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Abstract: The assessment of agreement in method comparison and observer variability analysis of
quantitative measurements is usually done by the Bland–Altman Limits of Agreement, where the
paired differences are implicitly assumed to follow a normal distribution. Whenever this assumption
does not hold, the 2.5% and 97.5% percentiles are obtained by quantile estimation. In the literature,
empirical quantiles have been used for this purpose. In this simulation study, we applied both sample,
subsampling, and kernel quantile estimators, as well as other methods for quantile estimation to
sample sizes between 30 and 150 and different distributions of the paired differences. The performance
of 15 estimators in generating prediction intervals was measured by their respective coverage
probability for one newly generated observation. Our results indicated that sample quantile
estimators based on one or two order statistics outperformed all of the other estimators and they can
be used for deriving nonparametric Limits of Agreement. For sample sizes exceeding 80 observations,
more advanced quantile estimators, such as the Harrell–Davis and estimators of Sfakianakis–Verginis
type, which use all of the observed differences, performed likewise well, but may be considered
intuitively more appealing than simple sample quantile estimators that are based on only two
observations per quantile.

Keywords: agreement; Bland-Altman plot; coverage; limits of agreement; method comparison;
quantile estimation; repeatability; reproducibility

1. Introduction

The classical Bland–Altman Limits of Agreement (BA LoA) define a range within which
approximately 95% of normally distributed differences between paired measurements are expected
to lie [1–3]. In cases of non-normally distributed differences, the use of empirical quantiles has been
proposed as a robust alternative [2,4,5]; however, extensive research endeavors in the past have
suggested the application of nonparametric quantile estimation to the assessment of 2.5% and 97.5%
percentiles as nonparametric LoA. We performed a simulation study on 15 nonparametric quantile
estimators to derive nonparametric prediction intervals and assessed their performance by means of
the coverage probability for one newly generated observation. The aim of this study was to suggest a
nonparametric and robust alternative to the classical BA LoA when the normality assumption does
not hold and/or the sample sizes are small to moderate. Our findings are illustrated by an application
to data from a previously published clinical study on coronary artery calcification measured by the
Agatston score [6].
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2. Methods

Let the differences of paired observations be independent observations of a random variable X
with a cumulative distribution function (CDF) F : R→ [0, 1]. If F is continuous from the right, then the
quantile function of X is continuous from the left: Q(u) := inf{x : F(x) ≥ u}, u ∈ (0, 1); hence, at least
100u percent of the values of X are below Q(u) [7,8]. In the following, we seek to estimate the 2.5%
and 97.5% percentiles of F, corresponding to u = 0.025, 0.975, by different methods of nonparametric
quantile estimation.

Databases, such as JSTOR (Journal Storage), ScienceDirect, the online journal platform “Taylor
& Francis Online”, and those maintained by PubMed/Medline in the NCBI (National Center for
Biotechnology Information) were searched for quantile estimator, nonparametric quantile estimator,
nonparametric kernel quantile estimator, subsampling quantile estimator, and new quantile estimator.
Fifteen nonparametric quantile estimators were chosen, three of which are sample quantile estimators,
four are subsampling quantile estimators, two are kernel quantile estimators, and six are other quantile
estimators. Hence, we chose very different types of nonparametric quantile estimators, which use one,
two, or all the observations in a sample.

2.1. Sample Quantile Estimators

The simplest way to estimate quantiles nonparametrically is by using sample quantile estimators.
A random sample X1, . . . Xn of size n is sorted in increasing order X(1) ≤ X(2) ≤ . . . ≤ X(n);
the symbols here denote the order statistics of the random sample. The CDF of F can then be estimated
by the step function

F̃(x) =
1
n

n

∑
i=1

I[xi ,∞)(x), (1)

where IA(x) is the indicator function that takes the value 1 if x ∈ A and 0 if x /∈ A; the sample quantile
function is defined as Q̃(u) := inf{x : F̃(x) ≥ u}, u ∈ (0, 1) by Cheng [7]. The quantile estimator

SQp1 =

{
X(np) if [np] = np

X([np]+1) if [np] < np
(2)

is based on a single order statistic, where [x] is the greatest integer that is less than or equal to x [9,10].
SQp1 is the smallest observation for which at least p percent of the observed values in the sample are
smaller than or equal to SQp1.

