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Abstract: In sequential tests, typically a (pairwise) multiple comparison procedure (MCP) is performed
after an omnibus test (an overall equality test). In general, when an omnibus test (e.g., overall equality
of multiple proportions test) is rejected, then we further conduct a (pairwise) multiple comparisons
or MCPs to determine which (e.g., proportions) pairs the significant differences came from. In this
article, via likelihood-based approaches, we acquire three confidence intervals (CIs) for comparing
each pairwise proportion difference in the presence of over-reported binomial data. Our closed-form
algorithm is easy to implement. As a result, for multiple-sample proportions differences, we can
easily apply MCP adjustment methods (e.g., Bonferroni, Šidák, and Dunn) to address the multiplicity
issue, unlike previous literatures. We illustrate our procedures to a real data example.

Keywords: multiple comparison procedure (MCP); pairwise comparisons; binary data; double
sampling; misclassification; multiple-sample; proportions difference

1. Introduction

As a part of sequential tests, an omnibus test is used to test the overall significance among
parameters (of the same type). The following are some examples of omnibus tests (but not
limited to): Equality of means, equality of proportions, equality of multiple regression coefficients,
equality/parallelism of survival curves/distributions, etc. Generally, when an omnibus test
(e.g., overall equality of multiple proportions test) is rejected, then one could further conduct a
multiple (pairwise) comparisons to determine which (e.g., proportions) pairs the significant differences
came from.

As another part of sequential tests, multiple comparisons are the comparisons of two or more
groups (sometimes called treatments). Such multiple groups may be treatments of a disease, groups of
subjects, or computer systems, for example. Statistical multiple comparison methods are used heavily
in research, education, business, and industry to analyze data. Hsu in 1996 [1], Edwards and Hsu
in 1983 [2], Hsu and Edwards in 1983 [3], and Hsu in 1982 [4] present the theory behind all the
multiple (pairwise) comparisons, giving statistical methods for inference in terms of confidence
intervals, illustrate applications with real data, and point out methods empowered by modern
computers. In addition, Shiraishi in 2011 [5] proposes multiple tests based on arcsin transformation in
multi-sample models with Bernoulli responses.

Hence, in general, an omnibus test is used to test the overall significance, while multiple
comparisons test (or procedure) is to find which pair(s) contribute to the significant differences;
i.e., the purpose of multiple comparisons procedures (MCPs) is not to test the overall significance,
but to test individual (pairwise) effects for significance (while controlling the experiment-wise error
rate), at an error-rate of α level.
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However, the above MCP-pioneer references are MCP methods without any presence of
misclassifications (i.e., false-positive, false-negative, nor both). On the hand, there are literatures which
discussed misclassified binomial data, for one-sample and two-sample binomial data, with one-type
or both-type of misclassifications, Bayesian or frequentist (i.e., likelihood-based) methods, but none
of them are with the multiplicity adjustments for (pairwise) MCPs, either; for example, Rahardja in
2019 [6] reviewed such literature. Additionally, there are past papers which studied various ways to
analyze binomial data, but they did not include misclassifications nor multiplicity adjustments for
(pairwise) MCPs; for example, among many papers, Gianinetti in 2020 [7], Giles and Fiori in 2019 [8],
Hodge and Vieland in 2017 [9].

Stamey, et al. in 2004 [10] proposed multiple comparison method for comparing Poisson rate
parameters where counts are subject to misclassification. However, the method is for Poisson
data, not for binomial data. Hence, to date, there is no statistical inference method which are
easily obtainable/available for (pairwise) MCP of proportion differences, in the presence of binomial
misclassifications (over-reported or under-reported binomial data). Hence in this article, we proposed
such likelihood-based estimation methods with multiplicity adjusted methods (MCP for proportion
differences) in the presence of one-type of misclassified (over-reported or under-reported) binomial
data, using a double sampling scheme. The multiplicity adjusted method means to control the
experiment-wise (Type I) error rate, to remain at the originally intended error-rate of α level
(i.e., not inflated above α level, nor deflated below α level, after testing subgroups multiple times).

