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Abstract: A dynamic version of the Nelson-Siegel-Svensson term structure model with time-varying
factors is considered for predicting out-of-sample maturity yields. Simple linear interpolation cannot
be applied to recover yields at the very short- and long- end of the term structure where data are
often missing. This motivates the use of dynamic parametric term structure models that exploit both
time series and cross-sectional variation in yield data to predict missing data at the extreme ends of
the term structure. Although the dynamic Nelson–Siegel–Svensson model is weakly identified when
the two decay factors become close to each other, their predictions may be more accurate than those
from more restricted models depending on data and maturity.
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1. Introduction

Yield curves need to be estimated, since bonds with different maturities are not directly
comparable due to different coupon payments. Many central banks provide estimated yields from
government bonds. The two common methods used to construct such estimates are those based on
splines (smooth curve fitting) and those that are based on parametric models. Although most central
banks make the estimated yield curve data publicly available, the exact methodology used to construct
such estimates are usually not disclosed. For example, the U.S. Department of Treasury publishes daily
treasury yield curve rates on their website (https://www.treasury.gov/resource-center/data-chart-
center/interest-rates/Pages/TextView.aspx?data=yield (accessed on 14 June 2019)).The methodology
used to obtain the data are explained at their Treasury Yield Curve Methodology page (https:
//www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/yieldmethod.aspx (last
revised 14 October 2018; accessed on 14 July 2019)). which only states that the “yield curve is derived
using a quasi-cubic hermite spline function” with no further details. Furthermore, “Treasury reserves
the option to make changes to the yield curve as appropriate and in its sole discretion. Such changes
may include, but are not necessarily limited to, adding, removing, or modifying inputs, and making
changes to the methodology for deriving the yield curve.”

Many central banks make the estimated yield curve data publicly available. However, data are
often missing, particularly at the very short and long end of the term structure. For example, for the
(nominal) daily yield curve data from 3 January 2000 to 31 December 2018 (4753 observations) available
from the U.S. Department of Treasury, there are 396 (8%) missing values for the one-month rate and
994 (21%) missing values for the 30-year rate. This is unfortunate as the rates at these very short and
long ends of the term structure are often of interest.

Given the black box nature of yield curve data construction, the main objective of this paper is to
examine whether parametric dynamic term structure models can recover the yield curve data provided
by central banks. As the yield curve data are estimated from the traded bond prices, one would ideally
try to recover the yield estimates from market quotes of the traded bond prices. However, such data
are usually proprietary and not easily accessible to academic researchers. Furthermore, as emphasized
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in Nymand-Andersen [1] “data cleaning is too often neglected or deprioritised [. . . ] with the risk of
not being able to differentiate noise from real (economic) signals when interpreting statistical results”.

The approach taken in this paper is to use the publicly provided data to infer the full term structure of
yields by predicting the missing values. As yield curve data have a panel data structure, we can exploit
both the time series and cross-sectional variation in doing so. Recent work by Koo et al. [2] do this
nonparametrically without imposing parametric functional forms. However, they assume that time
variation in yields is driven by a vector of common observed covariates (including deterministic
trends). They apply their method to the daily bond quotes data from the proprietary CRSP U.S.
Treasury database.

This paper takes a parametric approach and considers some generalization of the class of dynamic
term structure models used in the literature. Section 2 summarizes this literature that this paper
builds upon. The main novelty of the specification considered in this paper is to allow the two decay
parameters in the generalized Nelson and Siegel [3] model of Svensson [4], Söderlind and Svensson [5]
to be time-varying. Koopman et al. [6] considered a specification with one time-varying decay
parameter that generalizes the Nelson and Siegel [3] model. The two decay parameter model is harder
to estimate than the one decay parameter model due to weak identification when the two decay
parameters take similar values, as discussed in Section 2.

Models with time-varying decay parameters become nonlinear in the state variables of a
state-space model. The issue of nonlinear filtering and estimation is discussed in Section 3. Section 4
conducts a small Monte Carlo simulation experiment to compare the finite sample performance
of alternative nonlinear filters. An important criterion in choosing among the alternative filters is
computational cost (efficiency), not just their accuracy. The results of the simulations indicate that the
extended Kalman filter can be an effective choice due its computational simplicity.

An extensive literature compares the performance of various term structure models using time
series out-of-sample prediction for future observations as performance criterion [1,7]. This papers uses
cross-sectional out-of-sample prediction for yields with maturity not used in estimation (but in the
same sample period) as performance criterion.

Section 5 compares the out-of-sample cross-sectional predictability of alternative dynamic term
structure specifications while using two types of data. For data known to be generated from
parametric models, the two time-varying decay parameter specification performs best, despite the
weak identification problem. This result is perhaps not surprising. The results using data estimated
from spline based methods are more mixed and can be data dependent. If the out-of-sample maturity
is inside the range of maturities used for estimation, a simple linear interpolation may perform as well
as predictions from parametric dynamic term structure models. However, interpolation cannot be used
for maturities at the very short- or long- end of the term structure where the missing data problem
is most prevalent. For these extreme maturities, predictions from the general specification with two
time-varying decay parameters generally perform better than those based on more restricted models.
However, this is not always the case and the simpler models can perform as well as the generalized
model that is proposed in this paper.

2. Yield Curve Estimation Methods

There are two main approaches to yield curve modeling: spline based and parametric model
based [1]. The spline based approach is used by the Bank of England, the Federal Reserve Bank
of New York, Bank of Canada, among others (footnote 2, p. 5 in [1]). The parametric model based
approach is used by many European central banks, such as Deutsche Bundesbank, Banco de España,
Banca d’Italia, Banque de France, and the European Central Bank (footnote 3, p. 5 in [1]).

2.1. Spline Based Methods

The spline based approach uses piecewise polynomials to flexibly fit a curve through the data.
The splines ensure that the piecewise functions are smoothly joined at the knot points, resulting in
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a smooth curve over the support. To implement this method, one needs to specify the number of
knot points and their positions. The piecewise polynomials may be fit to the forward rate function,
the discount function, or the log of the discount function [8].

The spline based methods differ in how they determine the coefficients for each piecewise
polynomials. The different methods can be characterized by the use of different regularization,
or roughness penalty. The roughness penalty function may or may not depend on maturity or vary
over time (Section 3.1 in [1]). Related tospline based methods are the nonparametric methods, where
polynomials are locally weighted by kernel functions [2,9]. The analogue of roughness penalty for
nonparametric methods is the bandwidth, which controls the ‘locality’ of the kernel weights.

The flexibility to fit any curve is both an advantage and disadvantage of the spline based approach.
It is well known that the shape of the fitted curve can be quite sensitive to the choice of roughness
penalty. “Given the superior curvature properties of cubic splines it is a bit surprising how relatively
poor the spline smoother performs [in the simulations]. [. . . ] One explanation of these results is
therefore that this is related to the lack of a good bandwidth estimator”. ([9], p. 215).

For researchers to be able to reproduce the yield curve data obtained from spline based methods,
we need information on the position of the knot points, type of spline (piecewise polynomial) used,
and the weight used for the roughness penalty term. I am not aware of any central bank that uses spline
based methods that provides such reproducible information. This is in contrast to the transparency of
the parsimonious parametric approach that is discussed below.

2.2. Parametric Approach

The most commonly used parametric models for the yield curve are the Nelson and Siegel [3]
and Svensson [4], Söderlind and Svensson [5] models. One of the appealing features of these models
is that one can recover the implied instantaneous forward rate from the yield curve and vice versa.
The Nelson and Siegel [3] instantaneous forward rate at time t with maturity τ is specified as

ft(τ) = β1t + β2te−λtτ + β3tλtτe−λtτ

The four parameters, known as latent factors, β1t, β2t, β3t, λt have a t subscript to indicate that
they can be time varying.

The yield curve at t with maturity τ is then the ‘average’ of forward rates given by

yt(τ) =
1
τ

∫ τ

0
ft(u)du

= β1t + β2t
1

λtτ
(1− e−λtτ) + β3t

1
λtτ

(1− e−λtτ − λtτe−λtτ)

The yield curve is linear in the factors β1t, β2t, β3t but nonlinear in the decay factor λt.
Associated with each factor β are the ‘loadings’

w1t(τ) = 1

w2t(τ) =
1

λtτ
(1− e−λtτ)

w3t(τ) =
1

λtτ
(1− e−λtτ − λtτe−λtτ) = w2t(τ)− e−λtτ

Not only does this parametric form turn out to fit the yield data flexibly, but the factors also
have natural interpretations. This interpretability has contributed to the wide spread use of the
Nelson and Siegel [3] model. The decay factor λt controls how the yield curve exponentially decays
with maturity τ. β1t can be interpreted as the level, or long term, factor since an increase in β1t will
shift the yield for all maturities uniformly due to the constant loading w1t = 1. β2t is known as the
slope, or short term, factor. w2t is an exponentially decreasing function of τ with w2t(0) = 1 and
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w2t(∞) = 0. An increase in β2t shifts the short rate more than the long rate, and hence changes the
slope of the yield curve. β3t is the curvature, or medium term, factor. w3t(0) = w3t(∞) = 0 and w3t(τ)

is concave with a local maximum (hump shape). The decay rate λt determines the position of the local
maximum. An increase in β3t shifts the medium rates more than the short and long rates and, hence,
increases the curvature of the yield curve.

These parametric loadings are known to match the data quite well. The first three principal
components of the sample covariance of yields account for most of the variation in the U.S. yields,
as documented by Litterman and Scheinkman [10]. The first factor is a ‘parallel shift’ and accounts for
80–90% of the term structure variation. The second factor is a ‘twist’ where the short and long rates
move in opposite directions and accounts for 5–10% of variation. The third factor is a ‘butterfly’ where
intermediate rates move in the opposite direction of the short and long rates and accounts for 1–2% of
the variation.

The Svensson [4], Söderlind and Svensson [5] model adds another factor β4t and associated decay
parameter λ2t with forward rate specified as

ft(τ) = β1t + β2te−λ1tτ + β3tλ1tτe−λ1tτ + β4tλ2tτe−λ2tτ

and yield curve

yt(τ) = β1t + β2t
1

λ1tτ
(1− e−λ1tτ) + β3t

1
λ1tτ

(1− e−λ1tτ − λ1tτe−λ1tτ)

+ β4t
1

λ2tτ
(1− e−λ2tτ − λ2tτe−λ2tτ) (1)

The Nelson and Siegel [3] yield curve can have, at most, one hump. The additional two factors
in the Svensson [4], Söderlind and Svensson [5] model allows the yield curve to have more than
one hump.

Although the additional factors increase the flexibility of the model to fit the data, they make the
model potentially weakly identified. The loadings

w3t(τ) =
1

λ1tτ
(1− e−λ1tτ − λ1tτe−λ1tτ)

w4t(τ) =
1

λ2tτ
(1− e−λ2tτ − λ2tτe−λ2tτ)

associated with the factors β3t, β4t become highly collinear for λ1t ≈ λ2t [11]. Despite this weak
identification problem, most central banks that adopt the model based approach appear to favor the
extended Svensson [4], Söderlind and Svensson [5] model over the original Nelson and Siegel [3]
model [1].

Another recent contributing factor for the popularity of this class of parametric models is
the relation with no arbitrage restrictions. Early work conducted by Filipovic [12] showed that,
if the latent factors follow diffusion processes, the Nelson and Siegel [3] model is generally not
arbitrage free. To be consistent with no arbitrage, the factors need to be constant or deterministic.
For the Svensson [4], Söderlind and Svensson [5] model, only one factor can be non-deterministic to
be consistent with no arbitrage. Christensen et al. [13] are able to find a member of the affine class of
arbitrage free models of Duffie and Kan [14] with factor loadings that exactly match those of the Nelson
and Siegel [3] model. However, this requires modifying the Nelson and Siegel [3] model by including
an additional deterministic term in the yield curve that only depends on maturity. Krippner [15] shows
how the Nelson and Siegel [3] factors (approximately) map to those of the arbitrage free gaussian
affine class models of Dai and Singleton [16].

For the Svensson [4], Söderlind and Svensson [5] model, both Christensen et al. [17] and
Krippner [15] show that, in addition to the maturity depend yield adjustment term, a second
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slope factor is needed to be consistent with no arbitrage. In these so-called arbitrage free affine
dynamic Nelson–Siegel–Svensson models, the factors follow diffusion processes, except for the decay
parameters, which remain fixed.