The second sample quantile estimator SQp2 is a weighted average of the two order statistics that
are closest to including p percent of all the observations in the sample:

SQp2 = (1− α)X(r) + αX(r+1) (3)

with α = p(n + 1)− r and r = [p(n + 1)] [9,11].
Finally, we considered a weighted average of X[np+0.5] and X[np+0.5]+1:

SQIp = (−np + 0.5 + i)X(i) + (np + 0.5− i)X(i+1) (4)

with i = [np + 0.5] and 0.5 ≤ np ≤ (n− 0.5) [9,12].

2.2. Subsampling Quantile Estimators

The abovementioned sample quantile estimators are based on only one or two order statistics
whereas subsampling, kernel, and other quantile estimators employ linear combinations of all the
available order statistics, weighting them according to their relative closeness to the target percentile.
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Based on the sample quantile function Q̃, linear smooth nonparametric estimators of Q(u) can be
written as

Q(u) =
∫ 1

0
Q̃(t)dtG(u; t), (5)

where G(u; ·) is a CDF with support on the unit interval. Many distributions G(u; ·) have been
proposed, the choice of which depends on the sample size and, typically, a smoothing parameter.
Depending on the choice of G(u; ·), there are two major classes of quantile estimators according to
Cheng [7]: subsampling quantile estimators and kernel quantile estimators. Both can be given as

L-statistics, which is,
n

∑
j=1

Wj ·X(j), where Wj and X(j) is the weight for the j-th order statistic and the j-th

order statistic itself, respectively [13]. For subsampling quantile estimators, a discrete distribution is
chosen for G(u; ·), interpreted as a resampling distribution from the set of the observed order statistics
X(j), j = 1, . . . , n [7].

The Harrell-Davis estimator is given by

HDp =
n

∑
i=1

WiX(i) (6)

with weight function

Wi =
1

β {(n + 1)p, (n + 1)(1− p)}

∫ i/n

(i−1)/n
y(n+1)p−1(1− y)(n+1)(1−p)−1dy

= Ii/n {p(n + 1), (1− p)(n + 1)} − I(i−1)/n {p(n + 1), (1− p)(n + 1)} ,

where Ii/n {a, b} is the incomplete beta function [10,14,15].
The quantile estimator of Kaigh and Lachenbruch

KLp =

[
r+n−k

∑
j=r

(
j− 1
r− 1

)(
n− j
k− r

)
/
(

n
k

)]
X(j), (7)

where r = [(k + 1)p], is obtained by averaging a subsample quantile estimate over all (k
n) subsamples

of size k, 1 ≤ k ≤ n, which are sampled without replacement. The subsample size k is an arbitrary
smoothing (or reduction) parameter, and Kaigh and Lachenbruch proposed choosing k, so as to
minimize the mean squared error (MSE), which is, MSE = E(KLp − εp)2, where εp is the true value of
the p-th quantile [7,16,17].

Kaigh and Cheng [18] proposed the quantile estimator

KCp =
n

∑
j=1

[(
r + j− 2

r− 1

)(
n− j + k− r

k− r

)
/
(

n + k− 1
k

)]
X(j) (8)

with r = dkpe, where dxe denotes the smallest integer greater than or equal to x [7]. The value of k is
again determined by minimizing the MSE of the estimator.

Finally, the Bernstein polynomial quantile estimator is given by

BPp =
n

∑
j=1

(
n− 1
j− 1

)
pj−1(1− p)n−jX(j) (9)

according to Cheng [7,19].
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2.3. Kernel Quantile Estimators

Like subsampling quantile estimators, kernel quantile estimators can be written in the form of
Equation (5). Here, G(u; .) is a location-scale family CDF with density function K, location parameter
u, and scale parameter h(n):

G(u; t) =
1

h(n)
K
(

t− u
h(n)

)
.

Subsequently, Equation (5) becomes the kernel quantile estimator introduced by Parzen [8]:

Q̂(u) =
∫ 1

0
Q̃(t) · 1

h(n)
· K
(

t− u
h(n)

)
dt

with its L-statistic representation being

Q̂(u) =
n

∑
j=1

[∫ j/n

(j−1)/n

1
h(n)

· K
(

t− u
h(n)

)
dt
]

X(j).

