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Abstract: Restricted Mean Survival Time (RMST) experiences a renaissance and is advocated as
a model-free, easy to interpret alternative to proportional hazards regression and hazard rates
with implication in causal inference. Estimation of RMST and associated variance is mainly done
by numerical integration of Kaplan–Meier curves. In this paper we briefly review the two main
alternatives to the Kaplan–Meier method; analysis based on pseudo-observations, and the flexible
parametric survival method. Using computer simulations, we assess the efficacy of the three methods
compared to a fully parametric approach where the distribution of survival times is known. Thereafter,
the three methods are directly compared without any distributional assumption for the survival
data. Generally, flexible parametric survival methods outperform both competitors, however the
differences are small.

Keywords: RMST; censoring; variance estimator; efficacy; Kaplan–Meier; flexible-survival methods;
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1. Introduction

In 1958, Kaplan and Meier [1] published their paper on the product limit estimator for survival
probabilities, an estimator that can handle censored and/or truncated survival data. The easy to
use and interpretable nature of the method, made it an instant success. The Kaplan–Meier estimator
have since then become the dominant method to summarize survival data and parametric methods
have lost relevance. This prompted Miller [2] to criticize this over-reliance of applied scientist on
the Kaplan–Meier curve. Miller established, both theoretically and numerically, the loss of efficacy
of the Kaplan–Meier curve compared to parametric methods. Jullum and Hjort [3] further explored
this aspect and corroborated Miller’s findings. Meier et al. [4] have addressed some of Miller’s
critique, by highlighting the difficulties in choosing the right parametric form. In addition to the
Kaplan–Meier curve, Meier et al. [4] have addressed the efficacy of a functional of the Kaplan–Meier
curve: the Restricted Mean Survival Time (RMST), the average survival time up to a given time
point. Theoretical aspects of RMST (or Kaplan–Meier integrals) are well studied [5–7] and currently
RMST is experiencing a renaissance [8–10] being hailed as a model-free, easy to interpret statistic
with implications in causal inference [11]. Not needing to establish the proper parametric model has
certain advantages. However, generally non-parametric methods have lower efficacy than parametric
ones. Generally, practical applications do not consider parametric estimators for RMST and use
either numerical integration of the Kaplan–Meier curve [12], pseudo-observations [13–15] or flexible
parametric survival methods [16]. In this paper, we briefly summarize parametric and non-parametric
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estimators for RMST and associated variance estimators. We will use Monte Carlo simulations to
examine their efficacy.

2. Restricted Survival Times

We assume that survival times to an event of interest X1, . . . , Xn are independently and identically
distributed (iid) according to the cumulative distribution function F(x) and survival function S(x).
Similarly we assume C1, . . . , Cn to be iid censoring times according to the distribution function G(c).
Additionally, we assume that follow-up times are restricted, by an upper threshold τ set by the
researcher. Thus the actual observed time for subject j is Tj = min

(
Xj, Cj, τ

)
. Additionally, we have

δj = I
{

Xj ≤ min(Cj, τ)
}

as event indicator that takes a value of 1 if the event of interest is recorded
at the given time, 0 otherwise. We assume independence between failure and censoring time. We let
t(1) ≤ ... ≤ t(n) denote the ordered observed survival times and δ(1), ..., δ(n) their associated indicator
values. Survival times are summarized with the help of the survival function S(t) = P(T > t) and the
τ-restricted mean survival times ar given by

∫ τ
0 S(t) dt [12].

From Andersen et al. [14] we know that
√

n
(∫ τ

0 Ŝ(t) dt−
∫ τ

0 S(t) dt
) D−→ N (0, σ2) for some

variance σ2 > 0. In the next sections we review, then evaluate, different estimators for
∫ τ

0 S(t) dt
and σ2.

3. Estimators of RMST and Associated Variance

The statistical literature describes several parametric and non-parametric ways of estimating∫ τ
0 S(t) dt and its associated variance.

3.1. Parametric Methods

For parametric estimation, we need to make assumptions about the distribution of the unobserved
survival times, X. Once the distribution function is established, the Restricted Mean Survival Time
(µτ) is estimated as

µτ =
∫ τ

0
S(θ, t) dt.

where θ is the parameter vector for the assumed distribution function.
In the following, we outline three possibilities for parametric estimation

1. Likelihood and δ-method based approach.
Estimation of

∫ τ
0 S(θ, t) dt requires knowledge of θ. Estimates for θ under censoring can be

obtained with maximum likelihood. Given the censoring indicator I{Xj≤Cj} and Yj = min(Xj, Cj)

we can define the likelihood function for θ as

L(θ|Y, δ) =
n

∏
j=1

f (Yj, θ)
I{Xj≤Cj}

[
1− F(Yj, θ)

]1−I{Xj≤Cj} .