Therefore, this article will be valuable and helpful for researchers and practitioners in their applied
fields such as business, social sciences, psychology, manufacturing, medicine, industry, etc. to compare
multiple proportions subgroups via MCP in the presence of one-type of misclassified binary data and
still maintaining unbiased estimation (i.e., preserving a proper level of Type-I error rate, α level).

In the first stage (see Sections 2–5), we first device three likelihood-based (i.e., frequentist) methods
to compare a proportional difference (i.e., just one pair) between two independent binomial samples
that have been coded as distinct variables, in the presence of over/under-reported misclassified binary
data. For example, people typically interested in comparing gender (proportion) difference in the
commonness of disease such as cancer, diabetes, pain and depression, etc. The grouping variables
(males/females) are mostly error-free, while the response variable (disease/not) is often misclassified
(error-prone). In the terminal disease scenario, under-reporting (false negatives) occurs when a person
(male/female) dies due to terminal illness, but the cause of death is not reflected on the official records.

In the midst of various researchers, Bross in 1954 [11], Zelen and Haitovsky in 1991 [12],
Rahardja and Yang in 2015 [13], pointed out that studies which are ignorant to account for
misclassification (i.e., excluding false-positive and false-negative counts) may result in severely
biased estimation. On the other hand, correcting the bias by including false-positive and false-negative
parameters in models can lead to another issue which involves fitting models with more parameters
than available number of sufficient statistics. Here, we implement a double sampling scheme as a
means of gaining more information and ensuring that a model is identifiable as well as unbiased.

Previous literature recommends the merits of using a double sample (Rahardja et al. in 2015 [14];
Rahardja & Yang in 2015 [13]; Tenenbein in 1970 [15]. To incorporate such double sample merit into the
MCP problem, using maximum likelihood estimation approach, basically, the Rahardja of 2019 [6]
paper has summarized the concept (in Section 1) using a Bayesian approach. Numerous literatures
in past studies have previously been listed in Rahardja of 2019 [6] manuscript and hence are not
re-listed here.

Note that our ultimate goal (Second/Final Stage, Section 6) is to provide MCP in the presence of
multiple-sample over-reported multi-nominal data. The pairwise proportion difference (First Stage,
Sections 2–5) method is just an intermediate step. The methods proposed in the past literature reviews
(Rahardja of 2019 [6]) were not able to easily reach MCP adjustment (Second/Final Stage) due to
difficult, complex, and non-closed-form algorithms. However, since our closed-form algorithm is easy
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to implement, consequently, we are able to easily apply MCP adjustment methods (e.g., Bonferroni,
Šidák, and Dunn) to address the multiplicity issue.

Here in this manuscript, we device three likelihood-based approaches to make inference on
MCP for multiple-sample proportional differences in doubly sampled data subject to only one type of
misclassification. In the following sections, we describe the data (Section 2) prior to obtaining three
likelihood-based confidence intervals (CIs) in Section 3. We then illustrate the tests using real data
(Section 4). We perform simulations study in Section 5.

In the second stage (see Section 6), in making inferences for such over-reported multiple-sample
binomial data and to account for the multiplicity effect, we then utilize three MCP methods (Bonferroni,
Šidák, and Dunn) to adjust the CI width (from the first stage, in Sections 2–5). Finally, we test whether
zero is in the interval (for each pair’s difference) or not. If zero falls in any of the intervals, then such
subgroup pairs do not contribute the significant difference at the corresponding adjusted Type-I error
significance level. Next, using real data we then illustrate the MCP and discuss the conclusion of
this work.

2. Data

The data structure for the original study and the validation sub study serve as the basis for all
analyses performed. Therefore, starting with group i (where i = 1, 2), we define mi and ni as the number
of observations in the original study and the sub study, respectively. Next, we denote Ni = mi + ni as
the total sample size for group i.