The density K, called the kernel, is symmetric around zero and it has a chosen bandwidth h(n),
which satisfies h(n) → ∞ when n → ∞ [7,20]. Yang [21] proposed a discretized version, which we
used as the first of the two kernel quantile estimators in our study due to its closed form:

KQp1 =
1
n

n

∑
j=1

1
h(n)

· K
(
(j/n)− p

h(n)

)
X(j). (10)

As K
(

1/n−p
h(n)

)
, . . . , K

(
n/n−p

h(n)

)
do not generally provide a (discrete) probability distribution on

[0, 1], monotonicity, translation and scale equivariance, and the symmetry relation do not hold.
Translation and scale equivariance would imply that KQp1 applied to (X1 + c, . . . , Xn + c) is equal to c
plus KQp1 applied to (X1, . . . , Xn); the asymmetry means that KQp1 applied to (−X1, . . . ,−Xn) is not
equal to −KQp1 applied to (X1, . . . , Xn). The Nadaraya–Watson type estimator

KQp2 =
n

∑
j=1

K
(
((j−0.5)/n)−p

h(n)

)
∑n

i=1 K
(
((i−0.5)/n)−p

h(n)

)X(j) (11)

Overcomes these drawbacks and was used as the second of the two kernel quantile estimators
in this study [7,22,23]. Its name originates from the Nadaraya–Watson estimator in kernel
regression [24,25].

In the following, we chose the standard Gaussian kernel for K and used the value of the bandwith
h(n) that minimized the MSE to find k for both KLp in Equation (7) and KCp in Equation (8).

2.4. Other Quantile Estimators

The kernel quantile estimators that are presented in the previous section are all based on the
usual empirical distribution (1) with equal weights 1/n assigned to each observation. To improve
the performance of quantile estimators, Huang and Brill [26] proposed using a weighted empirical
distribution, for instance, the level crossing empirical distribution function

Flc(x) =
n

∑
i=1

wi,n I(−∞,x](X(i)) (12)
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with weight function

wi,n =


1
2

[
1− n−2√

n(n−1)

]
if i = 1, n

1√
n(n−1)

if i = 2, 3..., n− 1.
(13)

One such kernel quantile estimator using level crossing empirical distributions is

KQplc =
n

∑
i=1

n−1 1
h(n)

K


i

∑
j=1

wj,n − p

h(n)



X(i). (14)

Huang [27] modified the Harrell–Davis estimator (6) by applying a weighted empirical
distribution function instead of the empirical distribution with equal weights 1/n. The Harrell–Davis
estimator using a level crossing empirical distribution function can be written as

HDplc =
1

β((n + 1)p, (n + 1)q)

∫ 1

0
F−1

lc (y)y(n+1)p−1(1− y)(n+1)q−1dy

=
n

∑
i=1

[∫ qi,n

qi−1,n

1
β((n + 1)p, (n + 1)q)

y(n+1)p−1(1− y)(n+1)q−1dy
]

X(i),
(15)

where β(·, ·) is the beta function, q = 1− p, Flc(·) is given by (12), qi,n =
i

∑
j=1

wj,n, i = 1, . . . , n, with wj,n,

as defined in (13), and q0,n ≡ 0.
Sfakianakis and Verginis [28] proposed a group of estimators, motivated by the fact that

nonparametric quantile estimation of extreme quantiles close to 0 and 1 requires large samples for
sufficient accuracy. These three quantile estimators are supposed to better estimate quantiles in the
tails of a distribution when using small samples and they employ the Binomial probability of observing
exactly i out of n events with an event probability of p, B(i; n, p):

SVp1 =
2B(0; n, p) + B(1; n, p)

2
X(1) +

B(0; n, p)
2

X(2) −
B(0; n, p)

2
X(3)

+
n−1

∑
i=2

B(i; n, p) + B(i− 1; n, p)
2

X(i)

− B(n; n, p)
2

X(n−2) +
B(n; n, p)

2
X(n−1) +

2B(n; n, p) + B(n− 1; n, p)
2

X(n),

(16)

SVp2 =
n−1

∑
i=0

B(i; n, p)X(i+1) + (2X(n) − X(n−1))B(n; n, p), (17)

SVp3 =
n

∑
i=1

B(i; n, p)X(i) + (2X(1) − X(2))B(0; n, p). (18)

Finally, Navruz and Özdemir [29] introduced a new quantile estimator, which is a weighted
average of all order statistics:
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NOp = (B(0; n, p)2p + B(1; n, p)p)X(1) + B(0; n, p)(2− 3p)X(2) − B(0; n, p)(1− p)X(3)

+
n−2

∑
i=1

(B(i; n, p)(1− p) + B(i + 1; n, p)p)X(i+1) − B(n; n, p)pX(n−2)

+ B(n; n, p)(3p− 1)X(n−1) + (B(n− 1; n, p)(1− p) + B(n; n, p)(2− 2p))X(n).