For most cases there are no closed-form solutions for θ̂ and Var(θ̂), however, numerical estimates
are enough. Once estimates for θ are available,

∫ τ
0 S(θ, t) dt can be estimated either by using θ̂ in

closed form equations, or as plug-ins in numerical integration. The variance for
∫ τ

0 S(θ, t) dt by
the δ-method is given by
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Var(µτ) = ∑
i

(
δµτ

δθi

)2
Var(θi) +∑

i
∑
i 6=j

δµτ

δθi

δµτ

δθj
Cov(θi, θj)

where θi is the ith element of the population parameter.
2. M-estimation (or estimating equation)

M-estimation seeks solution to the vector equation ∑n
i=1 ψ(Ti, θ̂) = 0. Here, Ti are independently

and identically distributed restricted survival times, θ̂ is a p-dimensional parameter and ψ is
a known (p× 1)-function that does not depend on i or n [17]. M-estimates are asymptotically
normal with variance n−1V(θ0). V(θ0) is a sandwich variance estimator given by

V(θ0) = A(θ0)
−1B(θ0){A(θ0)

−1}T . (1)

where,

A(θ0) = E
[
− ∂

∂θT ψ(Ti, θ)

]
(2)

and

B(θ0) = E
[

ψ(Ti, θ̂)ψ(Ti, θ)T
]

. (3)

Wang [18] discusses alternative formulations for ψ with regards to the strictly non-negative and
often skewed nature of survival data. For an in-depth discussion on the M-estimators the reader
is referred to [17,19].

3. The second cumulant
The variance equivalent to the second cumulant of a probability distribution of Tj. If there is no
censoring present Var(T) = Eτ [T2]−Eτ [T]2 and can be estimated as

Var(T) = 2
∫ τ

0
tS(t) dt−

[∫ τ

0
tS(t) dt

]2

leading to Var(µt) = n−1Var(T).

This estimator is not practical due to censoring. When we have censoring in the data Rosyton &
Parmar [20] suggested multiplying n−1Var(T) with a positive scaling factor φ, so that φ = 1
if no censoring and φ > 1 otherwise. The scaling factor φ can be estimated with help of
Monte Carlo simulation.
Alternatively, the variance can be estimated with the Stute estimator [6]. Adopting the notation of
Stute [21], (i.e.,

∫
xdF(x) =

∫
x f (x) dx) and (1− H) = (1− F)(1− G) and ϕ a transformation of

X so that n−1 ∑i ϕ(Xi)→
∫

ϕdF ≡ Sϕ = µτ . Here, Var[
∫

ϕdF̂n] = n−1σ2
1 where

σ2
1 =

∫ τ

0

ϕ2

1− G
dF−

[∫ τ

0
ϕdF

]2
−
∫ τ

0

[∫ τ

x
ϕdF

]2 1− F(x)
[1− H(x)]2

G(dx).
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Both approaches require assumptions about the distribution of the survival times and censoring
times. These two estimators of variance will not be further evaluated, however they do represent
an important aspect of RMST.

3.2. Flexible Parametric Survival Methods

In 2002, Royston and Parmar [22] introduced flexible parametric survival models as a simple
way to deal with non-proportional hazards, and as a way of easy visualization of the hazard function.
In a later paper the authors exemplified the utility of the model in estimation of RMST [16]. The model
is defined through the log cumulative hazard function as

ln H(t, z) = ln H0(t) + zT(β), (4)

where the baseline (H0) is modeled as a restricted cubic spline in log time, ln H0(t) = s(ln t), and where
z is a covariate vector. The splines s(ln t) are linear combination of basis functions and regression
parameters. The model requires a number of knots and a probability distribution function. This later is
often assumed to be the Weibull distribution, which we used in this article, with 2 knots. RMST is
estimated by predicting the log cumulative hazard function using Equation (4) at a suitable grid of
time points equally spaced between 0 and τ. Thereafter the cumulative hazard is transformed into the
survival function ŜRP(t), and µτ =

∫ τ
0 ŜRP(t) dt. The variance is estimated with the δ-method or by

bootstrapping.
While this approach is fully parametric and the survival function is completely specified,

the model is ought to be robust against distribution misspecification. Integration proceeds with
the formula of the survival function of the assumed distribution, but with numerical integration for
the area under ŜRP(t) between 0 and τ. Additionally, the splines and the piece-wise modeling between
the knots offer great flexibility to the model.

3.3. Non-Parametric Methods

3.3.1. The Kaplan–Meier-Method

The Kaplan–Meier method is perhaps the most well-known and used method for estimation of
RMST. In 1975, Meier [12] proved that the substitution of the Kaplan–Meier estimator in

∫ τ
0 S(t) dt

provides an (approximately) unbiased estimate that is asymptotically normal.
The Kaplan–Meier estimator is given by

ŜKM (t) = ∏
Ti≤t

[
1− δi

Ri

]

where Ti is the ordered follow up time, Ri is the number of subjects at risk prior to Ti and δi the number
of events that happened at time Ti. The RMST is estimated as

µτ =
∫ τ

0
ŜKM(t) dt.