For the jth unit in the ith group, where i = 1, 2 and j = 1, . . . , Ni, we denote Fij and Tij be the binary
response variables by the error-prone and error-free classifiers, respectively. We utilize Fij = 1 if the
result is positive by the error-prone classifier and Fij = 0 otherwise. In the same manner, we utilize Tij =

1 if the result is truly positive by the error-free classifier and Tij = 0 otherwise. Note that Fij is observed
for all units in both the original study and the validation substudy, while Tij is observed for units in the
validation substudy but not in the original study. It is clear that misclassification occurs when Fij , Tij.

In the validation study, for i = 1, 2, j = 0, 1, and k = 0, 1, we used nijk as the number of units in
group i classified as j and k by the error-free and the error-prone classifiers, respectively. In the original
study, we denoted xi and yi to be the number of positive and negative classifications in group i by the
error-prone classifier, respectively. The summary counts in both the original study and the validation
substudy for group i are tabulated in Table 1.

Table 1. Data for group i.

Error-Prone Classifier

Study Error-Free Classifier 0 1 Total

Validation 0 ni00 ni01 ni0·
1 NA ni11 ni11

Total ni00 ni·1 ni
Original NA y xi mi

NA: Not Available

In what follows, we define the parameters for group i. Without Loss of Generality (WLOG)
we consider data with one type of misclassification (false positive) only. Here, we denote that
the true proportion parameter of interest be pi = Pr(Ti j = 1), the proportion parameter of the
error-prone classifier be πi = Pr(Fi j = 1), and the false positive rate of the error-prone classifier be
φi = Pr(Fi j = 1

∣∣∣Ti j = 0) . Note that πi is not an additional unique parameter because it is a function of
other parameters. Specifically, using the law of total probability, we have

πi = Pr(Ti j = 1)Pr(Fi j = 1
∣∣∣Ti j = 1) + Pr(Ti j = 0)Pr(Fi j = 1

∣∣∣Ti j = 0) = pi + qiφi, (1)
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where qi = 1 − pi. For the summary counts displayed in Table 1, the corresponding cell probabilities are
shown in Table 2.

Table 2. Cell Probabilities for group i.

Error-Prone Classifier

Study Error-Free Classifier 0 1 Total

Validation 0 qi (1 − ϕi) qi ϕi qi
1 NA pi pi

Original NA 1 − πi πi 1

NA: Not Available

Therefore, in this step, we aim to generate a statistical inference on one pair of proportional
difference (say, the proportion difference between group 1 and group 2, among multiple groups, g) and
then expand the method to include adjustment for the MCP. Here, we denote the proportion difference
of a pair of interest is

δ = p1 − p2. (2)

3. Model

In this section, we aim to make statistical inference on the proportion difference in Equation (2).
Specifically, we intend to construct a point and interval estimation or confidence interval (CI) for the
proportion difference in Equation (2).

The data under consideration is presented in Table 1. Then, for group i, the observed counts
(ni00, ni01, ni11) from the validation substudy have a Trinomial distribution with total size ni and
associated probabilities tabulated in an upper right 2 × 2 submatrix in Table 2, i.e.,

(ni00, ni01, ni11)
∣∣∣pi,φi ∼ Trinomial [ni, (qi(1−φi), qiφi, pi)]

Additionally, the observed counts (xi, yi) in the original study have the following binomial
distribution:

(xi, yi)
∣∣∣pi,φi ∼ Bin [mi, (πi, 1−πi)]

Since (ni00, ni01, ni11) and (xi, yi) are independent for group i and these cell counts are independent
across groups, up to a constant, the full likelihood function is

L(η) =
2∏

i=1

{
[qi(1−φi)]

ni00 [qiφi]
ni01 pi

ni11πxi
i (1−πi)

yi
}
, (3)

where η = (p1,φ1, p2,φ2).
It is not a straightforward task to directly maximize Equation (3) with respect to η, as it requires

iterative numerical methods. In place of direct enumeration, a reparameterization of η is utilized and
hence a closed-form solution is obtainable. Here, we specifically define

