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Abstract: In a recent article, Trafimow suggested the usefulness of imagining an ideal universe where
the only difference between original and replication experiments is the operation of randomness. This
contrasts with replication in the real universe where systematicity, as well as randomness, creates
differences between original and replication experiments. Although Trafimow showed (a) that the
probability of replication in the ideal universe places an upper bound on the probability of replication
in the real universe, and (b) how to calculate the probability of replication in the ideal universe,
the conception is afflicted with an important practical problem. Too many participants are needed
to render the approach palatable to most researchers. The present aim is to address this problem.
Embracing skewness is an important part of the solution.
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1. A Practical Way to Mitigate Irreproducibility That Often Will Work

Following the Open Science Collaboration [1] article showing an enormously high
rate of replication failures, there has been much debate about whether there is a replication
crisis in the soft sciences. Rather than taking a position on this issue, we commence with
the obvious recommendation that whether there is a crisis or not, increasing reproducibility
would be an important gain for the soft sciences. Although it is well known that a way to
increase reproducibility is to increase sample sizes, this solution often is not feasible. In
contrast, imagine a way to increase reproducibility without increasing sample sizes, merely
by performing a procedure that is generally available, cost-free, and easy to perform.
This promise may sound too good to be true, but our goal is to show otherwise. The
solution depends on two preliminary issues that are necessary to understand in some
detail. First, it is necessary to reconceptualize what is meant by replication. Second, it
is necessary to understand the a priori procedure (APP) in some detail, along with its
relevance to reproducibility. It is the juxtaposition of these two issues that renders possible
the proposed solution to increasing reproducibility in the soft sciences with less than
optimal sample sizes.

2. Rethinking Successful Replications

Traditionally, a successful replication means that an initial experiment and second
experiment result in statistically significant findings in the same direction (e.g., p < 0.05).
There are at least two alternative approaches that also use p-values, but in different ways.
Killeen [2] proposed a transformation of the traditional p-value, to obtain what he con-
sidered the probability of obtaining a second finding in the same direction of the original
finding. Simohnson [3] suggested an approach that focusses on the statistical power en-
gendered by the researcher’s sample size; the idea is that if a study with a larger sample
was insufficient to obtain statistical significance with a reasonable probability, a study
with a smaller sample size is even less trustworthy. The result of the less powerful study
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is not necessarily wrong; but it is suspect if the effect cannot be detected with the more
powerful study.

As Trafimow [4] explained, these approaches are problematic for a variety of reasons,
but the effect size issue is sufficient. The foregoing approaches imply that the larger the
effect size, the more replicable the effect; it is much easier to replicate a strong effect than
a weak effect. Although this implication may seem unobjectionable, there is a fatal flaw
that might be termed the Michelson and Morley (M & M) problem. In the latter part of the
19th century, physics was at a crossroads. The experiments by Young had disconfirmed
Newton’s corpuscular theory of light and it was widely accepted that light is a wave.
However, waves need a medium through which to propagate. Thus, if outer space is a
vacuum, the question arose: How can light reach Earth from the stars? The widely accepted
answer was that the universe is filled with a “luminiferous ether” transparent to ordinary
matter but nevertheless sufficient to facilitate the propagation of light waves. Michelson
and Morley [5] invented an interferometer that tested the existence of the luminiferous
ether but obtained near null results. It is interesting that their results were not exactly
null, and they collected so many data points that had they performed modern tests of
statistical significance, they would have obtained statistical significance, arguably to the
detriment of physics [6]. In most of the 20th century and the 21st century, it has been
accepted that there is no luminiferous ether and that the theoretical effect size is zero. Thus,
we come to the M & M problem pertaining to reproducibility: How reproducible are the
Michelson and Morley experiments? On the one hand, physicists consider them highly
reproducible; valid interferometers consistently produce near null results. On the other
hand, according to the foregoing conceptions of what constitutes successful replications
that imply a dependence on effect size, the Michelson and Morley experiments are not
reproducible because the theoretical effect size is zero and so there is no way to correctly
obtain, and replicate, statistically significant p-values. Clearly, there is something very
wrong with the foregoing notions of reproducibility.