As far as we know, Irwin in 1949 [23], was the first to provide an estimator for the variance
based on life tables. Later, Meier [12] in 1975 proved that reducing the data to the life table format was
unnecessary and established the following variance estimator

V(µτ) ≈ 2
∫ τ

0

∫ τ

u
S(u)S(v)C(u) dv du,
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where C(u) = ∑i [(1− S(ui))/nS(ui)] is the sum of the squared coefficient of variation for S(u).
Klein & Moeschberger [24] provided a variant with the Greenwood variance estimator of survival
probabilities as plug-ins and popularized Meier’s variance estimator in the following form:

V̂(µτ) =
D

∑
i=1

[∫ τ

ti

ŜKM(t) dt
]2 δi

Yi(Yi − δi)
,

where D = ∑i δi. The Aalen - Johansen variance estimator of survival probabilities could also serve as
plug-in in Meier’s estimator, or re-sampling methods can be used as well. However, as Eaton et al. [25]
noted based on Monte Carlo simulations, the estimator with the Greenwood plug-in give variance
estimates closest to empirical and asymptotic variances.

3.3.2. Pseudo-observations

Pseudo-observations is a method that is based on the pseudo-values from a jackknife statistic
constructed from simple summary statistic estimates which are then used in a generalized estimating
equation to obtain estimates of the model parameters [13,15].

The parameter of interest is µτ . If there is no censoring, then µτ = n−1 ∑i Ti. Under censorship,
an approximately unbiased estimator for µτ is

∫ τ
0 Ŝ(t)dt. The pseudo-observation T∗j associated with

the jth observed time is estimated as

T∗j = n
∫ τ

0
Ŝ(t) dt− (n− 1)

∫ τ

0
Ŝ−j(t) dt

where S−j is the survival curve estimated withouth the jth observation. The assumption is that
µ(T∗) ≈ µ(T) and σ2(T∗) ≈ σ2(T). The most straightforward estimators are µ̂(T∗) = n−1 ∑j T∗j
and σ2(T∗) = (n− 1)−1 ∑j(T∗j − T̄∗)2. The approach preferred by Andersen et al. [13] is based on
M-estimators. The usual assumption is that the underlying distribution is symmetric about the location
parameter and the corresponding function ψ is an odd function for the location parameter (mean in
our case, θ1) and an even function for the targeted scale parameter (variance, θ2) defined as

n

∑
i=1

ψ(T∗j , θ̂1, θ̂2) =

(
(T∗j − θ1)

(T∗j − θ1)
2 − θ2

)
=

(
0
0

)

Solving for V(θ0) (Equation (1)) starts with solving A(θ0) (Equation (2)) and B(θ0) (Equation (3)).
In this case A(θ0) = I(θ0), the identity matrix. Solving for B(θ0) gives

B(θ0) =

(
σ2 µ3

µ3 µ4 − σ4

)

where, µk is the kth central moment. The variance estimator V(θ0) = I(θ0)−1B(θ0){I(θ0)−1}T =

B(θ0). The variability estimates by V(θ0) are robust to model misspecification. For symmetric
distributions (i.e., f (µ + x) = f (µ− x)) the off-diagonal elements of V(θ0) are zero. For asymmetric
distributions (i.e., µ3 > 0) there is an asymptotic variance inflation due to estimating variance in
addition to the mean [19].

4. Simulation Studies

We used Monte Carlo simulations to gain insight of the small sample proprieties of the estimators.
We used the R computing environment (R 3.6.0) [26] for calculations and illustrations. Codes are
available from the corresponding author.
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4.1. Relative Efficacy under Parametric Assumption

A first set of simulation studies was used to assess the relative efficacy of non-parametric
methods and flexible parametric survival methods compared to the parametric estimates of variance.
The relative efficiency (eff ) of the estimators was assessed as the ratio between the estimated variances
of the different estimators and the estimator with the minimum variance

eff =
min 〈σ2

M〉
σ2

M
,

where M is the model considered for estimation. We were interested in seeing how relative efficacy
varies as a function of (i) sample size, (ii) censoring percentage and (iii) restriction time. To facilitate
calculation and possibility of obtaining closed form solutions for the parametric variance estimates,
we assumed that survival times were exponentially distributed with rate, λ = 1/365. Similarly,
we assumed that censoring times were exponentially distributed with rate γ.

In the first set of simulations we set the sample size to 50 and 100 with censoring percentages at
50% and 75%. Given the assumed censoring percentages (cp) we estimated γ, the rate parameter for
the censoring distribution, as the solution for the equation

cp = 1− λ(λ + γ)−1 (5)

where λ(λ + γ)−1 is an estimate for P (X < C) =
∫ t

0 C (t) f (t) dt [27]. Every setting was simulated
1000 times and we estimated µτ and Var(µτ) with the δ-method, M-estimation, the Kaplan–Meier
method, flexible parametric survival and pseudo-observations with τ = 365.

Table 1 presents the results of the simulation study. The expected µ365 = 230 days. Generally,
all methods provided unbiased estimates of µ365, with small deviations.

Table 1. Efficacy (eff) and 95% confidence interval coverage probabilities of the different Restricted
Mean Survival Time (RMST) estimators as a function of sample size (n) and censoring percentage (cp)
at restriction time of 365 days, with the expected µτ of 230 days.