(19)

2.5. Simulation Setup

We contrasted nonparametric LoA as constructed with the 15 abovementioned quantile estimators
by comparing their coverage probabilities for the next paired difference under the given distributional
assumption. Here, we employed the standard normal distribution (ND), a standard normal distribution
with 1%, 2%, and 5% outliers (ND 1%, ND 2%, and ND 5%, respectively), an exponential distribution
(ED) with a rate of 1, and a lognormal distribution (LND) with meanlog = 0 and sdlog = 1. For normal
distributions comprising outliers, simulated data were replaced with a probability of 1%, 2%, and 5%
by data sampled from a normal distribution with a mean of 0 and a standard deviation of 3. To examine
small to moderate sample sizes, the sample size was set to 30, 50, 80, 100, and 150. For each combination
of distribution, sample size, and nonparametric quantile estimator, 20,000 simulated trials of size
(n + 1) were generated with R (the code is available as Supplemental Material S1). Here, a seed was
set in order to use the same simulated data for each combination of distribution and sample size
across nonparametric quantile estimators. The first n observations in each simulated trial were used to
derive nonparametric LoA, to which the last observation was compared. The coverage probability was
then the proportion of cases out of the 20,000 trials where the nonparametric LoA included the last
observation. All of the figures were generated with Stata/MP 16.1 (College Station, TX 77845, USA).

3. Results

For n = 30 (Table 1), none of the estimators reached the nominal coverage probability of 0.95.
The coverage probability of SQp1 was closest to 0.95, ranging from 0.934 to 0.938. Note that, for sample
sizes of up to n = 40 observations, the smallest and largest difference are used as nonparametric
quantile estimates for the 2.5% and 97.5% percentiles, respectively. For SQIp, HDp, HDplc, SVp1, SVp2,
and SVp3, the coverage probabilities were at least 0.921, 0.911, 0.910, 0.920, 0.914, and 0.923, respectively.
Neither SQp2 nor KLp are defined for n < 40.

Table 1. Coverage probabilities for nonparametric Limits of Agreement (n = 30). Neither SQp2 nor
KLp are defined for n < 40.

Estimator ND ND 1% ND 2% ND 5% ED LND

SQp1 0.937 0.938 0.937 0.937 0.934 0.937
SQp2 - - - - - -
SQIp 0.926 0.927 0.927 0.928 0.921 0.926
HDp 0.911 0.923 0.923 0.924 0.916 0.920
KLp - - - - - -
KCp 0.900 0.890 0.877 0.851 0.885 0.880
BPp 0.905 0.908 0.908 0.909 0.897 0.904
KQp1 0.904 0.882 0.865 0.832 0.936 0.922
KQp2 0.912 0.893 0.880 0.857 0.916 0.906
KQplc 0.915 0.893 0.874 0.838 0.923 0.919
HDplc 0.916 0.917 0.917 0.919 0.910 0.915
SVp1 0.924 0.925 0.925 0.926 0.920 0.924
SVp2 0.925 0.927 0.926 0.927 0.914 0.919
SVp3 0.925 0.926 0.925 0.926 0.923 0.929
NOp 0.813 0.814 0.817 0.821 0.808 0.834
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SQp2 was the only estimator with coverage probabilities oscillating closely around 0.95 for all the
investigated sample sizes n ≥ 50 (Tables 2–5); for n = 50, SQp2 was the only one to do so.

For n = 80 (Table 3), the coverage probabilities of HDp, SVp1, SVp2, and SVp3 fluctuated closely
around the nominal level except for the simulations with an ED (0.94). For n ≥ 100 (Tables 4 and 5),
these estimators performed close to the 0.95 nominal level for all of the investigated distributions.

The coverage probabilities of the recently proposed NOp estimator varied between 0.945 and
0.950 for n = 200 and they were very close to 0.95 for n = 250 (results not shown here).

Table 2. Coverage probabilities for nonparametric Limits of Agreement (n = 50). Bold figures indicate
coverage probabilities exceeding the nominal level of 0.95.