These parametric models can be fit to a cross-section of bonds period by period. A dynamic
term structure model links these factors over time by assuming that they follow an autoregressive
process. Koopman et al. [6] considered a dynamic version of the Nelson and Siegel [3] model where
all latent factors follow an AR(1) process. Christensen et al. [17] considered dynamic versions of
the Svensson [4], Söderlind and Svensson [5] model. However, they restricted the two decay factors
to be fixed parameters. This paper considers a model where the two decay factors also follow an
AR(1) process.

Early work by Diebold and Li [18] used a two-step method to estimate dynamic term structure
models. The two-step method exploits the fact that, conditional on the decay factor, the model becomes
linear in the remaining factors. However, in the first step, one needs to arbitrarily fix the value of
the decay parameter to some ‘reasonable’ value. Swanson and Xiong [19] use a three-step procedure,
in which the decay parameter for the two-step procedure is chosen using a grid search that optimizes
the in-sample fit of the factors. This appears to be done period by period recursively without specifying
the dynamics of the decay parameters. Statistical inference based on these multistep procedures is
complicated, since the estimates in each step are conditional on the estimates from the previous step(s).

More recent work jointly estimate all parameters by maximizing a gaussian likelihood
function [6,13,17]. The likelihood function is evaluated by casting the dynamic term structure model
in state-space form. For the fixed decay factor specifications of Christensen et al. [13,17], the standard
linear Kalman filter can be used to evaluate the likelihood. For specifications with time-varying decay
factors, the state-space model becomes nonlinear in the states and the standard Kalman filter cannot be
applied. Koopman et al. [6] use the extended Kalman filter that applies the Kalman filter to a linearized
approximation.

One main reason Christensen et al. [13,17] to restrict the decay parameter(s) to be fixed is to exploit
the no arbitrage condition. They show that the their specifications belong to the class of affine arbitrage
free models provided a yield adjustment term is added to the original Nelson–Siegel–Svensson
specifications. There is some evidence that this yield adjustment term may be economically small and,
hence, the gains from exploiting the no-arbitrage restriction may also be small [20]. This paper follows
the lead of Koopman et al. [6] and examines the gain, if any, of allowing the decay parameters to be
time varying instead.

An important aspect of the model based approach not emphasized enough in the literature
is its parsimony. In particular, for researchers to be able to reproduce the yields and forward
rates for any maturity, all one needs are the values of a small number of latent factors (six for
the Svensson [4], Söderlind and Svensson [5] model). The European Central Bank is commended
to not only make the daily yield curve data publicly available, but to also provide the daily estimated
values of the six latent factors of the Svensson [4], Söderlind and Svensson [5] model used to fit the
yield curve (http://sdw.ecb.europa.eu/browse.do?node=9691126).

2.3. Which Method to Use?

As evidenced by the fact that both spline based and parametric model based approaches are
used in practice, neither approach dominates the other. The spline based approach is favored when
the emphasis is on obtaining a ‘good’ fit that passes through most of the data points. The model
based approach is favored when the emphasis is on parsimony and smoothness of the resulting
curve avoiding overfitting in-sample. The appropriate choice requires trading-off these pros and cons,
depending on one’s primary objective for fitting the yield curve [1]. Alternatively, rather than choosing
one method over the other, one can combine or average the estimates from both methods [19].

http://sdw.ecb.europa.eu/browse.do?node=9691126
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3. Dynamic Term Structure Models with Time-Varying Factors

3.1. State-Space Formulations

I compare the performance of four parametric models with time-varying factors to examine the
cross-sectional predictability of dynamic term structure models. All of these models can be written in
state-space form, as follows.

yt = Z(αt) + εt, εt ∼ N(0, H) (2)

αt+1 = d + Tαt + vt, vt ∼ N(0, Q), vt ⊥ εt (3)

for t = 1, . . . , n. yt is the m× 1 observed vector of yields in period t with maturities τ = (τ1, . . . , τm)>

and αt = (Lt, St, C1t, C2t, log λ1t, log λ2t) is the 6× 1 unobserved latent state vector. The components
of the state vector are the level (Lt), slope (St), curvature (C1t, C2t), and decay (λ1t, λ2t) factors. vt ⊥ εt

denotes statistical independence of vt and εt. The parameters of the model are θ = (H, d, T, Q).
The m×m symmetric positive definite matrix H is assumed to be diagonal with positive entries and Q
is a 6× 6 symmetric semi-positive definite matrix. If we do not restrict T or Q to be diagonal, there are
m + 6 + 6× 6 + 6× 7/2 = m + 63 parameters to estimate.

The measurement equation links the yields to the state (factor) vector via the loadings

Z(αt) = 1mLt + f (λ1t, τ)St + g(λ1t, τ)C1t + g(λ2t, τ)C2t

f (λ, τ) =
1

λτ
(1− e−λτ)

g(λ, τ) = f (λ, τ)− e−λτ

where 1m is the m× 1 vector of ones.
The models used in this paper do not impose the no arbitrage restrictions. As shown in

Christensen et al. [17], the model with two decay factors λ1, λ2 but one slope factor St cannot be
arbitrage free. Christensen et al. [17] introduce a second slope factor in addition to the yield adjustment
term to make the model arbitrage free. However, the model with a single slope factor already has
a large number of parameters (m + 63) to estimate. Adding a second slope factor will increase the
number of parameters to m + 7 + 49 + 28 = m + 84 (without restricting T or Q). Another reason
to keep the model simple is to avoid exacerbating the weak identification problem alluded to in
Section 2. The arbitrage free model with two decay parameters and two slope factors is not identified
without imposing an identification restriction, such as λ1 > λ2. Furthermore, there is some evidence
at least with U.S. data that the Nelson and Siegel [3] model is ‘nearly’ arbitrage free indicating that
the yield adjustment term may be economically small [20]. For these reasons, I keep the original
Nelson–Siegel–Svensson specification without imposing the no arbitrage restrictions. As discussed
below, I instead examine the gains from having a time-varying decay parameter.

An issue that does not appear to be discussed much in the literature is whether the specification
should restrict the yield to be non-negative. Most dynamic term structure specifications appear not
to impose such non-negativity restriction. Inspecting the factor data publicly available from the
European Central Bank indicates that the level factor Lt and decay parameters λ1, λ2 are restricted
to be non-negative (though I could not find any documentation that mentions this restriction).
Koopman et al. [6] do not appear to restrict either the slope factor Lt or the decay factor λt to be
non-negative. The specifications used in this paper do not restrict the level factor Lt but do restrict
the decay parameters λ to be non-negative. This is done by entering the decay parameters in the state
vector αt with the (natural) log transformation log λ.

The dynamic Nelson–Siegel–Svensson (DNSS) specification presented above is the most general
model considered in this paper. I also consider three special cases of this general model that have been
used in the literature. The Koopman et al. [6] specification nulls out rowsnand columns four and six
of the parameters d, T, and Q resulting in a state-space model with a four dimensional state vector
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αt = (Lt, St, C1t, log λ1t). This specification is called the dynamic Nelson–Siegel model, denoted DNS,
and differs from that in Koopman et al. [6] in that the decay factor λt is restricted to be non-negative.
The two other special cases keep the decay parameters λ fixed as in Christensen et al. [13,17],
but without imposing the no arbitrage restrictions. These specifications are referred to as the
Nelson–Siegel–Svensson (NSS) model with state vector αt = (Lt, St, C1t, C2t) and the Nelson–Siegel
(NS) model with state vector αt = (Lt, St, C1t).

3.2. Filtering and Estimation

The parameters of the state-space model (2) and (3) are estimated by maximizing the gaussian
log-likelihood function. For models with time-varying decay factors, the measurement equation is
not linear in the state vector. The extended Kalman filter approach takes a linear approximation of
measurement equation about the predicted state vector at|t−1 = Et−1[αt] as

yt = Z(αt) + εt

≈ Z(at|t−1) +
∂Z

∂α>
(αt − at|t−1) + εt

= ct +
∂Z

∂α>
αt + εt, ct ≡ Z(at|t−1)−

∂Z
∂α>

at|t−1

where the m× 6 jacobian ∂Z/∂α> is evaluated at α = at|t−1. The expressions for the jacobian ∂Z/∂α>

are given in online Appendix A.1.
The gaussian log-likelihood function can be evaluated using the extended Kalman filter, which

consists of the filtering steps

et = yt − ct −
∂Z

∂α>
at|t−1 = yt − Z(at|t−1)

Ft =
∂Z

∂α>
At|t−1

∂Z
∂α

+ H

at|t = at|t−1 + At|t−1
∂Z

∂α>
F−1

t et

At|t = At|t−1 − At|t−1
∂Z

∂α>
F−1

t
∂Z
∂α

At|t−1

and prediction steps

at+1|t = d + Tat|t

At+1|t = TAt|tT
> + Q

The filter is initialized with a1|0 = (I − T)−1d and the solution to the Lyapunov equation A1|0 =

TA1|0T> + Q. The log-likelihood is evaluated as

` = −3n log(2π)− 1
2

n

∑
t=1

(log |Ft|+ e>t F−1
t et) (4)

The affine arbitrage free models estimated in Christensen et al. [13,17] have the important feature
that the decay parameters λ1, λ2 are fixed and not time-varying. This makes the state-space model
linear in the states (though still nonlinear in the parameters) and the standard Kalman filter can be used
to evaluate the likelihood function. Koopman et al. [6] consider the Nelson and Siegel [3] model with
time-varying decay parameter λt and find improvement in the in-sample fit of the model. Once we
make the decay parameter part of the state vector αt, the state-space model becomes nonlinear in the
state and the standard Kalman filter cannot be used. Koopman et al. [6] use the extended Kalman filter
to the linearized model.
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The extended Kalman filter is computationally attractive, since it applies the standard Kalman
filter to the approximated linear state-space model. However, the concern is the error due to the linear
approximation. As an important feature of the Nelson–Siegel–Svensson specification is the ability to
parsimoniously capture nonlinear curvatures in the term structure, one may be concerned whether
the linearization in the extended Kalman filter may compromise this feature. As this issue appears
to be little explored in the literature, I consider two alternative nonlinear filtering methods [21,22]:
the unscented filter and the Rao-Blackwellized particle filter.

The unscented Kalman filter approximates the unknown distribution of a nonlinearly transformed
random variable by a small number of discretized points and associated weights, known as
sigma points and sigma weights. These points and weights are chosen to match the first two moments
of the target distribution. It can be shown that the mean of the extended Kalman filter estimate is
accurate to first order, while that of the unscented filter is accurate to the second order. (The variance
is estimated to the second order of approximation by both filters.) Further details are provided in
Appendix A.2.

To apply the unscented filter, one needs to specify the sigma points and weights. The requirement
to match the first two moments of the target distribution imposes certain restrictions on the choice.
However, they do not uniquely narrow down the choice and certain ‘tuning’ parameters need to be selected
by the user. One of the simplest and commonly used choice suggested in Julier and Uhlmann [23]
requires choosing how to allocate the non-negative weights that sum to one over the sigma points.
The first sigma point is equal to the mean of the target distribution while the remaining number
of points come in pairs that offset each other, so that the mean of the sigma points is equal to the
target mean.

The second alternative is based on particle filtering, also known as sequential Monte Carlo [24,25].
The unscented filter uses a small number of fixed points and weights to approximate the unknown
distribution. In contrast, particle filters use a large number of random draws to accurately approximate
the unknown target distribution. In a nonlinear state-space model, the target distribution of interest
is the distribution of the (unobserved) state vector αt. In a standard application of particle filters,
one would draw particles from the full state space with dimension equal to that of αt.

Rao–Blackwellization draws particles from a reduced dimension by partitioning the state
space [26]. By drawing a subset of state variables conditional on the other state variables, one can
reduce simulation variance and obtain much more accurate filtered estimates than drawing from
the full state space without conditioning. The key to achieving effective variance reduction through
Rao–Blackwellization is to find an appropriate partitioned state space. An important feature of the
DNSS model is that conditional on the two decay factors λt = (λ1t, λ2t), the model becomes linear
in the remaining four state variables Lt, St, C1t, C2t. To denote the partitioned system, split the state
vector as αt = (xt, λt)> where xt = (Lt, St, C1t, C2t) and λ = (log λ1t, log λ2t). The system can then be
written as

yt|αt ∼ N(Z(λt)xt, H)

xt|λt, αt−1 ∼ N(µ1t + Q12Q−1
22 (λt − µ2t), Q11 −Q12Q−1

22 Q21)

λt|αt−1 ∼ N(µ2t, Q22)

where Z(λt) = (1m, f (λ1t, τ), g(λ1t, τ), g(λ2t, τ)) is m × 4 and µt = d + Tαt−1 = (µ1t, µ2t).
The conditional mean of xt|λt, αt−1 can be written as

E[xt|λt, αt−1] = µ1t + Q12Q−1
22 (λt − µ2t) = dx(λt, λt−1) + Txxt−1

dx(λt, λt−1) = d1 + T12λt−1 + Q12Q−1
22 (λt − d2 − T22λt−1)

Tx = T11 −Q12Q−1
22 T21
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Details of the filtering algorithm, mostly taken from Schon et al. [26], are reproduced in Appendix A.3
for the reader’s convenience. The extended and the unscented Kalman filters can both be considered to
be Rao–Blackwellized for the DNSS model as the state equation is linear in the states. The approximation
is only applied to the measurement equation, which is nonlinear in the state variable(s).