δ-Method M-Estimator Kaplan–Meier Flexible Parametric Pseudo-obs

n = 50, CP = 50%
µ̂τ 230.1 230.1 230.7 231.2 230.7̂Var(µτ) 368.0 362.1 437.5 429.3 446.9
eff 0.98 - 0.82 0.84 0.81

Coverage 0.94 0.94 0.93 0.93 0.94

n = 50, CP = 75%
µ̂τ 230.2 230.2 230.2 228.0 228.4̂Var(µτ) 724.6 712.9 792.1 794.6 1068.7
eff 0.98 - 0.90 0.90 0.66

Coverage 0.93 0.92 0.89 0.89 0.90

n = 100, CP = 50%
µ̂τ 230.9 230.9 231.4 231.6 231.4̂Var(µτ) 185.2 182.2 221.2 217.0 223.4
eff 0.98 - 0.83 0.84 0.81

Coverage 0.96 0.95 0.95 0.95 0.95

n = 100, CP = 75%
µ̂τ 229.9 229.9 229.4 229.1 229.1̂Var(µτ) 367.0 365.1 421.8 406.3 485.6
eff 0.99 - 0.86 0.89 0.75

Coverage 0.95 0.94 0.92 0.94 0.94
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Of the 5 tested variance estimators, M-estimation proved to have the smallest estimates.
The δ-method variance differed only marginally from the M-estimation. Of the three practically usable
methods, the Kaplan–Meier method, pseudo-observations and flexible parametric survival, the later
had the highest relative efficacy, irrespective of the setting. To assess if the lower variance estimate of
the flexible parametric survival, compared with the Kaplan–Meier method and pseudo-observation
affects negatively statistical inference, we assessed the coverage portability of the approximate 95%
Wald-type confidence intervals. There is no indication that the lower variance estimate of the flexible
parametric survival method negatively affects statistical inference compared to Kaplan–Meier method
and pseudo-observation. Although this simulation is not comprehensive we can conclude that the
used Wald-type statistics in statistical inference for RMST should be used with caution when sample
sizes are small and censoring percentage is high.

To gain further insights of the relative efficacy of the variance estimator a second set of simulation
studies was run. First we simulated survival times with λ = 1/365 and γ = 1/365 with a sample
size of 100 and a censoring percentage of 50%. We varied τ between 50 and 650 days and estimated
µτ and Var(µτ) with M-estimation, the Kaplan–Meier method, flexible parametric survival and
pseudo-observations.

All estimators returned unbiased µτ estimates. As Figure 1a shows, the Kaplan–Meier method,
flexible parametric survival and pseudo-observations have lower efficacy compared to parametric
estimate of the variance. The estimated increases with longer restriction times and declines after
a maximum is reached approximately at 600 days, when around 80 % of the subjects should have
experienced the event of interest.

Similarly, we have assessed how the censoring percentage affects efficacy when everything else is
kept constant. We simulated survival times with λ = 1/365, sample size of 100 and set the restriction
time at 365 days.
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Figure 1. The effect of restriction time (a) and censoring percentage (b) on the efficacy of the three
commonly used RMST estimation methods.

We estimated γ, the censoring rate with Equation (5). The pattern was similar to the previous
setting. The efficacy increased up to around 65 % censoring rate, thereafter declined again.
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4.2. Estimation with Unknown Distribution Function

Practitioners rarely, if ever, know the distribution of survival times, which makes parametric
estimation difficult, if not impossible. Here, we aim to assess the precision, efficacy and confidence
internal coverage, for the Kaplan–Meier method, pseudo-observations and flexible parametric survival
methods. For the former two, distributional assumptions are less important. For flexible parametric
survival methods with an assumed Weibull survival function, deviations from the assumptions
might affect the outcome. In a first set of simulations, we simulated survival times with the
log-logistic distribution, a distribution used in accelerated failure models. The hazard of the log-logistic
distribution can take non-monotonic forms depending on the shape parameter. We assumed shape of
1.5 and a scale of 151, giving a mean survival time of approximately 365 days. Thereafter, we simulated
survival times with a mixture distribution with f (t) = 0.5 exp(1/265) + 0.5 exp(1/465). In both cases
we assumed exponential censoring with a rate of γ = 1/365. Table 2 summarizes the results of the
simulation studies with 1000 runs. Generally, flexible parametric survival methods outperform both
the Kaplan–Meier method and pseudo-observations without compromising the coverage probability
of the 95 % confidence intervals.

Table 2. Efficacy and 95 % confidence interval probabilities of the different RMST estimators at the
mean survival time of 365 days, with the expected µτ of 182 days for the Log-logistic distribution and
225 days for the exponential distribution.