λi =
pi

πi
. (4)

The new parameter set are denoted to be γ =
(
λ1,π1, . . . ,λg,πg

)
. Using Equation (3), the full log

likelihood function in γ is

l(γ) =
2∑

i=1

[ni11 logλi + ni01 log(1− λi)+ (xi + ni•1) logπi + (yi + ni00) log(1−πi)]

The corresponding score vector has the following form:
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(
n111

λ1
−

n101

1− λ1
,

x1 + n1•1

π1
−

y1 + n100

1−π1
,

n211

λ2
−

ng01

1− λ2
,

x2 + n2•1

π2
−

y2 + n200

1−π2

)
. (5)

Setting the above score vector to 0, the Maximum Likelihood Estimator (MLE) for γ can be obtained as
λ̂i = ni11/ni•1 and π̂i = (xi + ni•1)/Ni. By solving Equations (1) and (4) together with the invariance
property of MLE, the MLE for η are p̂i = π̂iλ̂i and φ̂i = (1− λ̂i)π̂i/q̂i.

Utilizing Equation (5) above, the expected Fisher information matrix I(γ) is a diagonal matrix
with the displayed diagonal elements as:(

n1π1

λ1(1− λ1)
,

N1

π1(1−π1)
,

n2π2

λ2(1− λ2)
,

N2

π2(1−π2)

)
.

The regularity conditions can be checked and are satisfied for this model. Therefore, the MLE
γ̂ = (λ̂1, π̂1, λ̂2, π̂2) has an asymptotic multivariate normal distribution with mean γ and covariance
matrix I−1(γ), which is a diagonal matrix with the diagonal elements as below:(

λ1(1− λ1)

n1π1
,
π1(1−π1)

N1
,
λ2(1− λ2)

n2π2
,
π2(1−π2)

N2

)
.

Hence, asymptotically, we have

V(λ̂i) = λi(1− λi)/(niπi) and V(π̂i) = πi(1−πi)/Ni.

In addition, λ̂1, π̂1, λ̂2, π̂2 are asymptotically independent.
Since p̂i = π̂iλ̂i and λ̂i, π̂i are asymptotically independent, by the Delta method, the variance of p̂i

is expressed as:

σ2
i =

πiλi(1− λi)

ni
+
λi

2πi(1−πi)

Ni
.

A consistent estimator of σ2
i is

σ̂2
i =

π̂iλ̂i(1− λ̂i)

ni
+
λ̂2

i π̂i(1− π̂i)

Ni
.

Since σ2
δ ≡ V(p̂1 − p̂2) = σ2

1 + σ2
2, a consistent estimator of σ2

δ is σ̂2
δ = σ̂2

1 + σ̂2
2. A naïve 100(1−α)%

Wald (nWald) CI for δ is δ̂ ± Zα/2σ̂δ, where Zα/2 is the upper α/2th quantile of the standard normal
distribution. We term this CI as naïve Wald CI because this CI could be outside the interval between
−1 and 1 and this CI tends to be unnecessarily narrow for small samples.

In order to improve the naïve Wald test, we define a transformation τ = logit [(δ+ 1)/2]. The MLE
for τ is τ̂ = logit [(δ̂+ 1)/2]. Using the Delta method, we have σ2

τ ≡ V(τ̂) ≈ 4(σ2
1 + σ2

2)/(1− δ
2)

2.
Then, a consistent estimator for σ2

τ is

σ̂2
τ = 4(σ̂2

1 + σ̂2
2)/(1− δ̂

2)
2
.

Therefore, a 100(1−α)% CI for τ is τ̂±Zα/2σ̂τ. Finally, a 100(1−α)% CI for δ is obtained by applying
function g on τ̂ ± Zα/2σ̂τ, where g(τ) = (exp(τ) − 1)/(exp(τ) + 1) is the inverse transformation.
We name this CI as modified Wald (mWald) CI.