Trafimow [4] suggested a completely different approach. Rather than asking about
characteristics relative to hypotheses, necessary for all p-value computations, it is alterna-
tively possible to ask whether an original and replication study result in sample statistics
that are close to the corresponding population parameters they are used to estimate. If
sample statistics are close to corresponding population parameters in the original and
replication studies, that counts as a successful replication, thereby solving the M & M
problem. This approach emphasizes getting the empirical facts straight before drawing
conclusions about their implications for substantive hypotheses. An additional advantage
to the approach is that it solves the problem of effect size inflation demonstrated by the
Open Science Collaboration [1] and discussed subsequently by many authors (e.g., [7–12]
and [4]). As will be elaborated later, the present focus is on obtaining good sample estimates
of population parameters—however large or small the population parameters may be—and
not on obtaining sample effect sizes sufficiently large to render p-values under threshold.

Let us move directly to an important distinction between replication in an ideal
universe, where the only differences between experiments are those engendered by random
processes versus replication in the real universe where there are systematic differences too.
Trafimow [4] denoted replication in the ideal universe as replicationideal, and replication
in the real universe as replicationreal. As there are both systematic and random factors
rendering difficult replicationreal, whereas there are only random factors rendering difficult
replicationideal; the probability of replicationideal places an upper limit on the probability
of replicationreal. As most experiments in the social sciences are problematic even with
respect to replicationideal, they are even more problematic with respect to replicationreal.

With the foregoing background in mind, let us proceed to what we see as the main
limitation of Trafimow [4]. Specifically, very large sample sizes are needed to satisfy
his equations. To understand this feasibility limitation, however, it is important to con-
sider from whence Trafimow’s equations came, which is the a priori procedure originally
proposed by Trafimow [13], and expanded subsequently (e.g., [14–22]).
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3. The A Priori Procedure (APP)

To understand the change in philosophy engendered by the APP, it is useful to consider
an extremely simple example. Suppose that a researcher randomly and independently
samples from a normally distributed population, and obtains the sample mean for a single
group. The researcher hopes that the sample mean is close to the population mean. How
many participants does the researcher need to collect to be confident that the sample mean
is close to the population mean? The answer is to use Equation (1) below, where n denotes
the sample size, f denotes the fraction of a standard deviation the researcher wishes to
define as “close,” and z(1−c)/2 is the z-score that corresponds to the degree of confidence
the researcher wishes to have of obtaining a sample mean within the specified degree of
closeness ([23–25] and [13]):

n =

( z(1−c)/2

f

)2
. (1)

For example, suppose the researcher wishes to be 95% confident of obtaining a sample
mean within 0.25 of the population mean. As the z-score that corresponds to the desire

for 95% confidence is 1.96, the sample size needed is: n =
(

1.96
0.25

)2
= 61.47. Rounding

upwards to the nearest whole number implies that the researcher needs 62 participants to
meet specifications for precision f = 25 and confidence (95%). Although 62 participants
might not seem particularly onerous, suppose that the researcher wishes to have much
more precision at 95% confidence, so that f = 0.1. In that case, 385 participants are needed
to meet specifications. Note that all computations can be carried out before obtaining any
data; APP computations are pre-data.

The equations also can be used post-data. Trafimow and Myüz [14] analyzed journals
in five areas of psychology to estimate precision, based on reported sample sizes, and
found both a precision problem and that precision estimates across psychology areas differ
dramatically. Trafimow et al. [15] provided a similar demonstration in the marketing field.

As the experiment becomes increasingly complex, two factors increase the need for
more participants. As there are more groups, and so the researcher needs to obtain more
sample means as estimates of corresponding population means, more participants are
needed per group to ensure that all means in the experiment meet specifications. In
addition, the total sample size is a function not only of the sample size per group, but also
of the number of groups, so increasing the number of groups importantly increases the
total sample size.