Kaplan–Meier Flexible Parametric Pseudo-obs

Log-logistic, n = 50
µ̂τ 183.4 183.9 183.4̂Var(µτ) 402.6 397.6 413.9

Coverage 0.93 0.94 0.93

Log-logistic, n = 100
µ̂τ 182.2 182.7 182.2̂Var(µτ) 201.7 199.4 204.2

Coverage 0.94 0.94 0.94

Exp-mix, n = 50
µ̂τ 224.5 224.6 224.5̂Var(µτ) 444.4 435.4 454.3

Coverage 0.95 0.95 0.95

Exp-mix, n = 100
µ̂τ 225.5 225.7 225.5̂Var(µτ) 224.8 220.5 227.1

Coverage 0.96 0.95 0.96

4.3. Parametric Estimation under Model Misspecification

As we have seen in the previous subsection, parametric estimation outperforms non-parametric
estimation, at least when the correct model is specified. However, this is rarely possible. In this
subsection, we assess the parametric estimators and associated variances under model misspecification.
In a first set of simulations, we simulated survival times with the log-logistic distribution as described
above (Section 4.2). When the distribution of survival times is unknown, it is common to assume an
Exponential distribution. While the Kaplan - Meier method was practically unbiased, the parametric
estimator overestimated µτ . Of the two variance estimator the δ-method had the smallest estimates.
This is expected as sandwich variance estimates are robust against model misspecification at the
expanse of efficacy (Table 3).
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Table 3. Bias and accuracy of the parametric estimation with variance estimated by the δ-method
and M-estimation, together with comparative numbers for the Kaplan - Meier method under model
misspecification.

µ̂τ
̂Var(µτ) Bias MSE

τ = 50
Parametric(δ-met) 45.11 0.35 −1.48 2.54

Parametric (M-est) 45.11 0.39 −1.48 2.58
Kaplan–Meier 46.63 0.91 0.04 0.91

τ = 365
Parametric (δ-met) 188.24 191.42 6.04 227.96
Parametric (M-est) 188.24 213.10 6.04 249.63

Kaplan–Meier 182.54 203.06 0.35 203.18

See Table 3. In a second set of simulation, we simulated survival times according to a Weibull
distribution with shape (k) and scale (λ) parameters. We assumed exponential censoring with rate
1/365. We varied the scale parameter between 0.5 and 3. The Shape parameter was set so that the mean
of Weibull survival times should equal 365, the mean of exponential survival time with rate 1/365.
We estimated λ with numerical root finding, by solving the equation λΓ(1 + k−1) = 365. At k = 1,
λ = 365 and the Weibull distribution simplifies to an Exponential distribution with rate 1/365. At these
values parametric RMTS estimation assuming Exponential survival distribution returned, as expected,
nearly unbiased estimates. However, as k deviated from 1, the bias increased. The sign and magnitude
of bias is dependent on the direction and magnitude of deviation from k = 1 (Figure 2).
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Figure 2. Bias under model misspecification of the parametric estimator as a function of restriction
time (a) and censoring percentage (b).

5. Discussion

In this paper we presented the main estimators for RMST and associated variances. Additionally,
with the help of simulation studies, we examined their small sample properties. As expected, the results
of our simulations corroborated that parametric methods of estimation are more effective than
non-parametric estimation. This is in line with previous findings about the Kaplan–Meier curve [2]
or semi-parametric Cox-regression [3]. Naturally, just as Meier et al. [4] concluded, establishing the
proper parametric form is difficult. Since the work of Meier et al., important advancements have been
made in the field. The Focused Information Criterion (FIC) have been proposed for comparing general
non-nested parametric models with a non-parametric alternative [28]. Application of FIC requires
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advanced statistical/technical knowledge and it is possible that survival times do not follow a known
and well-established distribution. Thus, it is likely that in practical applications, parametric estimators
for RMST will be rare.

The numerical results and the patterns of efficacy as a function of censoring percentage are
similar to the ones reported by Meier et al. [4] and by Jullum and Hjort [3]. Independently of the
employed method, we could see that a small sample size and a high percentage of censoring, result in
genuine departure from nominal coverage values of the approximate Wald-type confidence interval.
This departure from the nominal coverage of the 95 % confidence intervals is not a fallacy of the RMST
and associated variance estimators, more it is a sign of the inappropriateness of Wald-type intervals
and statistics. Lawrence et al. [29] described this deviation from the normal distribution in small
samples and proposed an approximation to the correct null distribution using the Cornish–Fisher
expansion. In medium to large samples the normal approximation is expected to hold. Our simulation
suggests that in samples ≥ 100 statistical inference will be correct. This value of ≥ 100 should not
be taken as a proposed threshold. This is data dependent. Schall [30] proposed a bootstrap based
framework to assess if the coverage probability of confidence intervals approximates the intended
nominal coverage. Alternatively, one could either correct null distribution as Lawrence et al. [29]
proposed or employ computer intensive methods. Jackknife estimate, that is behind numerous
important theoretical results about RMST [21,31,32] could be a natural option or bootstrapping that
has a straightforward application in survival analysis [33,34]. Nevertheless, bootstrapping RMST
requires extra care. The parameter space for RMST is (0, τ] and RMST can be close to τ. Bootstrapping
parameters on the boundary of the parameter space can return inconsistent results [35,36]. This is
not a surprising result. While we assume normal distribution for µτ , its parameter space is restricted
to (0, τ]. A Wald-type 95 % confidence interval would require that 2.5 % of the distribution would
be at either side of the interval. As µτ → τ the right tail of the assumed normal distribution will
include more and more values that are larger than τ. Thus the confidence interval might include
values outside the parameter space. If µτ ∼ N(µ̂τ , V̂ar(µτ)), then P(µτ ≥ τ) determines the values of
the µτ under the assumed distribution that falls outside of (0, τ]. P(µτ ≥ τ) is directly influenced by
V̂ar(µτ)) and decreases with rate