For small sample size, Wald-type CIs are known to perform under-nominal coverage. A common
remedy approach is to add small counts to the data and apply Wald intervals to the resulting new
data. Depending on the specific dataset, this kind of small counts addition to the data is not unique.
Agresti and Coull in 1998 [16] conducted a similar procedure and recommended adding a count
of two to cells for one-sample binomial problems. They arrived at the number two by examining
the relationship between Wald CI and Score CI. In a related investigation concerning one-sample
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misclassified binary data subject to one type of misclassification only, Lee and Byun in 2008 [17] also
verified to add either one or two to the cell counts. Our justification for adding the small amount to
cells in this study was similar to the argument made by Lee and Byun in 2008 [17]. Subsequently, we
call this approach as mWald.2 method.

4. Example

As an example to illustrate obtaining a pair of proportion difference in Equation (2), we utilize
the automobile accident dataset described in Hochberg in 1977 [18], which contains both types of
misclassifications. For simplicity and illustration, we merge the ni01 (false-positive) counts into the
ni00 counts, as we only evaluate false-negatives. The intention here is to contrast the risk of injury
between males’ high car damages (Group A) and females’ high car damages (Group B), since the
two groups experienced similar severity levels of their car damage. We categorize accidents as either
with injuries (1) or without injuries (0). Since the original study is based on 1974 police reports of
automobile accidents in North Carolina, we denote the error-prone classifier as the police classifier,
and the error-free classifier as the non-police classifier. The validation substudy is based on accidents
that occurred in North Carolina during an unspecified short period in early 1975. Table 3 showed
such datasets.

Table 3. North Carolina traffic accident data.

Fallible Device
Group Study Infallible Device 0 1

A (Male and High Car Damage) Validation 0 369 NA
1 75 132

Original NA 19,631 7329
B (Female and High Car Damage) Validation 0 123 NA

1 61 87
Original NA 7692 4004

C (Male and Low Car Damage) Validation 0 529 NA
1 59 39

Original NA 25,542 1886
D (Female and Low Car Damage) Validation 0 249 NA

1 43 30
Original NA 12,461 1539

NA: Not Available.

In this specific example, we denote p1 and p2 as the probabilities of injuries for males and females
(both high damage accident), respectively. Table 4 display the 90% CI for proportion difference δ by all
three likelihood-based methods. As shown in Table 4, all three methods produce similar CIs (between
the AB pair) for this specific dataset.

Table 4. nWald, mWald, mWald.2 90% confidence intervals (CIs) and CI lengths (between Group A
and B pair) for North Carolina traffic accident data.

Method CI (for AB pair) Length

nWald (−0.0635, 0.00465) 0.06815
mWald (−0.0635, 0.00467) 0.06817
mWald.2 (−0.0634, 0.00465) 0.06805

5. Simulation

Simulation studies were demonstrated to evaluate and compare the performances of all three CI
approaches under different scenarios. Performance was measured in terms of CI coverage probabilities
(CPs) and average lengths (ALs), using two-sided 90% CIs. For presentation simplicity, the overall
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sample sizes were set as N1 = N2 = N, substudy sample sizes n1 = n2 = n, and false positive rates ϕ1 =

ϕ2 = ϕ.
For our simulations, the performance of all CI approaches are evaluated by varying total sample

sizes. In these simulations, we select the following:

1. False positive rate ϕ = 0.1.
2. Ratio of substudy sample size versus the total sample size s = n/N = 0.2.
3. Total sample sizes N: From 100 to 400 with increments of 10.
4. True proportion parameters of interest (p1, p2) = (0.4, 0.6) and (0.1, 0.2), which correspond to

proportions difference of −0.2 and −0.1, respectively.

For each simulation setting with a combination of fixed (p1, p2), ϕ, n/N, and N, the simulation of
K = 10,000 datasets are performed.