Estimator ND ND 1% ND 2% ND 5% ED LND

SQp1 0.919 0.918 0.920 0.919 0.919 0.919
SQp2 0.951 0.952 0.953 0.955 0.951 0.951
SQIp 0.934 0.935 0.937 0.938 0.931 0.934
HDp 0.939 0.940 0.942 0.945 0.935 0.938
KLp 0.938 0.932 0.930 0.917 0.937 0.929
KCp 0.924 0.906 0.898 0.879 0.915 0.912
BPp 0.922 0.925 0.927 0.931 0.919 0.922
KQp1 0.919 0.902 0.896 0.861 0.931 0.933
KQp2 0.924 0.909 0.900 0.881 0.924 0.916
KQplc 0.924 0.912 0.901 0.867 0.944 0.930
HDplc 0.933 0.935 0.936 0.940 0.928 0.931
SVp1 0.940 0.941 0.942 0.945 0.935 0.939
SVp2 0.937 0.939 0.939 0.943 0.933 0.934
SVp3 0.938 0.941 0.942 0.944 0.938 0.941
NOp 0.839 0.843 0.845 0.855 0.845 0.870

Table 3. Coverage probabilities for nonparametric Limits of Agreement (n = 80). Bold figures indicate
coverage probabilities exceeding the nominal level of 0.95.

Estimator ND ND 1% ND 2% ND 5% ED LND

SQp1 0.939 0.939 0.940 0.938 0.934 0.939
SQp2 0.950 0.951 0.951 0.949 0.945 0.950
SQIp 0.941 0.941 0.942 0.941 0.935 0.941
HDp 0.950 0.952 0.954 0.955 0.940 0.949
KLp 0.943 0.939 0.935 0.933 0.938 0.939
KCp 0.936 0.923 0.916 0.895 0.925 0.929
BPp 0.937 0.939 0.941 0.942 0.929 0.937
KQp1 0.934 0.926 0.921 0.887 0.934 0.940
KQp2 0.936 0.925 0.917 0.897 0.930 0.931
KQplc 0.933 0.928 0.922 0.890 0.942 0.939
HDplc 0.943 0.945 0.947 0.948 0.934 0.943
SVp1 0.951 0.952 0.954 0.955 0.940 0.949
SVp2 0.950 0.951 0.953 0.953 0.940 0.948
SVp3 0.949 0.951 0.952 0.954 0.940 0.950
NOp 0.888 0.893 0.896 0.901 0.891 0.910
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Table 4. Coverage probabilities for nonparametric Limits of Agreement (n = 100). Bold figures indicate
coverage probabilities exceeding the nominal level of 0.95.

Estimator ND ND 1% ND 2% ND 5% ED LND

SQp1 0.941 0.941 0.941 0.942 0.941 0.941
SQp2 0.952 0.952 0.952 0.954 0.953 0.952
SQIp 0.941 0.941 0.941 0.942 0.941 0.941
HDp 0.950 0.951 0.953 0.957 0.948 0.950
KLp 0.947 0.941 0.939 0.938 0.946 0.941
KCp 0.940 0.929 0.920 0.902 0.935 0.935
BPp 0.940 0.942 0.944 0.948 0.937 0.940
KQp1 0.937 0.935 0.921 0.896 0.942 0.943
KQp2 0.939 0.930 0.920 0.903 0.940 0.935
KQplc 0.938 0.935 0.932 0.905 0.940 0.941
HDplc 0.944 0.946 0.948 0.951 0.942 0.944
SVp1 0.950 0.952 0.954 0.959 0.948 0.950
SVp2 0.950 0.952 0.953 0.957 0.948 0.949
SVp3 0.950 0.951 0.953 0.959 0.947 0.950
NOp 0.911 0.914 0.917 0.924 0.913 0.924

Table 5. Coverage probabilities for nonparametric Limits of Agreement (n = 150). Bold figures indicate
coverage probabilities exceeding the nominal level of 0.95.

