summarized in
Table 4 for a random sample of size n = 20 and for the whole data. The sampled data
isx=(1,1,1,0,1,0,0,0,1,1,0,0,1,0,1,0,0,1,1,0). It interesting to notice that unlike the
sample of size n = 20, for the whole dataset (i.e., n = 2843), the value of the curvature is
small for all cases of &, f and ¢, demonstrating less effect of the prior in the presence of a
large sample size.

Table 4. Values of the local curvature for the two classes I'; and I'¢ for the real data set AIDS.

(a) a=0.5 a=1 a=2

‘B Ca a C’I;X Ca a CtEX Cu a CZX
20 05 0.5 0.0001 0.0004 0.0003 0.0008 0.0006 0.0016
<o.5) 1 0 0 0 0 0 0
1.5 0.0006 0.0004 0.0012 0.0008 0.0025 0.0016
3 0.0174 0.0065 0.0348 0.0130 0.0697 0.0260
5 0.0876 0.0260 0.1752 0.0521 0.3504 0.1043
1 0.5 0.0007 0.0014 0.0014 0.0028 0.0029 0.0057
(1) 1 0 0 0 0 0 0
1.5 0.0019 0.0014 0.0038 0.0028 0.0076 0.0057
3 0.0395 0.0229 0.0791 0.0458 0.1583 0.0916
5 0.1578 0.0916 0.3156 0.1832 0.6312 0.3665
1 0.5 0.0049 0.0071 0.0099 0.0143 0.0198 0.0286
(3) 1 0 0 0 0 0 0
1.5 0.0075 0.0071 0.0150 0.0143 0.0301 0.0286
3 0.0995 0.1146 0.1991 0.2293 0.3982 0.4586
5 0.2799 0.4586 0.5599 0.9173 1.1198 1.8346
3 0.5 0.0457 0.0319 0.0915 0.0638 0.1831 0.1277
<1) 1 0 0 0 0 0 0
1.5 0.0195 0.0319 0.0391 0.0638 0.0782 0.1277
3 0.0855 0.5111 0.1710 1.0223 0.3420 2.0446
5 0.1030 2.0446 0.2060 4.0892 0.4121 8.1784
2843 05 0.5 9x 1077 2x10°6 10 5x10°° 3x10° 1073
(05) 1 0 0 0 0 0 0
1.5 4 %1076 2x10°° 8 x 1076 5x107° 10— 105
3 0.0001 4%x10°5 0.0003 8x 105 0.0006 0.0001
5 0.0009 0.0001 0.0019 0.0003 0.0038 0.0006
1 0.5 4x10°6 10-5 9 x 107 2x107° 10— 4x10°5
(1) 1 0 0 0 0 0 0
1.5 105 105 3x107° 2x107° 6x107° 4x10°°
3 0.0004 0.0001 0.0009 0.0003 0.0018 0.0006
5 0.0025 0.0006 0.0051 0.0013 0.0102 0.0027
1 0.5 0.0005 0.0004 0.0010 0.0008 0.0021 0.0016
<3) 1 0 0 0 0 0 0
1.5 0.0002 0.0004 0.0004 0.0008 0.0008 0.0016
3 0.0002 0.0064 0.0004 0.0129 0.0009 0.0259
5 10-° 0.0259 3x107° 0.0518 7 x107° 0.1037
3 0.5 2x1073 5x10°° 5x 1075 0.0001 0.0001 0.0002
(1) 1 0 0 0 0 0 0
1.5 6x107° 5x10°° 0.0001 0.0001 0.0002 0.0002
3 0.0014 0.0008 0.0029 0.0016 0.0058 0.0032

5 0.0054 0.0032 0.0108 0.0064 0.0216 0.0129
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Example 2 (Multinomial model). Suppose that x = (x1,xy, ..., Xy) is an observation from a
multinomial distribution with parameters (N, (64,...,0y)), where Z?:l x; = N and Z?:l 0; =1.
Let the prior 11o(04, . ..,0¢) be Dirichlet(ay, ..., ax). Then mo(601,...,0k|x) is Dirichlet(aq +
X1, , 0 +xk).

Let g(6y,...,6k) ~ Dirichlet(cay, ..., cag). We consider the observation x = (6,4,5,5)
generated from Multinomial(20, (1/4,1/4,1/4,1/4)). As in Example 1, we use Monte
Carlo approach to compute curvature values. Table 5 reports values of the curvature for
different values of a4, ..., a; and c. For the cases when a7 = ay = a3 = a4 = 1 (uniform
prior over [0, 1]4) and a7 = ay = ag = ay = 0.5 (Jeffreys’ prior), the curvature values are
prominently small.

Table 5. Values of the local curvature for two classes I'; and Iy for a sample generated from Mn(20,(1/4,1/4,1/4,1/4)).

&1 a = 0.5 a=1 a=2
N c
() o o L o Lo it
0.25 0.5 2x10°° 0.0006 5x 1075 0.0012 0.0001 0.0024
0.25 1 0 0 0 0 0 0
0.25 1.5 0.0031 0.0006 0.0062 0.0012 0.0124 0.0024
0.25 3 0.5285 0.0097 1.0570 0.0195 2.1141 0.0390
5 8.4050 0.0301 16.816 0.0780 33.632 0.1560
05 0.5 0.0001 0.0021 0.0003 0.0043 0.0004 0.0087
05 1 0 0 0 0 0 0
05 1.5 0.0080 0.0021 0.0161 0.0043 0.0323 0.0087
05 3 0.7706 0.0349 1.5413 0.0699 3.0826 0.1398
5 8.0246 0.1398 16.049 0.2797 32.098 0.5595
1 0.5 0.0008 0.0071 0.0017 0.0142 0.0035 0.0284
1 1 0 0 0 0 0 0
1 1.5 0.0185 0.0071 0.0370 0.0142 0.0741 0.0284
1 3 0.9799 0.1137 1.9598 0.2274 3.9196 0.4549
5 6.7661 0.4549 13.532 0.9098 27.064 1.8197
2 0.5 0.0018 0.0120 0.0037 0.0240 0.0074 0.0480
1 1 0 0 0 0 0 0
1 1.5 0.0270 0.0120 0.0540 0.0240 0.1081 0.0480
1 3 1.1052 0.1923 22104 0.3847 4.4209 0.7695
5 6.3984 0.7695 12.796 1.5390 25.593 3.0780