The graphs of CPs and ALs of all CI methods versus N for (p1, p2) = (0.4, 0.6) and (p1, p2) =

(0.1, 0.2), are shown in Figures 1 and 2, respectively. When the proportion parameters of interest are
close to 0.5 (i.e., close to ‘fair-coin’ or ‘best-case’ scenario), in this case (p1, p2) = (0.4, 0.6), the behavior
of the binomial distributions is approximately symmetric around their means, and for this reason,
we expected the CI methods to cooperate well. As anticipated, and despite of the sample sizes range
selected in this study, Figure 1 demonstrates that all three CIs have close-to-nominal CPs. The mWald.2
CIs are more conservative than the other two CIs. For all CI methods, the ALs are similar. In contrast,
when the proportion parameters of interest are further away from ‘fair-coin’, in this case (p1, p2) =

(0.1, 0.2), the distributions are skewed and the behavior of binomial distributions do not cooperate.
Hence, in contrast, in all similar scenarios we would not expect the CI functions to perform well for
small samples.
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The plots in Figure 2 display that both the nWald and mWald CIs have very poor CPs for small
samples. The CPs for nWald and mWald are close to nominal when sample sizes are large. Impressively,
the mWald.2 CIs have considerably good coverage for small and large samples. The ALs for all three
methods are similar.

In the following, we provide some guidance where the range of the sample sizes when the three
confidence intervals are valid. For mWald.2 CI, when (p1, p2) = (0.4, 0.6) are close to ‘fair-coin’ (best-case
scenario), the CPs are close to nominal (here, approximately between 89% and 91% CPs, for a Nominal
90% CI) and the sample size range can be as small as N > 100; and N > 150 when (p1, p2) = (0.1, 0.2) are
further-away from ‘fair-coin’ scenarios (here, approximately between 88% and 91% CPs). For the other
two CI methods (nWald and mWald), when (p1, p2) = (0.4, 0.6), in order to reach close to Nominal 90%
CP (here, between 88% to 91% CPs), both methods need at least N > 175; and N > 375 when (p1, p2) =

(0.1, 0.2).
Our simulations conclude that mWald.2 CI approach achieves the best performance among the

three CIs because it consistently demonstrates close to nominal coverage, even for relatively smaller
sample size. Hence, our simulations study concurs with Agresti and Coull in 1998 [16] and Lee and
Byun in 2008 [17] findings and recommendations.

6. Multiple Comparison Procedure (MCP) with the Over-Reported Binomial Data

When we have over-reported binomial data for more than two groups for pairwise comparisons,
as described in Sections 2–5 then there is multiplicity issue generated from multiple times comparing
each pairs of g groups of data. Such a multiple comparisons (hypothesis testing or confidence interval)
issue is a well-known statistical problem. Hence, it is necessary to adjust such multiplicity issue.
The usual goal is to control the family-wise error rate (FWER), the chance/probability of making at
least one Type-I error in any of the comparisons, which, therefore, the FWER should be controlled at a
desired overall level, called α. To control FWER, there are various MCP methods (such as Bonferroni,
Šidák, Dunn, etc.) in the literature. These MCP adjustment methods differ in the way they adjust the
value of alpha to compensate for multiple comparisons.

In this article, we employ three adjustment methods (Bonferroni, Šidák, and Dunn) to the
differences of proportions parameters in the presence of either under/over-reported multiple-sample
binomial data, into the final CIs calculation.

Note that when there is g grouping, then the unique (i.e., permutations, not combinations) number
of comparison pairs is



Stats 2020, 3 64

m =

(
g
2

)
2

= g(g− 1)/2. (6)

Note also that when comparing with a control group, the number of comparisons we make is only

m = (g− 1). (7)

Hence when m , 1 pair, it is therefore no longer a fair/valid comparison to test each pair at an
overall level of α = 0.05. For each pair of comparison, the α level must be adjusted. The adjustment
methods are as follows.