However, thus far the discussion in this section has focused on precision, confidence,
and the number of groups. If one wishes to replicate, according to the conception of
replicationideal explained in the previous section, the sample means must meet specifica-
tions not just in one experiment, but in two experiments. If one uses an appropriate APP
equation to obtain the probability of obtaining sample means with the desired precision
in one experiment, it is necessary to square that probability to obtain the probability of
replicationideal. Or considering the necessary sample size for replication, yet additional
participants are needed to enable the experimenter to meet precision and confidence speci-
fications for the k groups in both the original and replication experiments. To dramatize
the problem, Table 1 from Trafimow [1] shows that to have a 90% probability of replication,
given precision and confidence specifications of 0.1 and 95%, respectively; when there are
four groups; the researcher needs a total sample size of 2464. Of course, the researcher
could insist on less stringent criteria for probability of replication, precision, or confidence;
or even could conduct a simpler experiment (such as having two groups instead of four
groups); but many of the values in Trafimow’s Table 1 are not feasible for most researchers
even so. What can be done?

4. Embracing Skewness

In a recent article, Trafimow et al. [16] considered the family of skew-normal distribu-
tions, of which the family of normal distributions is a subset (see [26–28] for a thorough
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discussion). Normal distributions have two parameters: mean µ and standard deviation σ.
In contrast, skew-normal distributions have three parameters.

Definition 1. A random variable X is said to be a skew-normal random variable with location
parameter ξ, scale parameter ω and shape parameter λ if its probability density function is

f (x) = 2φ
(

x; ξ, ω2
)

Φ
(

λ
x− ξ

ω

)
, (2)

where φ
(

x; ξ, ω2) is the probability density function of a normal random variable with mean ξ and

variance ω2, and Φ
(

λ x−ξ
ω

)
is the cumulative probability of the standard normal random variable

at λ x−ξ
ω . The mean, the variance, and the third moment of X are listed below.

E(X) ≡ µ = ξ +
√

2
π δω, V(X) ≡ σ2 = ω2(1− 2

π δ2)
and

E
(
X3) = ξ3 + 3

√
2
π δωξ2 + 3ω2ξ +

√
2
π

(
3− δ2)δω3,

(3)

where δ = λ√
1+λ2 .

The mean µ is replaced by the location ξ, the standard deviation σ is replaced by
the scale ω, and there is a shape parameter λ. When the shape parameter is zero, the
distribution is normal, the mean and location are the same, and the standard deviation and
location are the same; but when the shape parameter is not equal to zero, the mean and
location differ, and the standard deviation and scale differ. In symbols, when λ = 0, ξ = µ
and ω = σ; but when λ 6= 0, ξ 6= µ, and ω 6= σ.

As the location is a parameter of all skew-normal distributions whereas the mean is
a parameter only for normal distributions, the location is the more generally applicable
parameter. Similarly, the scale is more generally applicable than the standard deviation.
To expand the APP so that researchers are not forced into assuming normal distributions,
Trafimow et al. [17] developed equations to compute the sample size needed to meet
specifications for precision and confidence involving sample locations, as opposed to
sample means, in the context of the family of skew-normal distributions. Given the
often-made recommendations for researchers to perform data transformations to reduce
skewness, one might predict that sample sizes would have to increase to meet specifications
for precision and confidence, with respect to locations, in the presence of skewness. In
contrast, the surprising finding was that skewness dramatically reduced the sample sizes
needed to meet specifications; the more the skewness, the smaller the necessary sample
size. Intuitively, the reason for this surprising effect is that skew normal distributions
are taller and narrower than normal distributions, thereby increasing the probability of
sampling from the bulk of the distribution rather than from a tail of the distribution. For
example, suppose there is a single group and one wishes to estimate the sample size needed
to reach precision of 0.10 at 95% confidence. The necessary sample size needed to meet
the specifications is 385 when the shape parameter is 0, but it is only 146 when the shape
parameter is 1. However, further skewness does not imply further strong effects, as even
setting the shape parameter at 5 only reduces the sample size requirement to 138.