3.3. Computational Issues

As already indicated, the most general DNSS specification has a large number of parameters
(m + 63) to estimate. In order to keep the number of parameters linear in the state dimension for
estimation purposes, I restrict T and Q in the state equation to be both diagonal as in Christensen et al. [17].
This reduces the number of parameters to estimate for the DNSS model to the more manageable m + 18.

Even with this restricted specification, the DNSS model with two time-varying decay factors is
significantly harder to estimate than the DNS model (with one time-varying decay factor). The reason
is the weak identification problem with the DNSS model when λ1t ≈ λ2t. The consequence is that the
numerical optimization procedure can fail to converge when the starting parameter values result in
λ1t ≈ λ2t. As a partial solution to this problem, optimization of the log-likelihood is carried out for a
number of randomly drawn sets of starting values.

The three-step estimation procedure in Swanson and Xiong [19] deals with this issue by restricting
the two decay parameters to be a certain distance apart period-by-period ([19], footnote 8, p. 12).
However, when the dynamics of λt are specified as an autoregressive processes, as is done in this
paper, such period-by-period restriction cannot be imposed. Therefore, I effectively do a grid search
over a large number of randomly drawn starting parameter values.

4. Simulation Study

4.1. Comparison of Nonlinear Filters

This section conducts a small Monte Carlo simulation study to compare the accuracy of the
alternative nonlinear filtering methods described in the previous section. Due to computational cost,
this simulation study is restricted to studying the accuracy of the filtering algorithms assuming the true
parameter values are known. In practice the parameter values are unknown and must be estimated.
The effect of filtering error on the accuracy of the parameter estimates is an important issue to be
examined, but is left for future work. The main computational difficulty for examining estimation error
is the Rao–Blackwellized particle filter as it requires applying the recursive filter from drawing a large
number of particles for each simulated sample, a simulation within a simulation problem. As shown
below, even with known parameter values, the Rao–Blackwellized particle filter is considerably more
computationally expensive than the other nonlinear filters.

4.2. Simulation Design

In the simulation experiment, I consider two weighting allocations for the unscented filter. The first
is to equally weight all points and it is denoted USF. The second is to allocate half weight to the first
sigma point (which is the target mean) and distribute the remaining half equally to the remaining
points. This second filter is denoted USF(w0 = 0.5).

The following simulation design was used for drawing simulated sample observations. For each
replication, a sample of size n = 3000 was simulated from the DNSS model with parameter values
H = 10−5 Im, Q = 10−2 I6, T = 0.9I6, d = (I6 − T)E[αt],

E[αt] = (2.6, −1.8, 11.7, −11.3, 0.97, 0.83)

where Im is the m×m identity matrix. The values of the state variable (unconditional) means were
taken from the sample (6 September 2004 to 21 February 2019) means of the daily factor data from the
European Central Bank.
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From the state variables, two sets of yield curves were simulated one with
nine maturities τ9 = (1/12, 6/12, 1, 2, 3, 5, 7, 10, 20) and one with 13 maturities τ13 =

(1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25) both in years. Using the simulated yields yt and the
‘true’ parameter values θ = (H, d, T, Q) the filtered states at|t were obtained using the extended
Kalman filter (denoted EKF), unscented filter (USF, USF(w0 = 0.5)), and the Rao–Blackwellized
particle filters (denoted RBP(m), where m is the number of particles used).

To make the accuracy measures comparable across different state variables, I use the scale-free
accuracy measure recommended by Hyndman and Koehler [27]. Let et = at|t − αt denote the error of
the filtered state series at|t. The scaled error is defined as qt = et/maerw, where maerw = ∑n

t=2 |αt −
αt−1|/(n− 1) is the mean absolute error from a ‘naive’ forecast assuming αt follows a random walk.
The scale-free accuracy measure used is the mean absolute scaled error defined as mase = ∑n

t=1 |qt|/n.
A sample of size n = 3000 is simulated 999 times and, for each sample, the mase is computed

using the alternative nonlinear filters to obtain a distribution of mase for each nonlinear filter. Figure 1
compares the distribution of mase for the measurement with nine maturities and Figure 2 for the
measurement with 13 maturities. Several important features are apparent in these figures. First, no filter
dominates in accuracy for all state variables. For recovering the (conditionally) linear state variables
corresponding to the L, S, C1, C2 factors, the approximate filters EKF, USF are competitive against
RBP(m = 999). However, for the decay factors λ, which are the main sources of nonlinearity,
RBP(m = 999) is more accurate than the approximate filters EKF, USF.

The mase accuracy measure uses the random walk forecast as benchmark and errors with mase < 1
indicate better recovery than from the random walk model. The figures show that this condition is
clearly satisfied only for the level factor L (the state variables were generated from a persistent but
stationary AR(1) model with T = 0.9). The potentially collinear two curvature factors C1, C2 have mase
of at least two confirming the weak identification problem with the DNSS model.

Finally, the performance of the filters depend on the signal to noise ratio in the observed
measurements. This signal-to-noise ratio depends on the measurement error variance H. The value
H = 10−5 used in the figures was chosen, so that some differences among the filters become visually
apparent. The distribution of filtering errors for lower signal-to-noise ratio with H = 0.1 (not reported)
are visually indistinguishable and overlap each other.

4.3. Trading off Accuracy and Computational Cost

The main finding from this small simulation experiment is that no filter dominates in terms
of accuracy ranking. Another important consideration in choosing the appropriate filter is its
computational cost. Some filters, like EKF, have no tuning parameter to control its accuracy
(except possibly to use higher order expansions) and its performance depends on the extent of
nonlinearity in the data. For other filters, we have some control over their accuracy by the choice of
tuning parameters. For example, for USF the number of sigma points, their positions, and associated
weights can affect their accuracy. Generally, there would be a tradeoff between accuracy and
computational cost. For USF, the more points you use, we expect better accuracy, but at a higher
computational cost (longer computing time).

Figures 3 and 4 compare the accuracy versus computational cost tradeoff of the nonlinear
filters. Because the Rao–Blackwellized filter (RBP) takes much more longer than the other filters,
the computation time on the horizontal axis is the log of timing relative to the extended Kalman filter.
A fast and accurate filter would appear in the bottom left corner of each plot. Filters that lie to the
north-west (up-right) of a filter are dominated by that filter.

Viewed from this accuracy-computational cost tradeoff criterion, Figures 3 and 4 show that RBP
does not dominate any other filter, but it is dominated for several state variables for the DNSS model.
In particular, the RBP filter with m = 99 particles is always dominated, except for the λ2 state variable
with nine yields. The computational cost of the RBP filter is roughly proportional to 2nm, where n is
the sample size, two is the dimension of the simulated state vector (the two decay parameters), and m
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the number of particles. RBP requires running the filter for each particle over the sample n and, hence,
the computational cost of order O (2 nm). For the daily sample analyzed below, n ≈ 3000 as used in
the simulations. Although computation time is highly dependent on software and hardware used to
implement the filters, in my implementation filtering 13 maturities of sample size n = 3000 takes about
0.07 seconds for the EKF filter, 0.16 s for the USF filter (13 sigma points), and 27.5 s for RBP(m = 999).
RBP(m = 999) is about 400 times slower than EKF.
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Figure 1. Distribution of mean absolute scaled errors of filtered state series over 999 simulated draws
from the Nelson–Siegel–Svensson dynamic factor model. The measurement equation consists of
9 yields with maturties τ = 1/12, 6/12, 1, 2, 3, 5, 7, 10, 20 years each with 3000 observations. L is the
level, S the slope, C1, C2 curvature factors with decay parameters λ1, λ2, respectively. Each panel
compares the error distribution of the filtered series over five different filters. EKF is the extended
Kalman filter, USF is the unscented filter with equal weights on every sigma point, USF (w0 = 0.5)
is the unscented filter with weight w0 on the central (first) sigma point and equal weights for the
remaining sigma points, RBP is the Rao–Blackwellized particle filter with m particles.
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Figure 2. Distribution of mean absolute scaled errors of filtered state series over 999 simulated draws
from the Nelson-Siegel-Svensson dynamic factor model. The measurement equation consists of
13 yields with maturties τ = 1, 3/2, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25 years each with 3000 observations. L is
the level, S the slope, C1, C2 curvature factors with decay parameters λ1, λ2, respectively. Each panel
compares the error distribution of the filtered series over five different filters. EKF is the extended
Kalman filter, USF is the unscented filter with equal weights on every sigma point, USF (w0 = 0.5)
is the unscented filter with weight w0 on the central (first) sigma point and equal weights for the
remaining sigma points, RBP is the Rao–Blackwellized particle filter with m particles.
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Figure 3. Accuracy versus computational cost tradeoff of alternative nonlinear filters. DNSS model with
nine yields of maturities τ = 1/12, 6/12, 1, 2, 3, 5, 7, 10, 20 years of 3000 observations. The horizonal
axis is the log of computation time relative to the extended Kalman filter (EKF). The vertical axis is the
average mean absolute scaled errors of the filtered states over 999 simulated draws of 3000 observations.
L is the level, S the slope, C1, C2 curvature factors with decay parameters λ1, λ2, respectively. USF is
the unscented filter with equal weights on every sigma point, USF (w0 = 0.5) is the unscented filter
with weight w0 on the central (first) sigma point and equal weights for the remaining sigma points,
RBP is the Rao–Blackwellized particle filter with m particles.
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Figure 4. Accuracy versus computational cost tradeoff of alternative nonlinear filters. DNSS model with
13 yields of maturities τ = 1, 3/2, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25 years of 3000 observations. The horizonal
axis is the log of computation time relative to the extended Kalman filter (EKF). The vertical axis is the
average mean absolute scaled errors of the filtered states over 999 simulated draws of 3000 observations.
L is the level, S the slope, C1, C2 curvature factors with decay parameters λ1, λ2, respectively. USF is
the unscented filter with equal weights on every sigma point, USF (w0 = 0.5) is the unscented filter
with weight w0 on the central (first) sigma point and equal weights for the remaining sigma points,
RBP is the Rao–Blackwellized particle filter with m particles.

5. Recovering Out-of-Sample Maturity Yields

This section analyzes real data in order to examine the predictability of out-of-sample maturity
yields from dynamic term structure models with time-varying factors considered above.
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5.1. Data

Two types of data are used for the empirical analysis. The first is daily yield data from the
European Central Bank for the sample (6 September 2004 to 21 February 2019 (3701 observations)
(Source: http://sdw.ecb.europa.eu/browse.do?node=9691126). These are known to be constructed
from the fitted Nelson–Siegel–Svensson model. They provide two sets of estimated values of the six
factors L, S, C1, C2, λ1, λ2 from a cross-section of bonds, one consisting of AAA rated bonds and one
consisting of all ratings. The observed yields are computed from these factors as fitted values from
the Nelson–Siegel–Svensson model. That is, yt = Z(αt), where Z(αt) is defined below (2) and it is
equivalent to evaluating (1). Because the latent factors are observable in this data set, I can directly
assess the in-sample accuracy of the filtered factors.

The second type of data come from central banks known to use spline based methods. The daily
data are from Bank of Canada (4 January 2000 to 31 December 2018, 4719 observations), Bank of
England (4 January 2000 to 31 December 2018, 4801 observations), and U.S. Department of Treasury
(31 July 2001 to 31 December 2018, 4357 observations). All data are nominal yields and they are
publicly available (Sources: Bank of Canada (https://www.bankofcanada.ca/rates/interest-rates/
bond-yield-curves/), Bank of England (https://www.bankofengland.co.uk/statistics/yield-curves),
U.S. Department of Treasury (https://www.treasury.gov/resource-center/data-chart-center/interest-
rates/Pages/TextView.aspx?data=yield)). As mentioned in the introduction, data at the short- and
long- end of the term structure are frequently missing in these data sets. This motivates examining the
recoverability of out-of-sample maturity yields from the estimated dynamic term structure models.
Although data are made publicly available, as far as I can tell, none of these central banks provide
sufficient information to reproduce the yield curve data.