Example 3 (Location normal model). Suppose that x = (x1,x2,...,%,) is a sample from
N(0,1) distribution with 6 € RY. Let the prior 719(0) of 8 be N (6o, 03). Then

mo(0)x) ~ N (03, 20)

-1 -1
Ux = 9—(2)4—71)'( iz+n and o2 = %—i—n .
70 70 7

Let q(0) ~ N (cfp,03), c > 0. Due to some interesting theoretical properties in this
example, we present the exact formulas of the curvature for class (1) and class (2). We have

q(6) _ exp{ 600(c — 1) + 0.563(1 — c2) }

2
79
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Therefore, for the class (1), we have

Var . e)x) {730((99))} = Enop [(730((96)))21 B (Eﬂ(’(g'x) [720(59))})2

)
2
Op(c —1
(Mno(9|x)< 0((73 >>> },

where M g)x) (t) is the moment generating function with respect to the density 71o(6/x).

Thus, Varg)x) [%} is equal to

03(1—c?) 200(c — Vux . 20%(c —1)%02 200 (c — 1) px
exp{ 7{73 {exp { Ug + ‘761 } exp {Ug +
Gé(c —1)2%02 H

%

02(1 — 2 200 (c — 1)y 03(c —1)%02
= exp{o(gg ‘ )}exp{o(cag Ju }exp{o(c 06;) i }

On the other hand, for the geometric contaminated class, we have

q(0) \ _ 600(c —1)+0.5603(1 — c?)
n(20a7) = 7

Thus, by (20), we get

Varzelx) {111(730(?(3))] = WVWW(MX)W]

0
_ 0%(c — 1)202

Ug X

-2 (1 \
= T <o§+”> . 1)

Interestingly, from (21), Var g)x) [ln( 7?0(?9)) )} depends on the sample only through

its size n. For fixed values of 6y and ¢, as n — oo or 0y — oo, Varﬂo(mx) {ln<%)} — 0,

which indicates robustness. Also, for fixed values of oy and n, as 8y — o0 or ¢ — oo,

Var 6% {ln(%)} — 00 and no robustness will be found.

Now we consider a numerical example by generating a sample of size n = 20 from
N(4,1) distribution. We obtain

x = (3.37,4.18,3.16,5.59,4.32,3.17,4.48,4.73,4.57,3.69,5.51,4.38,3.37,
1.78,5.12,3.95,3.98,4.94,4.82,4.59)

(with t = x = 4.1905). Table 6 reports the values of the curvature for different values of
6o, 09 and c.
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Table 6. Values of the local curvature for two classes I'; and I'¢ for a sample generated from N(4,1).

6o a=20.5 a=1 a=2
c
(03> L cls Cle Cf cle i
01 0.5 0.0001 0.0059 0.0002 0.0119 0.0004 0.0238
(0'1) 1 0 0 0 0 0 0
' 1.5 0.2908 0.0059 0.5816 0.0119 1.1633 0.0238
3 498,033.7 0.0953 996,067.4 0.1907 1,992,135 0.3814
5 8 x 1012 0.3814 1013 0.7629 3 x 1013 1.5258
05 0.5 0.0002 0.0014 0.0004 0.0029 0.0009 0.0059
( 1 ) 1 0 0 0 0 0 0
1.5 0.0081 0.0014 0.0162 0.0029 0.0325 0.0059
3 10.629 0.0238 21.258 0.0476 42517 0.0953
5 2964.9 0.0935 2929.8 0.1907 11,859.7 0.3814
05 0.5 4 %1075 5x 107 8x107° 0.0001 0.0001 0.0002
( 5 > 1 0 0 0 0 0 0
1.5 8 x107° 5x 1075 0.0001 0.0001 0.0003 0.0002
3 0.0031 0.0009 0.0063 0.0019 0.0127 0.0038
5 0.0288 0.0038 0.0576 0.0076 0.1152 0.0152
4 0.5 0.0001 0.0038 0.0029 0.0076 0.0059 0.0152
(5> 1 0 0 0 0 0 0
1.5 0.0020 0.0038 0.0040 0.0076 0.0080 0.0152
3 3x 1077 0.0610 7 x 1077 0.1220 10— 0.2441
5 9x 102 0.2441 10-22 0.4882 3x 10722 0.9765

Clearly, for large values of O‘g, the value of the curvature is small, which is an indication
of robustness. For instance, for pg = 0.5 in Table 6, that value of the curvature when (73 =5
is much smaller than the value of the curvature when Ug =1.

5. Conclusions

Measuring Bayesian robustness of two classes of contaminated priors is studied. The
approach is based on computing the curvature of Rényi divergence between posterior
distributions. Two different proofs are given for the results. The first one is general and
depends on a direct derivation of the curvatures. The second one uses the connection
between (I, ¢) divergence and ¢ divergence. The derived results do not require specifying
values for € and its computation is straightforward. Examples illustrating the approach are
considered. Finally, it is possible to extend the results in this paper to other divergences.
See, for instance, Liese and Vajda (1982) [24]. We leave this direction for future work.
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