Estimator ND ND 1% ND 2% ND 5% ED LND

SQp1 0.945 0.945 0.944 0.946 0.946 0.945
SQp2 0.949 0.949 0.948 0.951 0.950 0.949
SQIp 0.942 0.942 0.941 0.943 0.944 0.942
HDp 0.948 0.949 0.950 0.954 0.948 0.948
KLp 0.945 0.941 0.939 0.936 0.947 0.945
KCp 0.941 0.934 0.930 0.906 0.939 0.940
BPp 0.942 0.944 0.943 0.947 0.941 0.942
KQp1 0.940 0.936 0.928 0.903 0.943 0.943
KQp2 0.940 0.932 0.923 0.908 0.941 0.937
KQplc 0.939 0.935 0.928 0.904 0.941 0.943
HDplc 0.944 0.946 0.945 0.949 0.944 0.944
SVp1 0.949 0.951 0.952 0.957 0.949 0.949
SVp2 0.949 0.952 0.952 0.956 0.948 0.950
SVp3 0.949 0.950 0.951 0.954 0.947 0.949
NOp 0.934 0.937 0.937 0.943 0.936 0.940

4. Example

Diederichsen et al. [6] compared coronary artery calcification measurements using the Agatston
score with the measurements using Framingham Heart Score in Danes of 50 and 60 years of age.
Of 1825 randomly sampled citizens, 1257 consented to participation in the study, and 1156 of them
were eligible. Agatston scores were independently reanalyzed for 129 randomly chosen study
participants, and the agreement measures were the proportions of agreement and the kappa statistics
for dichotomized calcification status (absence vs. presence) to assess intra- and inter-rater agreement.
In the following, the intra-rater differences are used for exemplification purposes.

Approximately half of the 129 participants had an Agatston score of 0. The paired intra-rater
differences ranged from −683 to 130, with a first, second, and third quartile being equal to 0; the 5th,
10th, 90th, and 95th percentiles were−23,−12, 1.1, and 5, respectively. The empirical distribution of the
paired differences was, therefore, characterized by its denseness around 0 and a single, comparatively
extreme outlier, clearly indicating the inappropriateness of the normality assumption in this setting
(see also a histogram including an approximating normal distribution as Supplemental Material S2).



Stats 2020, 3 351

Using SQp2, HDp, and SVp1, the nonparametric, asymmetric, and robust LoA are −61.5, 12.8;
−96.2, 26.7; and, −122.1, 30.6, respectively, whereas the symmetric BA LoA of −129.8, 116.1 are
equidistant from the estimated mean difference of −6.9 (Figure 1). The upper LoA for HDp

and SVp1 are similar, but the respective lower LoA are differently affected by the single outlier
(3942.5, −683). SQp2 appears to be most robust to few outliers due to its definition. The R source
code for the derivation of these nonparametric LoA as well as the example data can be found as
Supplemental Material S3 and S4, respectively.
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Figure 1. SQp2 (magenta, long dashes), HDp (red, short dashes) and SVp1 (black, solid lines) contrasted
with classical BA LoA (shaded area).

The sensitivity of the classical BA LoA to outliers becomes crystal-clear when excluding the
single outlier here. Subsequently, the symmetric BA LoA are −37.4 and 34.3, and the estimated mean
difference reduces to −1.6 (results not shown here). In practice, outliers are, though, kept in the
analysis dataset if there is no reasonable explanation for an exclusion. This underlines the importance
of robust alternatives to the BA LoA.

5. Discussion

5.1. Statement of Principal Findings

The simple sample quantile estimators that are based on one and two order statistics performed
closest to the nominal level in terms of the coverage probability for the next observation across six
distributional scenarios for n = 30 and n = 50, 80, 100, 150. The Harrell–Davis subsampling estimator
and estimators of the Sfakianakis–Verginis type followed closely for sample sizes of at least n = 80 and
may be considered intuitively more appealing, as they use the entire sample, whereas more simple
and outlier-robust sample quantile estimators are only based on a few observations from the sample.
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5.2. Strengths and Limitations of The Study

The choice of distributions for the simulation study was motivated by our own experience with
agreement assessments in clinical studies, especially roughly normal distributions with a few percent
outliers. We investigated a wide range of quantile estimators, comprising sample, subsampling,
and kernel quantile estimators as well as other methods for quantile estimation with sample sizes
between 30 and 150. As a measure of performance, we considered the coverage probability of
nonparametric LoA for the next observation, interpreting the nonparametric LoA as a prediction
interval, as the lower and upper LoA need to be simultaneously assessed. Therefore, we did not
pursue evaluations using, for instance, mean squared errors.