Well, then, we can now provide a practical solution to the issue of poor reproducibility
in the soft sciences and the necessity for extremely large sample sizes that are not feasible for
most researchers to obtain. As skewness decreases sample size requirements necessary to
meet specifications for precision and confidence, all else being equal, it also should decrease
sample size requirements for replicationideal. In addition, because few distributions are
normal whereas most distributions are skewed [29–31], most researchers ought to be able
to avail themselves of the savings.
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5. Three Demonstrations

It is convenient to fix the probability of replication at a single level and show how
skewness influences sample sizes needed to reach that level. Remaining with the conven-
tion of 95% confidence, the probability of replicationideal is 0.95× 0.95 = 0.9025 ≈ 90%.
Thus, 90% will be used as our arbitrary replicationideal threshold in each of the follow-
ing subsections. To reiterate, this is an upper bound for the probability of replicationreal.
The following subsections provide demonstrations of the benevolent effects of skewness
on replicationideal, in experiments with one sample, matched samples, or independent
samples, respectively.

5.1. One Sample

We saw earlier that to have a 95% chance of obtaining a sample mean within one-tenth
of a standard deviation of the population mean, it is necessary to have 385 participants. To
address skewness, as explained earlier, it is necessary to use the more general location ξ as
opposed to the mean µ, though the two are the same when the shape parameter is 0 (normal
distribution). Well, then, suppose a mild degree of skewness, say, that the shape parameter
is 0.5. Nonetheless, the necessary sample size to meet the same specifications and the
same (90%) probability of replicationideal for the location is 158 (see Trafimow et al. [17],
for mathematical derivations, tables and figures, and computer simulations). Subtracting
158 from 385 results in a difference of 227 and a savings of 59%. Of course, if the researcher
is satisfied with less precision, both sample sizes and savings decrease. Figure 1 illustrates
how the advantage conferred on the researcher by skewness, relative to normality, increases
as the desired precision increases reading from right to left along the horizontal axis (small
numbers indicate more precision). We used the method by Trafimow [13] to obtain the
curve in Figure 1 representing normality and we used the method by Trafimow et al. [17]
to obtain the curves in Figure 1 representing skew-normality.
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Figure 1. The sample size necessary for having a 90% probability of replication for estimating
a single location parameter is expressed along the vertical axis as a function of the specification
for precision along the horizontal axis and assuming a normal distribution (dotted curve), skew-
normal distribution with shape = 0.5 (dashed curve), or a skew-normal distribution with shape = 1
(solid curve).

In addition, to show that most of the benefit of skewness occurs at very low levels of
skewness, Figure 1 also shows how the sample size is influenced by the desired precision
when the shape parameter is 1 rather than 0.5. Note that the solid curve (shape = 1) almost
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overlaps the dashed curve (shape = 0.5), thereby indicating that most of the benefit of
skewness occurs at the low level whereby the shape parameter is 0.5. This similarity can be
considered an advantage for researchers because very little skewness is required to realize
almost all skewness gains.

Although we used a 90% replication rate, this was for the twin reasons of convention-
ality and familiarity; not because of necessity. We thank a reviewer for suggesting that we
consider a 95% replication rate which requires that confidence needs to be set at 0.975. In
turn, the implication is that the required sample sizes for precision at the 0.10 level, when
the shape parameter is set at either 0 or 0.50, are 503 and 212, respectively. These are more
stringent than the corresponding samples sizes under a 90% replication rate (385 and 158,
respectively). It is interesting that insisting on a more stringent replication rate of 95%, as
opposed to 90%, increases the beneficial effect of skewness; the savings is now 291, rather
than 227 as we saw earlier.