Figure 5 shows the time series of Nelson–Siegel–Svensson factor data from the European Central
Bank. The level L and decay λ1, λ2 parameters appear to be restricted to be positive, but not the
slope S and curvature C1, C2 factors. The two curvature and decay parameters are plotted together
to highlight the weak identification problem. For the post-2015 period, the two decay factors nearly
overlap indicating weak identification during this period. Another symptom of weak identification is
the several ‘spikes’ or ‘jumps’ in the factor estimates. One cannot expect the DNSS model to accurately
recover the latent factor series, particularly the curvature C1, C2 and decay λ1, λ2 factors, for this
data set.

Table A1 in the online Appendix shows the results of fitting a univariate AR(1) model to each
factor series from the European Central Bank, as assumed in the DNSS specification with diagonal T.
The estimated AR(1) parameters are all above 0.98, with R2 all above 0.96.

5.2. Estimation

I first need to estimate model parameters to predict out-of-sample maturity yields. For each data
set, I divide the sample of maturities into two groups, one to be used for estimation and the other to be
used for out-of-sample prediction. The grouping is somewhat arbitrary but the general rule for the
in-sample maturities is to use the range of maturities commonly used in the existing literature with
no missing values. For the out-of-sample maturities, I use maturities from both extreme ends of the
term structure that typically have missing values. I also use one maturity not used in estimation that is
within the maturity range used for estimation.

Figure 6 graphically summarizes the in-sample and out-of-sample maturities used in the
empirical analysis. Because the European Central Bank (ECB) makes the underlying factor
data available, we can choose any (reasonable) maturity and recover the yield data as fitted
values, as described above. Two sets of in-sample maturities are used for the ECB data, one
with nine maturities τ9 = (1/12, 6/12, 1, 2, 3, 5, 7, 10, 20) and one with thirteen maturities
τ13 = (1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25). These are the maturities used in the simulation
experiment in Section 4. These two choices are made in order to make them similar to the maturities

http://sdw.ecb.europa.eu/browse.do?node=9691126
https://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/
https://www.bankofcanada.ca/rates/interest-rates/bond-yield-curves/
https://www.bankofengland.co.uk/statistics/yield-curves
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
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available from the other central banks (τ9 for U.S. Department of Treasury data and τ13 for Bank of
Canada and Bank of England data).
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Figure 5. Nelson-Siegel-Svensson factors from the European Central Bank. The left side panels are
for factors estimated from AAA bonds and the right side panels for factors estimated from all ratings.
Lt is the level, St the slope, C1,t, C2,t curvature factors with decay parameters λ1,t, λ2,t, respectively.
The daily sample is 6 September 2004 to 21 February 2019 (3701 observations).
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Figure 6. Yield curve maturities used for in-sample estimation and out-of-sample prediction.
The vertical axis is the average yield (annualized percent) over the estimation and prediction samples
for each maturity. The horizontal axis is maturity τ in log-scale for readability. The gray circles indicate
in-sample maturities; the square filled boxes are out-of-sample maturities not used in estimation.
Numbers in parentheses are missing observations (as percentage of the sample) for out-of-sample
maturities, if there are any.

The parameters of the model are estimated by numerically maximizing the gaussian log-likelihood
function (4) while using the extended Kalman filter. The likelihood is numerically maximized using
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a gradient based optimizer. Because of the large number of parameters to estimate, especially
for the DNSS model, finite difference methods to numerically approximate the gradients are not
only computationally costly, but can also be inaccurate. The scores are evaluated using algorithmic
differentiation (The R package TMB (https://cran.r-project.org/package=TMB) was used to evaluate
the likelihood and scores).Because of the weak identification problem discussed in Section 3.3,
numerical optimization is sensitive to the choice of starting parameter values. Not only do they
often fail to converge, but when they do converge they do not always converge to similar parameter
estimates. The numerical optimizer is run through a number of randomly selected starting values and
the estimates are taken among results that converged with the highest likelihood value.

The parameter estimates are reported in Tables A2–A8 of the online Appendix. The QML standard
errors are computed by evaluating both the scores and Hessian with algorithmic differentiation.
As another symptom of weak identification, the Hessian evaluated at the parameter estimates are
sometimes singular. For such cases, the reported standard errors use the pseudo-inverse of the Hessian.
Consistent with the least squares estimates fitted to the underlying factor data, the estimated latent
series are all highly persistent with AR(1) parameter close to the nonstationary boundary of one
(the AR(1) parameters were constrained to be stationarity when maximizing the likelihood).

For the European Central Bank data, we can compare how well the filtered state series using
these estimates can recover the factor data. Figures 7 and 8 compare the ‘true’ αt and filtered at|t state
series for the AAA rating data (Figures A1 and A2 in the Appendix A show the comparisons for the
data based on all ratings). Consistent with the simulation results, the first two factors L and S are
reasonably well recovered, especially when using thirteen maturities τ13. The two curvature factors C1,
C2 are tracked reasonably well for the first half of the sample, but not for the second half after some
spikes or jumps in the true data. The two decay parameters are close to each other in the second half
of the sample and C1, C2 are likely to be highly collinear and weakly identified during this period,
as observed in Figure 5. The two decay factors are never well tracked in all cases, highlighting the
difficulty of identifying these factors from the observed yields.

5.3. Prediction

Figures 7 and 8 show the difficulty of recovering the underlying state series of the DNSS model
due to weak identification. However, this does not necessarily imply that predictions from these
model may not perform well. Under weak identification, there may be several alternative parameter
configurations that, nonetheless, produce similar predictions.

The focus is on the cross-sectional predictability rather than the more commonly tested time
series predictability in order to examine the predictive performance of these models. This focus on the
cross-sectional predictability is motivated by the fact that data for very short- and long-ends of the
term structure are often missing, as can be seen in Figure 6.

The cross-sectional predictions for yields of out-of-sample maturity τ are obtained from the
measurement Equation (2) using the filtered state series at|t as

ŷ(τ)t = Z(τ)(at|t), at|t = Et[αt]

ŷ uses the filtered series rather than the one-step predictions at|t−1 = Et−1[αt] or the smoothed series
at|n = En[αt]. The smoothed series uses information from future observations and it is subject to ‘look
ahead’ bias. The one-step prediction may be a better choice to mimic real-time, or online, prediction
situations than the filtered series. The filtered series are used, so that we can compare the model based
predictor with a ‘naive’ interpolated predictor. If there are maturities τ1, τ2 used for estimation that
bracket the out-of-sample maturity τ0, such that τ1 < τ0 < τ2, a simple natural predictor is the linearly
interpolated value

ŷ(τ0)
t =

τ2 − τ0

τ2 − τ1
y(τ1)

t +
τ0 − τ1

τ2 − τ1
y(τ2)

t

https://cran.r-project.org/package=TMB
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Because these interpolated values use information up to t, they are comparable to forecasts
that are based on filtered series rather than one-step predictions. The main advantage of the model
based predictor over interpolation is that they apply even when the out-of-sample maturity have
no bracketing in-sample maturities. Extrapolating outside the in-sample maturity range is more
problematic than interpolating within the in-sample maturity range.
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Figure 7. Nelson-Siegel-Svensson factors (AAA ratings) from the European Central Bank. Lt is the
level, St the slope, C1,t, C2,t curvature factors with decay parameters λ1,t, λ2,t, respectively. The gray
solid lines are the actual factors and the blue dashed lines are filtered estimates from the extended
Kalman filter. The parameters of the state space model were estimated using 13 zero yield curves with
maturities τ = 1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25 (years). The daily sample is 6 September 2004 to
21 February 2019 (3701 observations).
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Figure 8. Nelson–Siegel–Svensson factors (AAA ratings) from the European Central Bank. Lt is the
level, St the slope, C1,t, C2,t curvature factors with decay parameters λ1,t, λ2,t, respectively. The gray
solid lines are the actual factors and the blue dashed lines are filtered estimates from the extended
Kalman filter. The parameters of the state space model were estimated using 9 zero yield curves
with maturities τ = 1/12, 0.5, 1, 2, 3, 5, 7, 10, 20 (years). The daily sample is 6 September 2004 to
21 February 2019 (3701 observations).

The model based predictors ŷ(τ)t that are based on the filtered state series are subject to sampling
errors. The conditional mean squared prediction error can be computed as

Et[(ŷ
(τ)
t − y(τ)t )(ŷ(τ)t − y(τ)t )>] = Et[(Z(τ)(at|t)− Z(τ)(αt))(Z(τ)(at|t)− Z(τ)(αt))

>] + Et[εtε
>
t ]

≈ ∂Z(τ)

∂α>
Covt(at|t)

∂Z(τ)

∂α
+ Ht

=
∂Z(τ)

∂α>
At|t

∂Z(τ)

∂α
+ Ht

The second line approximation is due to the delta method. There are two difficulties with assessing
the size of sampling error in the predictions. First, the above expression does not account for parameter
uncertainty, the fact that the filtered series are computed using estimated parameter values that are
themselves subject to sampling error. Second, there is no natural estimator for the innovation variance
H for out-of-sample maturities, since H is associated with each in-sample maturity.
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An alternative approach to deal with the latter problem is to turn the prediction problem into
an estimation problem. This can be accommodated within the state-space model by including the
partially observed yields in the estimation sample. The state-space filter can then fill in the missing
values (Section 4.10 in [28]). This approach is left for future work, including how the fraction of missing
observations in the sample affects the performance as compared to the prediction approach used in
this paper.

Because of these difficulties, instead of using formal statistical tests I use informal visual
diagnostics to check the cross-sectional predictability of the model based forecasts. For time series
forecast evaluation, it is common practice to specify a loss function and compare certain moments of
the forecast error distribution, such as the mean absolute error (for absolute error loss) or root mean
squared error (for quadratic loss). A recent work by Diebold and Shin [29], Jin et al. [30] proposed an
approach that does not depend on the choice of loss function. Rather than focus on certain moments
of the error distribution, this approach checks how ‘close’ the forecast error cumulative distribution
function (cdf) is to that from a perfect forecast. The cdf of a perfect forecast jumps vertically from 0 to 1
at e = 0 where e is the support of the forecast errors. Jin et al. [30] construct a formal test that measures
the closeness of the two cdfs. Because of the difficulties with formal testing alluded to above, in this
application I plot the empirical cdfs of the forecast errors and visually compare how close they are to
the cdf of perfect forecasts.

Figures 9–11 compare the empirical cdfs of the prediction errors (The European Central Bank data
for all ratings is given in Figure A3 of the online Appendix). For the European Central Bank data in
Figure 9, it is visually apparent that the predictions from the DNSS model is closest to the vertical line
at e = 0 for most maturities out-of-sample. Figure A4 in the online Appendix compares the kernel
density estimates of the error distributions. For most out-of-sample maturities the density for the
DNSS error distribution has least bias and variance. Despite the weak identification problem with
DNSS, this result is not surprising, since we know that the data are generated from the DNSS model
for the European Central Bank data.

Of more interest is for the data estimated from spline based methods that are shown in Figures 10
and 11. (Figures A6 and A8 in the online Appendix compare the corresponding kernel density estimates
of the distribution of prediction errors.) For these data, the results depend on the data and maturity.
For the Bank of Canada and U.S. Department of Treasury data shown in Figure 10, the interpolation
method is often the best with DNSS a close second. However, the interpolation method can only be
used for non-extreme maturities within the range of maturities used for estimation. For the Bank
of England data presented in Figure 11 there is not much difference (at least visually) among the
different models, except for NSS, at the short-end of the term structure. No model performs well at
the long-end, although one must keep in mind that these comparisons are based on limited amounted
of data due to a large fraction of missing observations; see Figure 6.

Figure 12 shows the difference in prediction mean absolute errors (MAE) between DNSS and
the other models to illustrate how loss function based summary predictive performance measures
compare with the distribution based measures used above. A negative difference indicates better
prediction from the DNSS model than from the comparison model. These results correspond to the
cross-sectional out-of-sample forecasts for the spline based data in Figures 10 and 11. The confidence
intervals for the difference in MAE were constructed from the Diebold and Mariano [31] statistic
with heteroskedasticity and autocorrelation robust (HAR) standard errors. For maturities inside
the range of maturities used for estimation, a simple linear interpolation generally performs better.
However, maturities at both ends of the term structure that require extrapolation are the ones that are
often missing. For these cases the DNSS model generally performs better than the more restrictive
parametric models.