5.3. Strengths and Limitations in Relation to other Studies

A peculiarity of LoA is the sole focus on the 2.5th and 97.5th quantiles, two extreme quantiles.
Dielman, Lowry and Pfaffenberger [9] investigated 0.02 and 0.98, but only for small samples
(n = 10, 15, 25, 30). Others examined 0.05 and 0.95 [11,14,16,21,22,29], whereas Kaigh and Cheng [17,18]
assessed 0.1 and 0.9. Only Huang and Brill [26,27] also targeted 0.025 and 0.975, but only for samples
of maximum size n = 30. Sfakianakis and Verginis [28] analyzed 0.01 and 0.99 as well as 0.05 and 0.95
in various sample sizes.

When compared to the usual number of 2000 iterations, the chosen number of 20,000 iteration
runs translated for a given nonparametric estimator and sample size into a reduced range of the
coverage probabilities across distributions by approximately 0.005 and is deemed appropriately
accurate. However, the increased number of iterations did implicate considerably longer running
times in creating the data for one Table (12 as opposed to 2 h). The abovementioned studies employed
between 1000 and 10,000 iterations [16,22].

Harrell and Davis [14] did not recommend HDp for small n and extreme p, and Dielman,
Lowry and Pfaffenberger [9] concluded that there was not one best estimator across scenarios, based on
maximum sample sizes of 30 and 60; however, Dielman, Lowry and Pfaffenberger [9] suggested that
HDp performs well in a wide range of cases, except when p = 0.02, 0.98. Our findings for HDp are in
line with these former conclusions, but extend to larger sample sizes of n = 80, 100, 150, in which HDp

appears to be a preferable choice for estimating extreme quantiles.

5.4. Meaning of the Findings: Possible Mechanisms and Implications

Our findings suggest using SQp1 in small samples with approximately n = 30 but SQIp, SVp1,
or SVp3 may be preferential alternatives as SQp1 simply reduces to the smallest and largest observations
as estimates for the 2.5% and 97.5% quantiles, respectively. The latter is, in turn, unfortunate in the
case of outliers due to their unabated impact on the estimates. SQp2 performed closest to the nominal
level for all samples with n ≥ 50 and appeared to be less prone to the single outlier in our clinical
example than HDp and SVp1. However, the latter two estimators do involve all the observations. SQp2

can, therefore, be considered the first choice for samples of approximately n = 50, but, for larger n,
both HDp and Sfakianakis–Verginis type estimators are equally applicable and actually preferable if the
researcher seeks to include the entire dataset in quantile estimation and not only pairs of order statistics.

The normality assumption of the paired differences may often be considered to be reasonable
in the planning stage; however, alternative quantile estimators should be equally specified in the
planning stage as empirical distributions may deviate notably from ideal assumptions. Moreover,
our investigation suggests several beneficial nonparametric alternatives to BA LoA instead of the
simple percentile estimators that currently seem to prevail.

5.5. Unanswered Questions and Future Research

In the case of normally distributed paired differences, Bland and Altman [1,2] have already proposed
approximate confidence intervals for the BA LoA. Recently, Vock [30] emphasized that only a tolerance
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interval or the outer confidence limits for BA LoA can provide a range that will contain a specified percentage
of future differences with a known certainty. Carkeet and Goh [31,32] proposed exact confidence intervals
for BA LoA, while using two-sided tolerance factors for a normal distribution.

In the case of any given distribution for the paired differences, several approaches for
the construction of nonparametric confidence intervals for quantiles have been proposed over
half a century [33–39]. For both HDp and KLp, confidence intervals for quantiles have been
proposed [10,14,16]. In the context of nonparametric LoA, future research will naturally lie in the
proposal and evaluation of confidence intervals for the 2.5% and 97.5% quantiles in small-to-moderate
samples, especially with regard to SQp2, SQIp, HDp, and Sfakianakis–Verginis type estimators.

Regression procedures for method comparison analysis have not been considered here [40–43].
Robust methods designed for data configurations with outliers, such as S- or MM-estimation,
Least Trimmed Squares, or the Forward Search, are of interest in this context [44–48].

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-905X/3/3/22/s1,
Code S1: R source code for generating Tables 1–5. Figure S2: Histogram for the data of the clinical example in
Section 4, including an approximating normal distribution. Code S3: R source code for generating Limits of
Agreement for the clinical example in Section 4. Data S4: Dataset of the clinical example in Section 4.
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