5.2. Differences in Matched Samples

Imagine a social psychology experiment where participants give their attitudes per-
taining to a minority and majority target person. The researcher’s goal is to obtain a precise
estimate of the difference between attitudes towards the two target persons. How many
participants does the researcher need to collect to have a 90% probability of replicationideal?

Figure 2 illustrates the answer. Although Figure 2 resembles Figure 1, the numbers
are slightly higher because we assumed a known standard deviation for Figure 1 and an
unknown standard deviation for Figure 2. For example, assuming normality, the sample
size needed for a 90% probability of replicationideal when precision is set at 0.1 is 387 rather
than 385. In contrast, if the difference scores form a slightly skewed distribution (shape
parameter equals 0.5), only 158 participants are needed. Thus, we again realize substantial
savings by embracing skewness, even slight skewness. Additionally, again, the curves
for shape parameters of 0.5 or 1 almost overlap, replicating the previous demonstration
that slight skewness suffices for almost all skewness gains. (We used the procedure from
Trafimow et al. [19], for the curve in Figure 2 representing normality and the procedure
from Wang et al. [22], for the curves in Figure 2 representing skew-normality.)

As in the single sample case, it is possible to insist on a 95% replication rate instead
of a 90% replication rate, keeping the precision level at 0.10. The implication is that the
required sample sizes, when the shape parameter is set at either 0 or 0.50 for both matched
groups, are 504 and 216, respectively. This contrasts with the corresponding values of
387 and 158 under a 90% replication rate. Thus, the skewness benefit of 288, under a 95%
replication rate, is greater than the skewness benefit of 229, under a 90% replication rate.

5.3. Independent Samples

Imagine a typical experiment comparing two treatments for a disorder using two
independent samples. The researcher wishes to have a precise and replicable estimate of
the difference in locations between the two distributions. For the sake of simplicity, let us
assume that the researcher has equal sample sizes and both distributions have the same
shape (both shape parameters = 0, 0.5, or 1.0). (It is not necessary to make these simplifying
assumptions. The equations by Trafimow et al. [19], and by Wang et al. [22], handle differ-
ent sample sizes and different shapes, respectively.) Figure 3 illustrates the sample sizes
needed for a 90% replication probability at various precision levels. As Figure 3 shows,
when excellent precision ( f = 1) is demanded, the necessary sample size, per group, is
quite large when the distribution is normal (770), decreases to 480 when the shape pa-
rameter is 0.5, and decreases slightly more to 479 when the shape parameter is 1. Sample
size requirements and differences between the curves are less dramatic, as usual, when
less precision is demanded. Again, we see an impressive decrease in the sample size
requirement in the presence even of slight skewness (e.g., 770 − 479 = 321). (We used a
procedure from Trafimow et al. [19], for the curve in Figure 2 representing normality and a
procedure from Wang et al. [22] for the curves in Figure 2 representing skew-normality.)
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Figure 2. The sample size necessary for having a 90% probability of replication for estimating a
difference in locations in two matched samples is expressed along the vertical axis as a function of
the specification for precision along the horizontal axis and assuming a normal distribution (dotted
curve), a skew-normal distribution with shape = 0.5 (dashed curve), or a skew-normal distribution
with shape = 1 (solid curve).

Stats 2021, 4 FOR PEER REVIEW  8 
 

 

ferent shapes, respectively.) Figure 3 illustrates the sample sizes needed for a 90% repli-290 
cation probability at various precision levels. As Figure 3 shows, when excellent precision 291 (𝑓 = 1) is demanded, the necessary sample size, per group, is quite large when the dis-292 
tribution is normal (770), decreases to 480 when the shape parameter is 0.5, and decreases 293 
slightly more to 479 when the shape parameter is 1. Sample size requirements and differ-294 
ences between the curves are less dramatic, as usual, when less precision is demanded. 295 
Again, we see an impressive decrease in the sample size requirement in the presence even 296 
of slight skewness (e.g., 770 − 479 = 321). (We used a procedure from Trafimow et al. Error! 297 
Reference source not found., for the curve in Figure 2 representing normality and a pro-298 
cedure from Wang et al. Error! Reference source not found. for the curves in Figure 2 299 
representing skew-normality.)  300 