6.1. Bonferroni Adjustment of CI for Over-Reported Binomial Data

In machine learning literature, Salzberg in 1997 [19] mentions a general solution for the problem
of multiple testing is the Bonferroni (Hochberg of 1988 [20]; Holland of 1991 [21]; and Hommel of
1988 [22] correction. Salzberg in 1997 [19] also notes that the Bonferroni correction is usually very
conservative (i.e., slow to reject the null hypothesis of equality test) and weak since it assumes the
independence of the hypotheses. However, the Bonferroni correction is the first in the literature,
and the simplest to understand multiple testing, we therefore prescribed it first, in the presence of
over/under-reported binomial data. The Bonferroni correction is a single step procedure, meaning all
CIs are compared to the same CI threshold for every zero tested in the m adjusted intervals (Holland
and Copenhaver in 1987 [23]; Hochberg and Tamhane in 1987 [24]).

In order to have an overall confidence level of (1−α) × 100%, this (single step) Bonferroni
adjustment/correction procedure for each m individual CI for δ is(

1−
α
m

)
× 100%, (8)

where m is from Equation (6). If zero is in the (adjusted) interval in Equation (8), then we do not reject
equality of the pair’s proportion. Else, if zero is not in the (adjusted) interval (8) then there is significant
difference between the pair’s proportion, at each (Bonferroni adjusted) α/m level of significance.

Applying Bonferroni adjustment in Equation (8), with m in Equation (6) to the North Carolina
Traffic Data for g = 4 groups (A = Male High Damage, B = Female High Damage, C = Male Low
Damage, and D = Female Low Damage), we obtain the resulting m = 6 (mWald.2) CIs, as shown in
Table 5.

Table 5. mWald.2 method for an overall 90% CIs (i.e., Bonferroni 98.33% CI or Šidák 98.26% CI for each
group’s pair) for North Carolina under-reported traffic accident data.

Adjustment Group’s Pair CI Zero in CI? Significantly Different?

Bonferroni AB (−0.0789, 0.0202) Yes No
(98.33% CI) AC (0.118, 0.175) No Yes

AD (0.0943, 0.162) No Yes
BC (0.131, 0.220) No Yes
BD (0.109, 0.205) No Yes
CD (−0.0436, 0.00732) Yes No

Šidák AB (−0.0786, 0.0198) Yes No
(98.26% CI) AC (0.118, 0.174) No Yes

AD (0.0945, 0.161) No Yes
BC (0.131, 0.219) No Yes
BD (0.110, 0.205) No Yes
CD (−0.0434, 0.00715) Yes No
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As shown on Table 5, using the Bonferroni adjustment method in Equation (8), the significant
difference come from the pairs: AC, AD, BC, and BD, because zero is outside these four
Bonferroni-adjusted intervals. In order to achieve an overall 90% CI (or α = 0.1), such single-step
Bonferroni adjustment method results in 98.33% Bonferroni CI for each of the m = 6 (mWald.2) CIs.

6.2. Šidák Adjustment of CI for Over-Reported Binomial Data

Similar to Bonferroni correction, the Šidák of 1967 [25] correction is another common single step
procedure of multiple testing adjustment to control the FWER, but only when the tests are independent
or positively dependent. Again, a single step procedure means that all CIs are compared to the same
CI threshold for every zero tested in the m adjusted intervals.

In order to have an overall confidence level of (1−α) × 100%, this (single step) Šidák
adjustment/correction procedure for each m individual CI for δ is

((1− α)1/m) × 100%, (9)

where m is from Equation (6). If zero is in the (adjusted) interval in Equation (9), then we do not
reject equality of the pair’s proportion. Else, if zero is not in the (adjusted) interval (9), then there is
significant difference between the pair’s proportion, at each (Šidák adjusted) (1− (1− α)1/m) level of
significance.

Applying Šidák adjustment in Equation (9), with m in Equation (6), to the North Carolina Traffic
Data for g = 4 groups (A = Male High Damage, B = Female High Damage, C = Male Low Damage,
and D = Female Low Damage), we obtain the resulting m = 6 (mWald.2) CIs, as shown in Table 5.