√
n as the sample size increases. In either case, further studies are

needed to establish routines of statistical inference. Extra care is also needed in inferring from RMST
based studies with Wald-type confidence intervals or Z-scores. Applied studies, while they do present
RMST and associated confidence intervals, are interested in comparing different treatment regimens.
This is done by calculating difference between two RMST estimates D, or the ratio between them
R. Neither D orR is affected by the boundary value problems in realistic situations. The parameter
space for D is (−τ, τ) and the D approaches the boundaries if and only if RMST for one arm is close
to zero and the RMST for the competing treatment should be close to τ. Under similar circumstances
R approaches to its boundary values of (0, ∞).

One aspect that practitioners face when planing a clinical trial with RMST as their method of
choice is deciding upon τ. The choice of the time window (0, t] may be prespecified at the design stage
of the study based on clinical considerations or the choice of time point τ could be data-dependent
after the data is collected [37]. The choice of τ has direct implications on statistical power [38] and as
we highlighted statistical power can be maximized by considering the intricate relationship between
the choice of τ and the censoring percentage.

Although we observed differences in the magnitude of the variance between the Kaplan - Meier
method, pseudo-observations and flexible parametric survival methods the practical implications are
likely limited. The differences between the variance estimators might be numerically large however
when compared to the magnitude of the RMST estimate, these differences will have limited practical
implications. Thus, we refrain from suggesting one or the other method as the preferred one. All three
methods have arguments that spoke for them. The Kaplan- Meier method is probably the most used
and best known. Its application is simple and straightforward and require limited programming
knowledge to implement on the top of Kaplan–Meier curve estimator, if not readily available in the
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preferred software. The flexible parametric survival method takes the idea behind the Kaplan–Meier
method one step further by assuming a parametric form and fully define a smoothed version of the
survival curve. Estimation assumes definition of the survival distribution. Additionally, to increase
flexibility and model fit, the survival function can be modeled as a natural cubic spline function of
log time.

Standard statistical software provide readily available routines for estimation [39,40]. An approach
similar in philosophy was recently proposed by Luo et al. [41] based on piecewise exponential survival
and censoring times. This approach does not require smoothing of the survival curve, however
the exponential assumption facilitates design and monitoring of survival trials based on RMST.
Both estimation with the Kaplan–Meier method and flexible parametric survival method allows
adjustment of the survival curves for covariates. However, interpretation for continuous variables
is difficult. The third approach, pseudo-observations, is also readily available in most statistical
software [42–44]. With pseudo-observation covariates can be regressed on restricted survival times
with linear regression. While the estimates of the Cox-regression or flexible parametric survival
regression are hazard rates, regression on pseudo-observation returns regression coefficients on the
time scale, i.e. they directly quantify the change in restricted survival times as a function of change in
the covariates.

In conclusion, we suggest researchers interested in using RMST to analyse survival data to adopt
the method that best fit their purpose. If ease of implementation is paramount, then the Kaplan–Meier
method is preferred. To increase statistical power, flexible parametric survival models could be the
proper option as they show superior efficacy compared to the other practical applicable methods.
Clinical studies that aim to assess the effect of treatments/exposures adjusted for relevant covariates
could take benefit from considering pseudo-observations as their tool of preference. Naturally,
parametric method of estimation and inference can be considered. However researchers should
be extra cautious about violation of assumptions.

Author Contributions: Conceptualization, S.N., E.B. and A.G.; methodology, S.N.; writing—original draft
preparation, S.N., E.B. and A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Acknowledgments: The authors would like to thank the anonymous referees for their constructive comments
and suggestions, that led to improvements in the manuscript.

References

1. Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Stat. Assoc. 1958,
53, 457–481. [CrossRef]

2. Miller, R.G., Jr. What price kaplan-meier? Biometrics 1983, 1077–1081. [CrossRef]
3. Jullum, M.; Hjort, N.L. What price semiparametric Cox regression? Lifetime Data Anal. 2019, 25, 406–438.

[CrossRef] [PubMed]
4. Meier, P.; Karrison, T.; Chappell, R.; Xie, H. The price of Kaplan–Meier. J. Am. Stat. Assoc. 2004, 99, 890–896.