However, Figure 3 underestimates what might be considered the true sample size 301 
savings illustrated in Figure 4. Consider that when there are independent samples, the 302 
total sample size is the sum of the two group sample sizes. Returning to our example, if 303 
the distributions are normal, the total sample size is twice the value mentioned earlier: it 304 
is 1540. In contrast, if the shape equal 0.5, the total sample size requirement is 958. Thus, 305 
slight skewness enables a savings of 1540 − 958 = 582. As usual, both the sample size re-306 
quirement, and the savings, are reduced if less precision is demanded. 307 

 308 

Figure 3. The sample size per group necessary for having a 90% probability of replication for esti-309 
mating a difference in locations in two equally sized independent samples is expressed along the 310 
vertical axis as a function of the specification for precision along the horizontal axis and assuming 311 
a normal distribution for both samples (dotted curve), a skew-normal distribution with shape = 0.5 312 
for both samples (dashed curve), or a skew-normal distribution with shape = 1 for both samples 313 
(solid curve). 314 

0

100

200

300

400

500

600

700

800

0.1 0.3 0.5 0.7 0.9

Sa
m

pl
e 

Si
ze

 P
er

 G
ro

up

Precision

Shape = 0

Shape = 0.5

Shape = 1

Figure 3. The sample size per group necessary for having a 90% probability of replication for
estimating a difference in locations in two equally sized independent samples is expressed along the
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However, Figure 3 underestimates what might be considered the true sample size
savings illustrated in Figure 4. Consider that when there are independent samples, the
total sample size is the sum of the two group sample sizes. Returning to our example, if
the distributions are normal, the total sample size is twice the value mentioned earlier: it
is 1540. In contrast, if the shape equal 0.5, the total sample size requirement is 958. Thus,
slight skewness enables a savings of 1540 − 958 = 582. As usual, both the sample size
requirement, and the savings, are reduced if less precision is demanded.
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Figure 4. The total sample size necessary for having a 90% probability of replication for estimating
a difference in locations in two equally sized independent samples is expressed along the vertical
axis as a function of the specification for precision along the horizontal axis and assuming a normal
distribution for both samples (dotted curve), a skew-normal distribution with shape = 0.5 for both
samples (dashed curve), or a skew-normal distribution with shape = 1 for both samples (solid curve).

6. Discussion

The foregoing demonstrations render obvious the sample size savings researchers
can enjoy merely by embracing skewness, featuring locations rather than means (and
scales rather than standard deviations). However, are the calculations feasible? To see that
they are, let us consider the population level relations between means and locations and
between standard deviations and scales, and the sample relations too.

Equation (4) provides the relations at the population level by Equation (3),

ξ = µ−
√

2
π

δω and ω2 =
σ2

1− 2
π δ2

, (4)

where δ = λ√
1+λ2 .

Recognizing that researchers rarely or never have access to population parameters,
these usually must be estimated. Practically all statistical packages provide sample statistics
such as the mean X, standard deviation S, and skewness γ̂1. These sample statistics can be
made to render estimates of population shape, location, and scale parameters.

It is useful to commence by obtaining an estimate of delta δ̂ using Equation (5).
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(
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2

) 2
3

, (5)

where the sign of δ̂ is the same as the sign of γ̂1.
In turn, it is easy to obtain an estimate of the shape or skewness parameter λ̂ using

Equation (6):

λ̂ =
δ̂√

1− δ̂2
, (6)

Rewriting Equation (4) in terms of sample estimates, as opposed to population param-
eters, renders Equation (7):

ξ̂ = X−
√

2
π

δ̂ω̂ and ω̂2 =
σ̂2

1− 2
π δ̂2

. (7)

Thus, it is feasible for researchers to replace mean and standard deviation with loca-
tion and scale, respectively, and thereby benefit from sample size savings such as those
demonstrated earlier. Even without sample size savings, the proposed replacement would
be desirable because location and scale are more generally applicable than mean and
standard deviation.