Figure A9 in the online Appendix shows the difference in prediction mean squared errors (MSE).
These results generally agree with those based on MAE in Figure 12. For the Bank of England data
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for maturities τ = 1/2 and τ = 6, some of the differences are not statistically significant using MSE.
This illustrates the sensitivity of performance ranking to the choice of loss function.
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Figure 9. Empirical cdf of prediction errors. Predictions from European Central Bank (AAA ratings)
estimates with maturities τ9 =(1/12, 6/12, 1, 2, 3, 5, 7, 10, 20) (left panel) and τ13 =(1, 1.5, 2, 3, 4, 5, 7, 8,
9, 10, 15, 20, 25) (right panel). DNSS is the dynamic Nelson-Siegel-Svensson specification where both
decay parameters λ1,t and λ2,t follow an AR(1) process, DNS is the dynamc Nelson-Siegel specification
with a single decay parameter λ1,t that follows an AR(1) process, NSS is the Nelson-Siegel-Svensson
specification with the two decay parameters λ1 and λ2 assumed to be fixed, NS is the Nelson-Siegel
specification with a single decay parameter λ1 assumed to be fixed. The distribution of a perfect
prediction with no error would be a vertical line at et = 0 indicated as a dotted line. The daily sample
is 6 September 2004 to 21 February 2019 (3701 observations).
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Figure 10. Empirical cdf of prediction errors. Predictions from Bank of Canada data with maturities
τ16 = (3/12, 6/12, 0.75, 1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 30) (left panel) and U.S. Department of
Treasury with maturities τ9 = (1/12, 6/12, 1, 2, 3, 5, 7, 10, 20) (right panel). DNSS is the dynamic
Nelson–Siegel–Svensson specification where both decay parameters λ1,t and λ2,t follow an AR(1)
process, DNS is the dynamc Nelson–Siegel specification with a single decay parameter λ1,t that
follows an AR(1) process, NSS is the Nelson–Siegel–Svensson specification with the two decay
parameters λ1 and λ2 assumed to be fixed, NS is the Nelson–Siegel specification with a single decay
parameter λ1 assumed to be fixed. The distribution of a perfect prediction with no error would be a
vertical line at et = 0 indicated as a dotted line. The daily sample is 4 January 2000 to 31 December
2018 (4719 observations) for Bank of Canada (left panel) and 31 July 2001 to 31 December 2018
(4357 observations some of which may be missing) for U.S. Department of Treasury (right panel).
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Figure 11. Empirical cdf of prediction errors. Predictions from Bank of England data with maturities
τ13 = (1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25). DNSS is the dynamic Nelson–Siegel–Svensson
specification, where both decay parameters λ1,t and λ2,t follow an AR(1) process, DNS is the dynamc
Nelson–Siegel specification with a single decay parameter λ1,t that follows an AR(1) process, NSS is
the Nelson–Siegel–Svensson specification with the two decay parameters λ1 and λ2 assumed to be
fixed, NS is the Nelson–Siegel specification with a single decay parameter λ1 assumed to be fixed.
The distribution of a perfect prediction with no error would be a vertical line at et = 0 indicated as a
dotted line. The daily sample is 1 April 2000 to 31 December 2018 (4801 observations some of which
may be missing).
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Figure 12. Prediction mean absolute error (MAE) differences. Plotted are 0.95 confidence intervals
for the difference in MAE between DNSS and other models. A negative difference indicates better
forecasts for DNSS relative to the comparison model. Red intervals indicate statistical significance at
size 0.05. DNSS is the dynamic Nelson–Siegel–Svensson specification, where both decay parameters
λ1,t and λ2,t follow an AR(1) process, DNS is the dynamc Nelson–Siegel specification with a single
decay parameter λ1,t that follows an AR(1) process, NSS is the Nelson–Siegel–Svensson specification
with the two decay parameters λ1 and λ2 assumed to be fixed, NS is the Nelson–Siegel specification
with a single decay parameter λ1 assumed to be fixed.

6. Concluding Remarks

This research was motivated by the need to recover missing yield data at the extreme ends, very
short- and long- maturities, of the term structure. I sincerely hope that more central banks follow the
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lead taken by the European Central Bank and provide sufficient information in order to reproduce the
yield estimates. The sooner the need that motivated this research becomes obsolete, the better.

However, currently, data produced by spline based methods employed by several major central
banks remain in a black box. For researchers who do not have access to the underlying bond data,
the class of parametric dynamic term structure models considered in this paper could be used to
infer data that are often missing at the extreme ends of the term structure. The performance of
alternative parametric specifications is somewhat mixed and data dependent. The advice is to carefully
consider how predictions from alternative specifications differ from each other and consider the
tradeoff between parsimony or accuracy and in-sample overfitting. The result that more complex
specifications do not necessarily produce better out-of-sample predictions is consistent, for example,
with the assessment in Nymand-Andersen [1] based on the cross-section of bond prices.

There are several directions in which the parametric dynamic term structure approach can be
further developed. Due to computational constraints, the specifications considered in this paper
have restricted the state variable dynamics to the diagonal AR(1) specification. A general VAR(1)
specification would not only result in estimating a much larger number of parameters, but also
introduce additional issues, such as constraining the estimates, to remain in the stationarity region [6].
If computing power were not a constraint (such as with access to cloud computing clusters), estimation
using alternative nonlinear filters can also be pursued.

Another potentially important issue not addressed in the current paper is the effect of structural
break or jumps in the underlying state series. The time series plot of the factors presented in Figure 5
show several spikes or jumps, especially around the financial crisis period in 2008. The state-space
model could be generalized in order to accommodate such potential breaks following the approach in
Andrieu et al. [32], Nemeth et al. [33].
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Appendix A

Appendix A.1. Linearization for the Extended Kalman Filter

For the DNSS specification

Z(α) = 1mα1 + f (eα5)α2 + g(eα5)α3 + g(eα6)α4

f (λ) =
1

λτ
(1− e−λτ), g(λ) = f (λ)− e−λτ

where αt = (Lt, St, C1t, C2t, log λ1t, log λ2t). Take Taylor expansion around αt = at to get

Z(α) ≈ Z(a) +
∂Z(a)
∂α>

(α− a)

where ∂Z(α)/∂α> is the m× 6 Jacobian matrix

∂Z(α)
∂α>

= (1m, f (eα5), g(eα5), g(eα6), (
∂ f (λ1)

∂λ
α2 +

∂g(λ1)

∂λ
α3)eα5 ,

∂g(λ2)

∂λ
α4eα6)

∂ f (λ)
∂λ

=
1

λ2τ
((1 + λτ)e−λτ − 1) = − g(λ)

λ
∂g(λ)

∂λ
=

∂ f (λ)
∂λ

+ τe−λτ

with λ1 = eα5 , λ2 = eα6 .
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For the DNS specification

Z(α) = 1mα1 + f (eα4)α2 + g(eα4)α3

where αt = (Lt, St, Ct, log λt). The m× 4 Jacobian matrix ∂Z(α)/∂α> is

∂Z(α)
∂α>

= (1m, f (eα4), g(eα4), (
∂ f (λ)

∂λ
α2 +

∂g(λ)
∂λ

α3)eα4)

with λ = eα4 .

Appendix A.2. Unscented Kalman Filter

s-dimensional target distribution with first two moments x ∼ (x, Pxx). The 2s + 1 sigma points xi
and weights wi that match the first two moments of x are [23,34,35]

x0 = x, xi = x + λL,i, xi+s = x− λL,i

wi = wi+s =
1− w0

2s

for i = 1, . . . , s where L,i is the i-th column of L such that LL> = Pxx. To determine λ, w0, set w0 =

k/(s + k) for some k, a tuning parameter. Then the second moment is matched with λ =
√

s + k.
If target x is gaussian, set s + k = 3 or k = 3− s. This may result in negative weights for s > 3.
Equivalently, set w0 as tuning parameter with k = w0/(1− w0)s and λ =

√
s/(1− w0).

Updating step of filter: estimate at|t, Pt|t given yt, at = at|t−1, Pt = Pt|t−1 with sigma points
and weights

x0,t = at, xi,t = at + λL,i, xi+m,t = at − λL,i

w0 =
k

s + k
, wi = wi+s =

1− w0

2s

More specifically, compute

yi,t = Zt(xi,t), yt =
2s

∑
i=0

wiyi,t,

Pav,t =
2s

∑
i=0

wi(xi,t − at)(yi,t − yt)
>, Pvv,t =

2s

∑
i=0

wi((yi,t − yt)(yi,t − yt)
> + Ht(xi,t))

and update

at|t = at + Pav,tP−1
vv,t(yt − yt)

Pt|t = Pt − Pav,tP−1
vv,tP

>
av,t

Prediction step of filter: estimate at+1, Pt+1 given at|t, Pt|t with sigma points (same weights)

x0,t = at|t, xi,t = at|t + λL,i, xi+s,t = at|t − λL,i

and predict

at+1 =
2s

∑
i=0

wiTt(xi,t)

Pt+1 =
2s

∑
i=0

wi((Tt(xi,t)− at+1)(Tt(xi,t)− at+1)
> + Rt(xi,t)Qt(xi,t)Rt(xi,t)

>)
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For linear state equations, just apply the usual prediction step

at+1 = ct + Ttat|t, Pt+1 = TtPt|tT
>
t + RtQtR>t

without approximation error (Rao-Blackwellization).
Unscented filter accurate to second order for the mean. Extended Kalman filter only accurate

to first order for the mean. The variance estimate accurate to second order for both filters. If k < 0,
the prediction step may yield a non-positive definite covariance matrix.

Appendix A.3. Rao-Blackwellized Particle Filter

The material in this section largely taken from Schon et al. [26] for the reader’s convenience.
Write the state space model as

λt+1 = d2 + T22λt + T21xt + v2,t+1

xt+1 = d1 + T12λt + T11xt + v1,t+1

yt = C(λt)xt + et, e ∼ N(0, R)

This is model 3 of (18), p. 2282 in Schon et al. [26] with xn
t = λt, x`t = xt, f n

t = d2 + T22λt,
An

t = T21, f `t = d1 + T12λt, A`
t = T11, ht = 0.

The conditional distributions for drawing the nonlinear state variables λt are (25), p. 2283 in [26]

p(yt|Λt, Yt−1) ∼ N(Ct x̂t|t−1, CtPt|t−1C> + R)

p(λt+1|Λt, Yt) ∼ N( f n
t + T21 x̂t|t, T21Pt|tT

>
21 + Q22)

and (12), p. 2281 in [26]

p(Λt|Yt) =
p(yt|Λt, Yt−1)p(λt|Λt−1, Yt−1)

p(yt|Yt−1)
p(Λt−1|Yt−1)

Filtering algorithm p. 2280 in [26].

(1) Initialize. Draw λi
0|−1 ∼ p(λ0) for i = 1, . . . , N particles. Set xi

0|−1 = E[x0], Pi
0|−1 = Cov(x0).

(2) Evaluate importance weights qi
t = p(yt|Λt, Yt−1). Simulated contribution to log-likelihood is

`t = log(∑i qi
t/N). Normalize q̃i

t = qi
t/ ∑j qj

t.

(3) Particle filter measurement update. Resample N particles with replacement Pr(λi
t|t = λ

j
t|t−1) = q̃j

t.
(4a) Kalman filter measurement update (22), p. 2283 in [26]

Mt = CtPt|t−1C>t + R, Kt = Pt|t−1C>t M−1
t

x̂t|t = x̂t|t−1 + Kt(yt − Ct x̂t|t−1), Pt|t = Pt|t−1 − Kt MtK>t

(4b) Particle filter time update (prediction) λi
t+1|t ∼ p(λt+1|t|Λi

t, Yt).
(4c) Kalman filter time update (23), p. 2283 in [26]

A`
= T11 −Q21Q−1

22 T21, Q`
= Q11 −Q21Q−1

22 Q>21

Nt = T21Pt|tT
>
21 + Q22, Lt = A`Pt|tT

>
21N−1

t

x̂t+1|t = A` x̂t|t + Q21Q−1
22 zt + f `t + Lt(λt+1 − f n

t − T21 x̂t|t), Pt+1|t = A`Pt|t(A`
)> + Q` − LtNtL>t

(5) Set t← t + 1 and go back to step (2).
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Table A1. AR(1) least squares estimates for Nelson-Siegel-Svensson factors from European Central Bank.
Lt is the level, St the slope, C1,t, C2,t curvature factors with decay parameters λ1,t, λ2,t, respectively.
(a) for factors estimated from AAA bonds and (c) for factors estimated from all bonds. µ is the sample
mean, ρ is the AR(1) coefficient of the demeaned factor series (without an intercept), σ is the standard
error of regression and T is the sample size. Standard errors in parentheses. The daily sample is
6 September 2004 to 21 February 2019.