[CrossRef]
5. Stute, W. The central limit theorem under random censorship. Ann. Stat. 1995, 23, 422–439. [CrossRef]
6. Stute, W. Kaplan–meier integrals. Handbook Stat. 2003, 23, 87–104.
7. Akritas, M.G. The central limit theorem under censoring. Bernoulli 2000, 6, 1109–1120. [CrossRef]
8. Uno, H.; Wittes, J.; Fu, H.; Solomon, S.D.; Claggett, B.; Tian, L.; Cai, T.; Pfeffer, M.A.; Evans, S.R.; Wei,

L.J. Alternatives to hazard ratios for comparing efficacy or safety of therapies in noninferiority studies.
Ann. Intern. Med. 2015, 163, 127. [CrossRef]

9. Uno, H.; Claggett, B.; Tian, L.; Inoue, E.; Gallo, P.; Miyata, T.; Schrag, D.; Takeuchi, M.; Uyama, Y.; Zhao, L.;
et al. Moving beyond the hazard ratio in quantifying the between-group difference in survival analysis.
J. Clin. Oncol. 2014, 32, 2380. [CrossRef]

http://dx.doi.org/10.1080/01621459.1958.10501452
http://dx.doi.org/10.2307/2531341
http://dx.doi.org/10.1007/s10985-018-9450-7
http://www.ncbi.nlm.nih.gov/pubmed/30218417
http://dx.doi.org/10.1198/016214504000001259
http://dx.doi.org/10.1214/aos/1176324528
http://dx.doi.org/10.2307/3318473
http://dx.doi.org/10.7326/M14-1741
http://dx.doi.org/10.1200/JCO.2014.55.2208


Stats 2020, 3 118

10. Hasegawa, T.; Misawa, S.; Nakagawa, S.; Tanaka, S.; Tanase, T.; Ugai, H.; Wakana, A.; Yodo, Y.; Tsuchiya,
S.; Suganami, H.; et al. Restricted mean survival time as a summary measure of time-to-event outcome.
Pharm. Stat. 2020. [CrossRef]

11. Stensrud, M.J.; Aalen, J.M.; Aalen, O.O.; Valberg, M. Limitations of hazard ratios in clinical trials. Eur. Heart J.
2019. [CrossRef] [PubMed]

12. Meier, P. Estimation of a distribution function from incomplete observations. J. Appl. Probab. 1975, 12, 67–87.
[CrossRef]

13. Andersen, P.K.; Klein, J.P.; Rosthøj, S. Generalised linear models for correlated pseudo-observations,
with applications to multi-state models. Biometrika 2003, 90, 15–27. [CrossRef]

14. Andersen, P.K.; Borgan, O.; Gill, R.D.; Keiding, N. Statistical Models Based on Counting Processes; Springer
Science & Business Media: Berlin, Germany, 2012.

15. Andersen, P.K.; Pohar Perme, M. Pseudo-observations in survival analysis. Stat. Methods Med. Res. 2010,
19, 71–99. [CrossRef]

16. Royston, P.; Parmar, M.K. The use of restricted mean survival time to estimate the treatment effect in
randomized clinical trials when the proportional hazards assumption is in doubt. Stat. Med. 2011,
30, 2409–2421. [CrossRef]

17. Stefanski, L.A.; Boos, D.D. The calculus of M-estimation. Am. Stat. 2002, 56, 29–38. [CrossRef]
18. Wang, J.L. Asymptotic Properties of M-estimators Based on Estimating Equations and Censored Data.

Scand. Stat. Theory Appl. 1999, 26, 297–318. [CrossRef]
19. Boos, D.D.; Stefanski, L. Likelihood Construction and Estimation. In Essential Statistical Inference; Springer:

Berlin, Germany, 2013; pp. 27–124.
20. Royston, P.; Parmar, M.K. Restricted mean survival time: An alternative to the hazard ratio for the design

and analysis of randomized trials with a time-to-event outcome. BMC Med. Res. Methodol. 2013, 13, 152.
[CrossRef]

21. Stute, W. The jackknife estimate of variance of a Kaplan-Meier integral. Ann. Stat. 1996, 24, 2679–2704.
[CrossRef]

22. Royston, P.; Parmar, M.K. Flexible parametric proportional-hazards and proportional-odds models for
censored survival data, with application to prognostic modelling and estimation of treatment effects.
Stat. Med. 2002, 21, 2175–2197. [CrossRef]

23. Irwin, J. The standard error of an estimate of expectation of life, with special reference to expectation of
tumourless life in experiments with mice. Epidemiol. Infect. 1949, 47, 188–189. [CrossRef] [PubMed]

24. Klein, J.P.; Moeschberger, M.L. Survival Analysis: Techniques for Censored and Truncated Data; Springer Science
& Business Media: Berlin, Germany, 2006.

25. Eaton, A.; Therneau, T.; Le-Rademacher, J. Designing clinical trials with (restricted) mean survival time
endpoint: Practical considerations. Clin. Trials. 2020, 1740774520905563. [CrossRef] [PubMed]

26. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2019.

27. Nadarajah, S. Reliability for lifetime distributions. Math. Comput. Model. 2003, 37, 683–688. [CrossRef]
28. Jullum, M.; Hjort, N.L. Parametric or nonparametric: The FIC approach. Stat. Sin. 2017, 951–981. [CrossRef]
29. Lawrence, J.; Qiu, J.; Bai, S.; Hung, H.J. Difference in Restricted Mean Survival Time: Small Sample