Although the proposed solution to irreproducibility is both practical and without
monetary cost, there is an important limitation, and we wish to be upfront about it. Specifi-
cally, despite the generally greater applicability of the family of skew-normal distributions
over the family of normal distributions, researchers should not take this as indicating
that the family of skew-normal distributions is always applicable. For example, a dis-
tribution might be bimodal, in which case estimating locations and scales may not be a
good strategy. Consequently, although the present recommendation will work much of
the time—whenever the family of skew-normal distributions is applicable—there is no
substitute for researchers paying careful attention to the distributions they feel they are
likely to obtain, if planning a study; or in paying careful attention to the distributions they
actually get, for data already collected.

The present contribution can be summarized easily. Trafimow [1] did much of the
work by suggesting a better way to think about reproducibility than previous ways involv-
ing p-value thresholds. Specifically, Trafimow’s notion of successful replications pertains to
original and replication experiments resulting in sample statistics close to corresponding
population parameters. Trafimow and colleagues also provided relevant APP equations
assuming normal or skew-normal distributions [13,15–22]. However, the major limitation
of Trafimow [1] is that he employed the normal equations because the skew-normal equa-
tions had not been invented yet. The consequence is that the necessary sample sizes for
reasonable criteria for replication probabilities and precision are too onerous to expect most
researchers to obtain them. Thus, there is an important practical problem. The present work
addresses that problem by showing how embracing skewness, which is usually present
anyway in the data that researchers obtain, importantly mitigates the practical problem.
Additionally, it does so even at very slight levels of skewness (e.g., shape parameter equals
0.5). If researchers would routinely estimate location and scale parameters instead of, or in
addition to, mean and standard deviation parameters; replication probabilities at currently
used sample sizes would increase dramatically and we present a practical demonstration,
using data from a recently published article, in the Appendix A. The obvious benefits to the
soft sciences of better replication probabilities can be realized without the necessity of ac-
quiring any additional resources, merely by following the simple and feasible prescriptions
described here.
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Appendix A

Consider a practical application of our proposal in the context of an experiment
performed by Dolinska et al. [32] in Basic and Applied Social Psychology. They performed
a well-conducted study using six experimental conditions, and a control condition for
comparison purposes, for a total of seven conditions. Unlike typical research in psychology,
these researchers reported estimates not just of normal parameters for each condition (mean
and standard deviation), but of skew normal parameters too (location, scale, and shape).
Although Dolinska et al. did not perform the a priori procedure before data collection,
it is interesting to imagine that they had, and ask about the necessary sample sizes to
meet criteria for precision and confidence (or replication rate). Suppose Dolinska et al.
had wished to meet a 0.30 level for precision at 95% confidence (thereby implying a 90%
replication rate). In that case, for the goal of comparing each experimental condition
mean against the control condition mean, the necessary minimum sample size would
be 87 under normality, a condition which they did not meet. Alternatively, we might
suppose that Dolinska et al. had wished to meet the same criteria but for the goal of
comparing each experimental condition location against the control condition location. In
that case, assuming a small amount of skewness, so the shape parameters both equal 0.50,
the necessary sample size for each condition would be 70, which Dolinska et al. barely met.
By taking advantage of skewness, and using locations instead of means, Dolinska et al. met
a replication criterion that they otherwise would have been unable to meet.

The foregoing implies consequences for their reported mean comparisons and location
comparisons. Regarding mean comparisons, keeping the sample size at the published level,
implies that confidence is 92% and so the replication rate is 85% for each comparison. In
contrast, regarding locations, assuming a shape parameter of 0.50 or more in each of the
conditions (supported by their data) implies a confidence level of 95% and a replication
rate of 90%. As a replication rate of 90% is superior to a replication rate of 85%, we
have a demonstration using published data, of the benefits of embracing skewness to
increase reproducibility.
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