µ ρ σ R2 T

L(a)
t

2.634 0.995 0.152 0.990 3701
(0.025) (0.002)

S(a)
t

−1.789 0.981 0.182 0.963 3701
(0.015) (0.003)

C(a)
1,t

11.663 0.994 1.064 0.989 3701
(0.166) (0.002)

C(a)
2,t

−11.339 0.995 1.027 0.990 3701
(0.166) (0.002)

log λ
(a)
1,t

0.966 0.994 0.107 0.987 3701
(0.016) (0.002)

log λ
(a)
2,t

0.831 0.994 0.071 0.988 3701
(0.011) (0.002)

L(c)
t

3.617 0.988 0.223 0.977 3701
(0.024) (0.003)

S(c)
t

−2.698 0.989 0.247 0.978 3701
(0.027) (0.002)

C(c)
1,t

16.070 0.980 6.800 0.960 3701
(0.560) (0.003)

C(c)
2,t

−17.210 0.981 6.794 0.962 3701
(0.573) (0.003)

log λ
(c)
1,t

0.774 0.992 0.111 0.984 3701
(0.015) (0.002)

log λ
(c)
2,t

0.565 0.989 0.105 0.977 3701
(0.011) (0.002)

Table A2. Maximum likelihood estimates of four dynamic Nelson-Siegel-Svensson type specifications
for zero yield curve data from the European Central Bank (AAA bonds). DNSS is the dynamic
Nelson-Siegel-Svensson specification where both decay parameters λ1,t and λ2,t follow an AR(1)
process, DNS is the dynamc Nelson-Siegel specification with a single decay parameter λ1,t that
follows an AR(1) process, NSS is the Nelson-Siegel-Svensson specification with the two decay
parameters λ1 and λ2 assumed to be fixed, NS is the Nelson-Siegel specification with a single
decay parameter λ1 assumed to be fixed. The likelihood functions were evaluated using the
extended Kalman filter. στ are the estimated measurement equation innovation variances (assumed
to be diagonal), ρ(·) are the estimated AR(1) parameters of the state series, E[·] are the estimated
unconditional mean of the state series, σ(·) are the estimated standard deviations of the state
equation innovations. QML standard errors in parentheses. The daily sample is 6 September 2004
to 21 February 2019 (3701 observations). The measurement consists of 13 yields with maturities
τ = 1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25 (years).

DNSS DNS NSS NS

σ1 0.038 (0.007) 0.063 (0.001) 0.076 (0.003) 0.106 (0.003)
σ1.5 0.011 (0.001) 0.020 (0.001) 0.024 (0.001) 0.037 (0.001)
σ2 0.002 (0.000) 0.004 (0.001) 0.000 (0.000) 0.000 (0.000)
σ3 0.004 (0.000) 0.008 (0.000) 0.011 (0.000) 0.024 (0.000)
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Table A2. Cont.

DNSS DNS NSS NS

σ4 0.002 (0.000) 0.004 (0.000) 0.007 (0.000) 0.022 (0.000)
σ5 0.001 (0.000) 0.003 (0.000) 0.002 (0.001) 0.014 (0.000)
σ7 0.000 (0.000) 0.001 (0.000) 0.005 (0.000) 0.000 (0.000)
σ8 0.000 (0.000) 0.001 (0.000) 0.004 (0.000) 0.002 (0.000)
σ9 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ10 0.000 (0.000) 0.003 (0.000) 0.005 (0.000) 0.005 (0.000)
σ15 0.003 (0.000) 0.057 (0.001) 0.020 (0.001) 0.069 (0.001)
σ20 0.007 (0.002) 0.168 (0.002) 0.017 (0.004) 0.176 (0.002)
σ25 0.018 (0.005) 0.305 (0.004) 0.069 (0.008) 0.303 (0.003)

ρ(L) 0.998 (0.020) 0.999 (0.001) 1.000 (0.000) 0.999 (0.000)
ρ(S) 0.998 (0.004) 0.999 (0.001) 0.999 (0.001) 0.999 (0.001)

ρ(C1) 1.000 (0.000) 0.994 (0.002) 0.998 (0.001) 0.995 (0.002)
ρ(C2) 0.985 (0.002) 0.996 (0.002)
ρ(λ1) 1.000 (0.000) 0.996 (0.001)
ρ(λ2) 1.000 (0.000)
E[L] 2.998 (1.945) 3.066 (0.666) 3.025 (1.715) 3.515 (1.223)
E[S] 0.917 (0.390) −0.760 (1.658) −2.115 (0.668) −2.648 (0.728)

E[C1] −3.115 (0.091) −4.345 (0.168) 3.561 (1.247) −3.057 (0.519)
E[C2] 0.000 (0.000) −2.679 (0.813)
E[λ1] 0.001 (0.000) 0.000 (0.000) 0.162 (0.002) 0.415 (0.002)
E[λ2] 0.001 (0.000) 0.340 (0.002)
σ(L) 0.061 (0.006) 0.049 (0.001) 0.040 (0.002) 0.056 (0.001)
σ(S) 0.081 (0.010) 0.054 (0.001) 0.042 (0.002) 0.067 (0.002)

σ(C1) 0.155 (0.003) 0.150 (0.004) 0.177 (0.005) 0.159 (0.005)
σ(C2) 0.282 (0.022) 0.189 (0.009)
σ(λ1) 0.029 (0.002) 0.033 (0.002)
σ(λ2) 0.035 (0.003)

Table A3. Maximum likelihood estimates of four dynamic Nelson-Siegel-Svensson type specifications
for zero yield curve data from the European Central Bank (AAA bonds). DNSS is the dynamic
Nelson-Siegel-Svensson specification where both decay parameters λ1,t and λ2,t follow an AR(1)
process, DNS is the dynamc Nelson-Siegel specification with a single decay parameter λ1,t that
follows an AR(1) process, NSS is the Nelson-Siegel-Svensson specification with the two decay
parameters λ1 and λ2 assumed to be fixed, NS is the Nelson-Siegel specification with a single
decay parameter λ1 assumed to be fixed. The likelihood functions were evaluated using the
extended Kalman filter. στ are the estimated measurement equation innovation variances (assumed
to be diagonal), ρ(·) are the estimated AR(1) parameters of the state series, E[·] are the estimated
unconditional mean of the state series, σ(·) are the estimated standard deviations of the state equation
innovations. QML standard errors in parentheses. The daily sample is from 6 September 2004
to 21 February 2019 (3701 observations). The measurement consists of 9 yields with maturities
τ = 1/12, 0.5, 1, 2, 3, 5, 7, 10, 20 (years).

DNSS DNS NSS NS

σ1/12 0.122 (0.026) 0.278 (0.012) 0.274 (0.015) 0.267 (0.006)
σ0.5 0.000 (0.000) 0.068 (0.001) 0.052 (0.002) 0.082 (0.002)
σ1 0.003 (0.001) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ2 0.003 (0.001) 0.029 (0.001) 0.008 (0.001) 0.043 (0.001)
σ3 0.000 (0.000) 0.020 (0.001) 0.002 (0.001) 0.030 (0.001)
σ5 0.001 (0.000) 0.005 (0.001) 0.000 (0.000) 0.000 (0.000)
σ7 0.000 (0.001) 0.004 (0.001) 0.005 (0.000) 0.007 (0.001)
σ10 0.004 (0.000) 0.011 (0.001) 0.012 (0.002) 0.030 (0.001)
σ20 0.142 (0.002) 0.168 (0.002) 0.163 (0.003) 0.215 (0.004)

ρ(L) 1.000 (0.000) 0.999 (0.000) 1.000 (0.000) 1.000 (0.000)
ρ(S) 0.998 (0.002) 1.000 (0.000) 0.999 (0.000) 1.000 (0.000)
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Table A3. Cont.

DNSS DNS NSS NS

ρ(C1) 1.000 (0.001) 0.997 (0.001) 0.997 (0.002) 0.996 (0.001)
ρ(C2) 0.997 (0.002) 0.992 (0.006)
ρ(λ1) 0.976 (0.005) 0.998 (0.001)
ρ(λ2) 0.998 (0.001)
E[L] 2.588 (1.561) 2.843 (0.820) 3.390 (1.568) 3.337 (1.769)
E[S] −2.808 (0.848) −2.410 (0.099) −2.739 (0.702) −2.632 (0.812)

E[C1] 3.406 (2.469) −2.751 (0.214) −3.675 (0.716) −2.828 (0.560)
E[C2] −4.948 (0.601) 0.910 (0.328)
E[λ1] 0.276 (0.053) 0.000 (0.000) 0.451 (0.002) 0.410 (0.002)
E[λ2] 0.000 (0.000) 0.794 (0.008)
σ(L) 0.042 (0.001) 0.024 (0.001) 0.040 (0.001) 0.033 (0.001)
σ(S) 0.061 (0.005) 0.028 (0.002) 0.045 (0.002) 0.041 (0.001)

σ(C1) 0.103 (0.006) 0.119 (0.003) 0.156 (0.005) 0.134 (0.003)
σ(C2) 0.144 (0.006) 0.170 (0.007)
σ(λ1) 0.037 (0.003) 0.025 (0.001)
σ(λ2) 0.021 (0.001)

Table A4. Maximum likelihood estimates of four dynamic Nelson-Siegel-Svensson type specifications
for zero yield curve data from the European Central Bank (all ratings). DNSS is the dynamic
Nelson-Siegel-Svensson specification where both decay parameters λ1,t and λ2,t follow an AR(1)
process, DNS is the dynamc Nelson-Siegel specification with a single decay parameter λ1,t that
follows an AR(1) process, NSS is the Nelson-Siegel-Svensson specification with the two decay
parameters λ1 and λ2 assumed to be fixed, NS is the Nelson-Siegel specification with a single
decay parameter λ1 assumed to be fixed. The likelihood functions were evaluated using the
extended Kalman filter. στ are the estimated measurement equation innovation variances (assumed
to be diagonal), ρ(·) are the estimated AR(1) parameters of the state series, E[·] are the estimated
unconditional mean of the state series, σ(·) are the estimated standard deviations of the state
equation innovations. QML standard errors in parentheses. The daily sample is 6 September 2004
to 21 February 2019 (3701 observations). The measurement consists of 13 yields with maturities
τ = 1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25 (years).

DNSS DNS NSS NS

σ1 0.004 (0.001) 0.245 (0.011) 0.116 (0.003) 0.126 (0.003)
σ1.5 0.000 (0.000) 0.100 (0.006) 0.037 (0.001) 0.044 (0.001)
σ2 0.001 (0.000) 0.038 (0.002) 0.014 (0.001) 0.018 (0.002)
σ3 0.000 (0.000) 0.009 (0.001) 0.028 (0.001) 0.041 (0.001)
σ4 0.000 (0.000) 0.004 (0.000) 0.025 (0.000) 0.039 (0.001)
σ5 0.000 (0.000) 0.003 (0.000) 0.014 (0.000) 0.025 (0.000)
σ7 0.000 (0.000) 0.001 (0.000) 0.000 (0.000) 0.003 (0.000)
σ8 0.000 (0.000) 0.000 (0.000) 0.001 (0.000) 0.002 (0.000)
σ9 0.001 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ10 0.002 (0.000) 0.001 (0.000) 0.002 (0.000) 0.005 (0.000)
σ15 0.026 (0.001) 0.031 (0.001) 0.006 (0.001) 0.054 (0.001)
σ20 0.089 (0.002) 0.099 (0.002) 0.046 (0.001) 0.121 (0.002)
σ25 0.178 (0.004) 0.192 (0.004) 0.117 (0.002) 0.206 (0.004)

ρ(L) 0.998 (0.001) 0.998 (0.001) 0.999 (0.001) 0.999 (0.001)
ρ(S) 1.000 (0.001) 0.998 (0.004) 0.998 (0.001) 0.998 (0.001)

ρ(C1) 0.999 (0.000) 0.993 (0.005) 0.996 (0.002) 0.993 (0.002)
ρ(C2) 0.997 (0.001) 0.993 (0.002)
ρ(λ1) 0.817 (0.022) 0.991 (0.002)
ρ(λ2) 0.989 (0.003)
E[L] 3.960 (0.400) 3.628 (0.499) 4.154 (0.611) 4.023 (0.946)
E[S] −6.188 (3.230) −0.427 (1.488) −2.951 (0.499) −2.851 (0.638)

E[C1] 32.304 (8.643) −5.720 (0.976) 1.422 (0.853) −3.293 (0.441)
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Table A4. Cont.