As shown on Table 5, using Šidák adjustment method in Equation (9), the significant difference
come from the pairs: AC, AD, BC, and BD—here, in this (traffic data) case, the concluded results are
consistent with the results using Bonferroni adjustment method in Equation (8). In order to achieve an
overall 90% CI (or α = 0.1), such single-step Šidák adjustment method results in 98.26% Šidák CI for
each of the m = 6 (mWald.2) CIs.

6.3. Dunn Adjustment of CI for Over-Reported Binomial Data

Another common single step adjustment/correction method is the Dunn method (Dunn of 1961 [26])
which controls the FWER by dividing α by m, the number of comparisons made, with m in Equation (7).
Hence, treating one group as the control group and comparing the remaining of the groups with
the one control group. The rest of this procedure is easy to implement because it is the same as the
previously discussed (single step) Bonferroni method in Equation (8) of Section 6.1, but with using m
from Equation (7).

Here, we do not apply this adjustment/correction method to the traffic data because we are not
treating any one of these four groups (A, B, C, and D) as a control (placebo) group, as in the drug
development (pharmaceutical study) scenario.

7. Discussion

In this article, we utilized likelihood-based approaches (in the first stage, Sections 2–5) to obtain a
proportional difference of two-sample binary data subject to one type of misclassification. Then (in the
second stage, Section 6), we easily adjusted the interval width to account for the multiplicity effect in
the MCP because of our easy-to-implement closed-form algorithm.

In the first stage (Sections 2–5), a double sampling scheme was utilized as a means of
obtaining more information, ensuring model identifiability and reducing bias. While applying
these procedures, reparameterization of the original full likelihood function was performed because
it was computationally unattainable. After doing so, a closed-form new likelihood function is then
obtainable. As a result, such closed-form expressions for the MLE and the corresponding three CI
approaches (nWald, mWald, and mWald.2) were attainable when calculating the proportional difference.
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As an example (for the first stage), we demonstrate the three CI methods to the Hochberg of 1977 [18]
large sample dataset, for group A (Male and High Car Damage) and B (Female and High Car Damage).
As expected, the three methods demonstrated similar CIs because the Hochberg of 1977 [18] dataset
have large sample sizes. We note that the past studies of Agresti & Coull in 1998 [16] and Lee & Byun
in 2008 [17] have concluded that adding one or two counts to the cell counts for small sample size of
binomial data will correct the bias. Similarly, our simulations conclude the same. Hence, among the
above three likelihood methods, the mWald.2 method will perform best, even for a small sample size.

In the second stage (Section 6), to account for the multiplicity effect in the MCP, we prescribed
three adjustment methods (Bonferroni, Šidák, and Dunn) to the differences of proportions parameters
in the presence of either under/over-reported multiple-sample binomial data, into the adjusted CIs
calculation. Note that unlike those difficult non-closed-form algorithms proposed in the previously
reviewed literature in Rahardja of 2019 [6], this second stage (MCP stage) is easily attainable because
of our closed-form algorithm, which is easy to implement, and subsequently, doable to directly invert
the adjusted CI methods (Bonferroni, Šidák, and Dunn).

As an illustration (for the second stage) to the pairwise comparison using MCPs, we demonstrate
the adjustment methods to Hochberg of 1977 [18] large sample dataset, for the four groups: Group A
(Male and High Car Damage) and B (Female and High Car Damage), C (Male and Low Car Damage),
and D (Female and Low Car Damage). In that example, using Bonferroni and Šidák adjustment
methods, one can see which pairs contributed the significant differences.

In conclusion, we have prescribed likelihood-based estimation approaches to acquire confidence
intervals (CIs) for comparing pairwise proportions differences under three MCPs (Bonferroni, Šidák,
and Dunn) in the presence of under/over-reported multiple-sample binomial data via a double-sampling
scheme. Such prescribed MCP methods will be useful to practitioners and researchers in the binomial
misclassification field.
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