Distribution and Asymptotic Relative Efficiency. Stat. Biopharm. Res. 2019, 11, 61–66. [CrossRef]
30. Schall, R. The empirical coverage of confidence intervals: Point estimates and confidence intervals for

confidence levels. Biom J. 2012, 54, 537–551. [CrossRef] [PubMed]
31. Stute, W.; Wang, J.L. The jackknife estimate of a Kaplan—Meier integral. Biometrika 1994, 81, 602–606.
32. Azarang, L.; de Uña-Álvarez, J.; Stute, W. The Jackknife estimate of covariance of two Kaplan–Meier integrals

with covariables. Stats 2015, 49, 1005–1025. [CrossRef]
33. Akritas, M.G. Bootstrapping the Kaplan—Meier Estimator. J. Am. Stat. Assoc. 1986, 81, 1032–1038.
34. Burr, D. A comparison of certain bootstrap confidence intervals in the Cox model. J. Am. Stat. Assoc. 1994,

89, 1290–1302. [CrossRef]
35. Deheuvels, P.; Mason, D.M.; Shorack, G.R. Some results on the influence of extremes on the bootstrap.

Ann. l’I.H.P. Prob. Stat. 1993, 29, 83–103.
36. Andrews, D.W. Inconsistency of the bootstrap when a parameter is on the boundary of the parameter space.

Econometrica 2000, 68, 399–405. [CrossRef]

http://dx.doi.org/10.1002/pst.2004
http://dx.doi.org/10.1093/eurheartj/ehy770
http://www.ncbi.nlm.nih.gov/pubmed/30500891
http://dx.doi.org/10.1017/S0021900200047574
http://dx.doi.org/10.1093/biomet/90.1.15
http://dx.doi.org/10.1177/0962280209105020
http://dx.doi.org/10.1002/sim.4274
http://dx.doi.org/10.1198/000313002753631330
http://dx.doi.org/10.1111/1467-9469.00151
http://dx.doi.org/10.1186/1471-2288-13-152
http://dx.doi.org/10.1214/aos/1032181175
http://dx.doi.org/10.1002/sim.1203
http://dx.doi.org/10.1017/S0022172400014443
http://www.ncbi.nlm.nih.gov/pubmed/15406758
http://dx.doi.org/10.1177/1740774520905563
http://www.ncbi.nlm.nih.gov/pubmed/32063031
http://dx.doi.org/10.1016/S0895-7177(03)00074-8
http://dx.doi.org/10.5705/ss.202015.0364
http://dx.doi.org/10.1080/19466315.2018.1527249
http://dx.doi.org/10.1002/bimj.201100134
http://www.ncbi.nlm.nih.gov/pubmed/22623325
http://dx.doi.org/10.1080/02331888.2014.960871
http://dx.doi.org/10.1080/01621459.1994.10476869
http://dx.doi.org/10.1111/1468-0262.00114


Stats 2020, 3 119

37. Tian, L.; Jin, H.; Uno, H.; Lu, Y.; Huang, B.; Anderson, K.M.; Wei, L. On the empirical choice of the time
window for restricted mean survival time. Biometrics 2020. [CrossRef] [PubMed]

38. Huang, B.; Kuan, P.F. Comparison of the restricted mean survival time with the hazard ratio in superiority
trials with a time-to-event end point. Pharm. Stat. 2018, 17, 202–213. [CrossRef]

39. Jackson, C. flexsurv: A Platform for Parametric Survival Modeling in R. J. Stat. Softw. 2016, 70, 1–33.
doi:10.18637/jss.v070.i08. [CrossRef]

40. Lambert, P.C.; Royston, P. Further development of flexible parametric models for survival analysis. Stata J.
2009, 9, 265–290. [CrossRef]

41. Luo, X.; Huang, B.; Quan, H. Design and monitoring of survival trials based on restricted mean survival
times. Clin. Trials 2019, 16, 616–625. [CrossRef]

42. Parner, E.T.; Andersen, P.K. Regression analysis of censored data using pseudo-observations. Stata J. 2010,
10, 408–422. [CrossRef]

43. Overgaard, M.; Andersen, P.K.; Parner, E.T. Regression analysis of censored data using pseudo-observations:
An update. Stata J. 2015, 15, 809–821. [CrossRef]

44. Klein, J.P.; Gerster, M.; Andersen, P.K.; Tarima, S.; Perme, M.P. SAS and R functions to compute pseudo-values
for censored data regression. Comput. Methods Programs Biomed. 2008, 89, 289–300. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/biom.13237
http://www.ncbi.nlm.nih.gov/pubmed/32061098
http://dx.doi.org/10.1002/pst.1846
https://doi.org/10.18637/jss.v070.i08
http://dx.doi.org/10.18637/jss.v070.i08
http://dx.doi.org/10.1177/1536867X0900900206
http://dx.doi.org/10.1177/1740774519871447
http://dx.doi.org/10.1177/1536867X1001000308
http://dx.doi.org/10.1177/1536867X1501500313
http://dx.doi.org/10.1016/j.cmpb.2007.11.017
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Restricted Survival Times
	Estimators of RMST and Associated Variance
	Parametric Methods
	Flexible Parametric Survival Methods
	Non-Parametric Methods
	The Kaplan–Meier-Method
	Pseudo-observations


	Simulation Studies
	Relative Efficacy under Parametric Assumption
	Estimation with Unknown Distribution Function
	Parametric Estimation under Model Misspecification

	Discussion
	References