DNSS DNS NSS NS

E[C2] −13.254 (1.995) −2.715 (0.685)
E[λ1] 0.118 (0.019) 0.000 (0.000) 0.241 (0.005) 0.451 (0.002)
E[λ2] 0.000 (0.000) 0.417 (0.003)
σ(L) 0.060 (0.002) 0.064 (0.002) 0.059 (0.002) 0.054 (0.001)
σ(S) 0.105 (0.006) 0.084 (0.003) 0.072 (0.003) 0.085 (0.003)

σ(C1) 0.230 (0.012) 0.202 (0.008) 0.217 (0.008) 0.186 (0.007)
σ(C2) 0.155 (0.008) 0.290 (0.009)
σ(λ1) 0.059 (0.006) 0.041 (0.002)
σ(λ2) 0.053 (0.003)

Table A5. Maximum likelihood estimates of four dynamic Nelson-Siegel-Svensson type specifications
for zero yield curve data from the European Central Bank (all ratings). DNSS is the dynamic
Nelson-Siegel-Svensson specification where both decay parameters λ1,t and λ2,t follow an AR(1)
process, DNS is the dynamc Nelson-Siegel specification with a single decay parameter λ1,t that follows
an AR(1) process, NSS is the Nelson-Siegel-Svensson specification with the two decay parameters
λ1 and λ2 assumed to be fixed, NS is the Nelson-Siegel specification with a single decay parameter
λ1 assumed to be fixed. The likelihood functions were evaluated using the extended Kalman filter.
στ are the estimated measurement equation innovation variances (assumed to be diagonal), ρ(·) are the
estimated AR(1) parameters of the state series, E[·] are the estimated unconditional mean of the state
series, σ(·) are the estimated standard deviations of the state equation innovations. QML standard
errors in parentheses. The daily sample is 6 September 2004 to 21 February 2019 (3701 observations).
The measurement consists of 9 yields with maturities τ = 1/12, 0.5, 1, 2, 3, 5, 7, 10, 20 (years).

DNSS DNS NSS NS

σ1/12 0.061 (0.013) 0.528 (0.009) 0.243 (0.007) 0.496 (0.009)
σ0.5 0.006 (0.001) 0.161 (0.003) 0.000 (0.000) 0.151 (0.003)
σ1 0.004 (0.000) 0.000 (0.000) 0.039 (0.001) 0.011 (0.002)
σ2 0.002 (0.000) 0.049 (0.001) 0.014 (0.001) 0.056 (0.001)
σ3 0.001 (0.000) 0.033 (0.001) 0.022 (0.001) 0.042 (0.001)
σ5 0.001 (0.000) 0.022 (0.000) 0.001 (0.003) 0.009 (0.001)
σ7 0.001 (0.000) 0.006 (0.001) 0.016 (0.000) 0.020 (0.000)
σ10 0.004 (0.000) 0.031 (0.001) 0.016 (0.001) 0.014 (0.001)
σ20 0.102 (0.002) 0.025 (0.002) 0.129 (0.002) 0.154 (0.002)

ρ(L) 0.998 (0.001) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
ρ(S) 0.998 (0.001) 0.999 (0.001) 0.999 (0.000) 0.999 (0.000)

ρ(C1) 0.990 (0.002) 0.997 (0.001) 0.996 (0.001) 0.996 (0.001)
ρ(C2) 1.000 (0.000) 0.989 (0.006)
ρ(λ1) 0.996 (0.001) 1.000 (0.000)
ρ(λ2) 0.931 (0.015)
E[L] 4.214 (0.480) 4.191 (0.776) 3.760 (1.348) 3.871 (1.325)
E[S] −3.486 (0.116) −2.776 (0.105) −3.152 (0.637) −3.042 (0.698)

E[C1] −4.892 (0.543) −3.219 (0.167) −3.552 (0.558) −2.714 (0.567)
E[C2] 5.434 (3.799) 1.425 (0.263)
E[λ1] 0.000 (0.000) 0.000 (0.000) 0.496 (0.003) 0.409 (0.002)
E[λ2] 0.278 (0.002) 1.227 (0.016)
σ(L) 0.054 (0.002) 0.033 (0.001) 0.035 (0.001) 0.035 (0.001)
σ(S) 0.076 (0.005) 0.048 (0.002) 0.039 (0.001) 0.054 (0.002)

σ(C1) 0.194 (0.011) 0.107 (0.003) 0.162 (0.004) 0.136 (0.004)
σ(C2) 0.144 (0.014) 0.171 (0.008)
σ(λ1) 0.037 (0.002) 0.027 (0.001)
σ(λ2) 0.055 (0.008)
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Table A6. Maximum likelihood estimates of four dynamic Nelson-Siegel-Svensson type specifications
for zero yield curve data from the Bank of Canada. DNSS is the dynamic Nelson-Siegel-Svensson
specification where both decay parameters λ1,t and λ2,t follow an AR(1) process, DNS is the dynamc
Nelson-Siegel specification with a single decay parameter λ1,t that follows an AR(1) process, NSS is
the Nelson-Siegel-Svensson specification with the two decay parameters λ1 and λ2 assumed to be
fixed, NS is the Nelson-Siegel specification with a single decay parameter λ1 assumed to be fixed.
The likelihood functions were evaluated using the extended Kalman filter. στ are the estimated
measurement equation innovation variances (assumed to be diagonal), ρ(·) are the estimated AR(1)
parameters of the state series, E[·] are the estimated unconditional mean of the state series, σ(·) are the
estimated standard deviations of the state equation innovations. QML standard errors in parentheses.
The daily sample is 4 January 2000 to 31 December 2018 (4,719 observations). The measurement consists
of 16 yields with maturities τ = 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 30 (years).

DNSS DNS NSS NS

σ0.25 0.000 (0.000) 0.001 (0.000) 0.001 (0.000) 0.002 (0.000)
σ0.5 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.001 (0.000)
σ0.75 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.001 (0.000)
σ1 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

σ1.5 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ2 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ3 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ4 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ5 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ7 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ8 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ9 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ10 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ15 0.001 (0.000) 0.001 (0.000) 0.002 (0.000) 0.002 (0.000)
σ20 0.002 (0.000) 0.001 (0.000) 0.002 (0.000) 0.002 (0.000)
σ30 0.004 (0.000) 0.004 (0.000) 0.004 (0.000) 0.003 (0.000)

ρ(L) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)
ρ(S) 1.000 (0.000) 1.000 (0.000) 0.999 (0.001) 0.999 (0.000)

ρ(C1) 1.000 (0.000) 0.988 (0.001) 0.996 (0.002) 0.998 (0.001)
ρ(C2) 0.999 (0.000) 0.999 (0.001)
ρ(λ1) 0.959 (0.004) 0.994 (0.001)
ρ(λ2) 0.996 (0.002)
E[L] 0.125 (0.302) 0.053 (0.012) 0.043 (0.013) 0.042 (0.012)
E[S] 0.429 (0.015) 0.062 (0.021) −0.020 (0.006) −0.017 (0.007)

E[C1] −0.083 (0.023) −0.028 (0.002) −0.010 (0.005) −0.011 (0.009)
E[C2] −0.093 (0.017) −0.025 (0.012)
E[λ1] 0.632 (0.000) 0.000 (0.000) 1.466 (0.009) 0.419 (0.003)
E[λ2] 0.001 (0.013) 0.514 (0.003)
σ(L) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ(S) 0.001 (0.000) 0.000 (0.000) 0.001 (0.000) 0.001 (0.000)

σ(C1) 0.001 (0.000) 0.001 (0.000) 0.001 (0.000) 0.001 (0.000)
σ(C2) 0.001 (0.000) 0.001 (0.000)
σ(λ1) 0.021 (0.002) 0.029 (0.001)
σ(λ2) 0.027 (0.001)
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Table A7. Maximum likelihood estimates of four dynamic Nelson-Siegel-Svensson type specifications
for zero yield curve data from the Bank of England. DNSS is the dynamic Nelson-Siegel-Svensson
specification where both decay parameters λ1,t and λ2,t follow an AR(1) process, DNS is the dynamc
Nelson-Siegel specification with a single decay parameter λ1,t that follows an AR(1) process, NSS is
the Nelson-Siegel-Svensson specification with the two decay parameters λ1 and λ2 assumed to be
fixed, NS is the Nelson-Siegel specification with a single decay parameter λ1 assumed to be fixed.
The likelihood functions were evaluated using the extended Kalman filter. στ are the estimated
measurement equation innovation variances (assumed to be diagonal), ρ(·) are the estimated AR(1)
parameters of the state series, E[·] are the estimated unconditional mean of the state series, σ(·) are the
estimated standard deviations of the state equation innovations. QML standard errors in parentheses.
The daily sample is 4 January 2000 to 31 December 2018 (4,801 observations). The measurement consists
of 13 yields with maturities τ = 1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25 (years).

DNSS DNS NSS NS

σ1 0.081 (0.003) 0.079 (0.001) 0.095 (0.001) 0.114 (0.002)
σ1.5 0.020 (0.001) 0.030 (0.001) 0.023 (0.000) 0.040 (0.001)
σ2 0.003 (0.002) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
σ3 0.004 (0.001) 0.027 (0.001) 0.008 (0.000) 0.031 (0.001)
σ4 0.002 (0.000) 0.027 (0.001) 0.003 (0.000) 0.031 (0.001)
σ5 0.002 (0.000) 0.017 (0.001) 0.006 (0.000) 0.020 (0.001)
σ7 0.001 (0.000) 0.001 (0.000) 0.005 (0.000) 0.000 (0.000)
σ8 0.001 (0.000) 0.002 (0.000) 0.000 (0.000) 0.003 (0.000)
σ9 0.000 (0.000) 0.000 (0.000) 0.007 (0.000) 0.000 (0.000)
σ10 0.002 (0.000) 0.005 (0.000) 0.014 (0.000) 0.007 (0.000)
σ15 0.021 (0.001) 0.058 (0.001) 0.034 (0.001) 0.088 (0.001)
σ20 0.023 (0.004) 0.130 (0.002) 0.015 (0.002) 0.187 (0.002)
σ25 0.059 (0.002) 0.218 (0.002) 0.087 (0.001) 0.283 (0.003)

ρ(L) 1.000 (0.001) 0.996 (0.001) 0.998 (0.002) 0.999 (0.001)
ρ(S) 0.999 (0.001) 0.997 (0.001) 1.000 (0.000) 0.999 (0.000)

ρ(C1) 1.000 (0.000) 0.999 (0.000) 0.997 (0.001) 0.999 (0.001)
ρ(C2) 1.000 (0.000) 0.998 (0.001)
ρ(λ1) 0.973 (0.012) 0.998 (0.000)
ρ(λ2) 0.998 (0.001)
E[L] 4.255 (149.500) 4.417 (0.174) 3.453 (0.486) 4.016 (0.450)
E[S] 7.922 (5.027) −2.280 (0.134) 0.394 (4.183) −0.962 (1.868)

E[C1] −39.922 (3.827) 4.444 (0.677) 2.355 (1.028) −0.507 (2.401)
E[C2] 10.262 (1.698) 0.525 (1.207)
E[λ1] 0.037 (0.005) 0.000 (0.000) 0.137 (0.001) 0.396 (0.002)
E[λ2] 0.001 (0.006) 2.333 (0.009)
σ(L) 0.056 (0.003) 0.054 (0.001) 0.060 (0.003) 0.059 (0.001)
σ(S) 0.056 (0.003) 0.067 (0.002) 0.075 (0.002) 0.077 (0.002)

σ(C1) 0.164 (0.021) 0.123 (0.003) 0.216 (0.008) 0.120 (0.003)
σ(C2) 0.219 (0.022) 0.176 (0.006)
σ(λ1) 0.029 (0.013) 0.025 (0.001)
σ(λ2) 0.016 (0.001)
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Table A8. Maximum likelihood estimates of four dynamic Nelson-Siegel-Svensson type specifications
for zero yield curve data from the U.S. Department of Treasury. DNSS is the dynamic
Nelson-Siegel-Svensson specification where both decay parameters λ1,t and λ2,t follow an AR(1)
process, DNS is the dynamc Nelson-Siegel specification with a single decay parameter λ1,t that follows
an AR(1) process, NSS is the Nelson-Siegel-Svensson specification with the two decay parameters λ1

and λ2 assumed to be fixed, NS is the Nelson-Siegel specification with a single decay parameter λ1

assumed to be fixed. The likelihood functions were evaluated using the extended Kalman filter. στ

are the estimated measurement equation innovation variances (assumed to be diagonal), ρ(·) are the
estimated AR(1) parameters of the state series, E[·] are the estimated unconditional mean of the state
series, σ(·) are the estimated standard deviations of the state equation innovations. QML standard
errors in parentheses. The daily sample is 31 July 2001 to 31 December 2018 (4,357 observations).
The measurement consists of 9 yields with maturities τ = 1/12, 0.5, 1, 2, 3, 5, 7, 10, 20 (years).

DNSS DNS NSS NS

σ1/12 0.001 (0.000) 0.240 (0.005) 0.241 (0.005) 0.251 (0.005)
σ0.5 0.054 (0.001) 0.000 (0.000) 0.000 (0.000) 0.007 (0.005)
σ1 0.014 (0.002) 0.044 (0.001) 0.055 (0.001) 0.064 (0.001)
σ2 0.029 (0.001) 0.048 (0.003) 0.045 (0.001) 0.056 (0.001)
σ3 0.015 (0.001) 0.035 (0.003) 0.020 (0.002) 0.000 (0.000)
σ5 0.038 (0.001) 0.030 (0.001) 0.040 (0.001) 0.071 (0.001)
σ7 0.001 (0.003) 0.042 (0.001) 0.000 (0.000) 0.076 (0.002)
σ10 0.077 (0.001) 0.083 (0.003) 0.091 (0.002) 0.036 (0.008)
σ20 0.014 (0.002) 0.045 (0.014) 0.023 (0.004) 0.159 (0.002)

ρ(L) 1.000 (0.000) 0.999 (0.000) 1.000 (0.000) 0.999 (0.000)
ρ(S) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000) 1.000 (0.000)

ρ(C1) 0.995 (0.001) 0.996 (0.001) 0.998 (0.001) 0.994 (0.001)
ρ(C2) 0.999 (0.001) 0.994 (0.002)
ρ(λ1) 0.995 (0.001) 0.998 (0.001)
ρ(λ2) 0.998 (0.001)
E[L] 9.630 (5.932) 4.492 (0.765) 4.524 (0.957) 4.433 (0.934)
E[S] 0.688 (0.549) −2.343 (0.181) −2.315 (0.795) −2.233 (0.860)

E[C1] −0.814 (0.483) −3.273 (0.225) −2.456 (0.804) −2.475 (0.511)
E[C2] −5.540 (0.391) −0.051 (0.502)
E[λ1] 0.805 (0.079) 0.000 (0.000) 0.512 (0.006) 0.506 (0.003)
E[λ2] 0.000 (0.000) 0.218 (0.013)
σ(L) 0.073 (0.014) 0.037 (0.003) 0.039 (0.004) 0.042 (0.002)
σ(S) 0.096 (0.007) 0.041 (0.003) 0.045 (0.003) 0.050 (0.002)

σ(C1) 0.107 (0.005) 0.136 (0.013) 0.150 (0.005) 0.213 (0.013)
σ(C2) 0.142 (0.008) 0.227 (0.023)
σ(λ1) 0.022 (0.001) 0.038 (0.003)
σ(λ2) 0.023 (0.001)
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Figure A1. Nelson-Siegel-Svensson factors (all ratings) from the European Central Bank. Lt is the
level, St the slope, C1,t, C2,t curvature factors with decay parameters λ1,t, λ2,t, respectively. The gray
solid lines are the actual factors and the blue dashed lines are filtered estimates from the extended
Kalman filter. The parameters of the state space model were estimated using 13 zero yield curves with
maturities τ = 1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25 (years). The daily sample is 6 September 2004
to 21 February 2019 (3701 observations).
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Figure A2. Nelson-Siegel-Svensson factors (all ratings) from the European Central Bank. Lt is the level,
St the slope, C1,t, C2,t curvature factors with decay parameters λ1,t, λ2,t, respectively. The gray solid
lines are the actual factors and the blue dashed lines are filtered estimates from the extended Kalman
filter. The parameters of the state space model were estimated using 9 zero yield curves with maturities
τ = 1/12, 0.5, 1, 2, 3, 5, 7, 10, 20 (years). The daily sample is 6 September 2004 to 21 February 2019
(3701 observations).
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Figure A3. Empirical cdf of prediction errors. Predictions from European Central Bank
(all ratings) estimates with maturities τ9 = (1/12, 6/12, 1, 2, 3, 5, 7, 10, 20) (left panel) and τ13 =

(1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25) (right panel). DNSS is the dynamic Nelson-Siegel-Svensson
specification where both decay parameters λ1,t and λ2,t follow an AR(1) process, DNS is the dynamc
Nelson-Siegel specification with a single decay parameter λ1,t that follows an AR(1) process, NSS is
the Nelson-Siegel-Svensson specification with the two decay parameters λ1 and λ2 assumed to be
fixed, NS is the Nelson-Siegel specification with a single decay parameter λ1 assumed to be fixed.
The distribution of a perfect prediction with no error would be a vertical line at et = 0 indicated as a
dotted line. The daily sample is 6 September 2004 to 21 February 2019 (3701 observations).
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Figure A4. Kernel density estimates of prediction error distributions. Predictions from European
Central Bank (AAA ratings) estimates with maturities τ9 = (1/12, 6/12, 1, 2, 3, 5, 7, 10, 20)
(left panel) and τ13 = (1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25) (right panel). DNSS is the dynamic
Nelson-Siegel-Svensson specification where both decay parameters λ1,t and λ2,t follow an AR(1)
process, DNS is the dynamc Nelson-Siegel specification with a single decay parameter λ1,t that follows
an AR(1) process, NSS is the Nelson-Siegel-Svensson specification with the two decay parameters λ1

and λ2 assumed to be fixed, NS is the Nelson-Siegel specification with a single decay parameter λ1

assumed to be fixed. The daily sample is 6 September 2004 to 21 February 2019 (3701 observations).
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Figure A5. Kernel density estimates of prediction error distributions. Predictions from
European Central Bank (all ratings) estimates with maturities τ9 = (1/12, 6/12, 1, 2, 3, 5, 7, 10, 20)
(left panel) and τ13 = (1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25) (right panel). DNSS is the dynamic
Nelson-Siegel-Svensson specification where both decay parameters λ1,t and λ2,t follow an AR(1)
process, DNS is the dynamc Nelson-Siegel specification with a single decay parameter λ1,t that follows
an AR(1) process, NSS is the Nelson-Siegel-Svensson specification with the two decay parameters λ1

and λ2 assumed to be fixed, NS is the Nelson-Siegel specification with a single decay parameter λ1

assumed to be fixed. The daily sample is 6 September 2004 to 21 February 2019 (3701 observations).



Stats 2020, 3 324

−1.5 −1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

τ = 1 12
DNSS
DNS
NSS
NS
Interpolation

−1.0 −0.5 0.0 0.5

0.0

0.5

1.0

1.5

τ = 3 12

−0.4 −0.2 0.0 0.2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

τ = 6 12

−0.020 −0.015 −0.010 −0.005 0.000 0.005 0.010

0

100

200

300

400

500

600

τ = 6

0.0 0.1 0.2 0.3

0

1

2

3

4

5

6

7
τ = 30

Figure A6. Kernel density estimates of prediction error distributions. Predictions from Bank of
England data with maturities τ13 = (1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 25). DNSS is the dynamic
Nelson-Siegel-Svensson specification where both decay parameters λ1,t and λ2,t follow an AR(1)
process, DNS is the dynamc Nelson-Siegel specification with a single decay parameter λ1,t that follows
an AR(1) process, NSS is the Nelson-Siegel-Svensson specification with the two decay parameters λ1

and λ2 assumed to be fixed, NS is the Nelson-Siegel specification with a single decay parameter λ1

assumed to be fixed. The daily sample is 4 January 2000 to 31 December 2018 (4801 observations some
of which may be missing).



Stats 2020, 3 325

−0.04 −0.02 0.00 0.02

0

20

40

60

80

τ = 1.25

0.00 0.05 0.10 0.15

0

5

10

15

20

τ = 2 12

−0.04 −0.02 0.00 0.02 0.04

0

10

20

30

40

50

60

τ = 6

−0.05 0.00 0.05 0.10 0.15 0.20

0

5

10

15

τ = 3 12

−0.2 −0.1 0.0 0.1 0.2 0.3

0

2

4

6

8

10
τ = 25

DNSS
DNS
NSS
NS
Interpolation

−0.2 −0.1 0.0 0.1 0.2 0.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 τ = 30

Figure A7. Kernel density estimates of prediction error distributions. Predictions from Bank of Canada
yield data with maturities τ16 = (3/12, 6/12, 0.75, 1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 30) (left panel)
and U.S. Department of Treasury with maturities τ9 = (1/12, 6/12, 1, 2, 3, 5, 7, 10, 20) (right panel).
DNSS is the dynamic Nelson-Siegel-Svensson specification where both decay parameters λ1,t and
λ2,t follow an AR(1) process, DNS is the dynamc Nelson-Siegel specification with a single decay
parameter λ1,t that follows an AR(1) process, NSS is the Nelson-Siegel-Svensson specification with
the two decay parameters λ1 and λ2 assumed to be fixed, NS is the Nelson-Siegel specification
with a single decay parameter λ1 assumed to be fixed. The daily sample is 4 January 2000 to
31 December 2018 (4719 observations) for Bank of Canada (left panel) and 31 July 2001 to 31 December
2018 (4357 observations some of which may be missing) for U.S. Department of Treasury (right panel).



Stats 2020, 3 326

−0.04 −0.02 0.00 0.02

0

20

40

60

80

τ = 1.25

0.00 0.05 0.10 0.15

0

5

10

15

20

τ = 2 12

−0.04 −0.02 0.00 0.02 0.04

0

10

20

30

40

50

60

τ = 6

−0.05 0.00 0.05 0.10 0.15 0.20

0

5

10

15

τ = 3 12

−0.2 −0.1 0.0 0.1 0.2 0.3

0

2

4

6

8

10
τ = 25

DNSS
DNS
NSS
NS
Interpolation

−0.2 −0.1 0.0 0.1 0.2 0.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 τ = 30

Figure A8. Kernel density estimates of prediction error distributions. Predictions from Bank of Canada
yield data with maturities τ16 = (3/12, 6/12, 0.75, 1, 1.5, 2, 3, 4, 5, 7, 8, 9, 10, 15, 20, 30) (left panel)
and U.S. Department of Treasury with maturities τ9 = (1/12, 6/12, 1, 2, 3, 5, 7, 10, 20) (right panel).
DNSS is the dynamic Nelson-Siegel-Svensson specification where both decay parameters λ1,t and
λ2,t follow an AR(1) process, DNS is the dynamc Nelson-Siegel specification with a single decay
parameter λ1,t that follows an AR(1) process, NSS is the Nelson-Siegel-Svensson specification with
the two decay parameters λ1 and λ2 assumed to be fixed, NS is the Nelson-Siegel specification with a
single decay parameter λ1 assumed to be fixed. The daily sample is 4 January 2000 to 31 December
2018 (4719 observations) for Bank of Canada (left panel) and 31 July 2001 to 31 December 2018 (4357
observations some of which may be missing) for U.S. Department of Treasury (right panel).
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Figure A9. Prediction mean squared error (MSE) differences. Plotted are 0.95 confidence intervals
for the difference in MSE between DNSS and other models. A negative difference indicates better
forecasts for DNSS relative to the comparison model. Red intervals indicate statistical significance at
size 0.05. DNSS is the dynamic Nelson-Siegel-Svensson specification where both decay parameters
λ1,t and λ2,t follow an AR(1) process, DNS is the dynamc Nelson-Siegel specification with a single
decay parameter λ1,t that follows an AR(1) process, NSS is the Nelson-Siegel-Svensson specification
with the two decay parameters λ1 and λ2 assumed to be fixed, NS is the Nelson-Siegel specification
with a single decay parameter λ1 assumed to be fixed.
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