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Abstract: Ridge regression is a popular method to solve the multicollinearity problem for both linear
and non-linear regression models. This paper studied forty different ridge regression t-type tests
of the individual coefficients of a linear regression model. A simulation study was conducted to
evaluate the performance of the proposed tests with respect to their empirical sizes and powers under
different settings. Our simulation results demonstrated that many of the proposed tests have type I
error rates close to the 5% nominal level and, among those, all tests except one have considerable
gain in powers over the standard ordinary least squares (OLS) t-type test. It was observed from our
simulation results that seven tests based on some ridge estimators performed better than the rest in
terms of achieving higher power gains while maintaining a 5% nominal size.

Keywords: empirical power; multiple linear regression; mean square error (MSE); ridge regression;
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1. Introduction

Multicollinearity is the occurrence of high inter-correlations among independent variables in a
multiple regression model. When this condition is present, it can result in unstable and unreliable
regression coefficient estimates if the method of ordinary least squares is used. One of the proposed
solutions to the problem of multicollinearity is the concept of ridge regression as pioneered by Hoerl
and Kennard [1] They found that there is a nonzero value of k (ridge or shrinkage parameter) for which
mean square error (MSE) for the ridge regression estimator is smaller than the variance of the ordinary
least squares (OLS) estimator.

Estimating the shrinkage parameter (k) is a vital issue in the ridge regression model. Several
researchers at different period of times have worked in this area of research and proposed different
estimators for k. To mention a few, Hoerl and Kennard [1], Hoerl, Kennard and Baldwin [2], Lawless
and Wang [3], Gibbons [4], Nomura [5], Kibria [6], Khalaf [7], Khalaf and Shukur [8], Alkhamisi and
Shukur [9], Muniz and Kibria [10], Feras and Gore [11], Gruber [12], Muniz et al. [13], Mansson et al. [14],
Hefnawy and Farag [15], Roozbeh and Arashi [16], Arashi and Valizadeh [17], Aslam [18], Asar and
Karaibrahimoğlu [19], Saleh et al. [20], Asar and Erişoğlu [21], Goktas and Sevinc [22], Fallah et al. [23],
Norouzirad and Arashi [24], and very recently Saleh et al. [25], among others
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It is well known that, to make inference about an unknown population parameter, one may
consider both confidence interval and hypothesis testing methods. However, the literature on the
test statistics for testing the regression coefficients under the ridge regression model is very limited.
First, Halawa and Bassiouni [26] proposed non exact t-tests for the regression coefficients under
ridge regression estimation and compared empirical sizes and powers of only two tests based on
the estimator of k proposed by Hoerl and Kennard [1] and Hoerl, Kennard, and Baldwin [2]. Their
results evidenced that, for models with large standard errors, the ridge based t-tests have correct
sizes with considerable gain in powers over those of the least squares t-test. For models with small
standard errors, tests are found to be slightly exceeding the nominal level in few cases. Cule et
al. [27] evaluated the performance of tests proposed by Hoerl and Kennard [1], Hoerl, Kennard, and
Baldwin [2], and Lawless and Wang [3] based on linear ridge and logistic ridge regression models.
Gokpinar and Ebegil [28] evaluated the performance of the t-tests based on 22 different estimators of
the ridge parameter k collected from the published literature. Finally, Kibria and Banik [29] analyzed
the performance of the t-tests based on 16 popular estimators of the ridge parameter.

Since different ridge regression estimators are considered by several researchers at different times
and under different simulation methods and conditions, testing regression coefficients based on the
basis of size (Type I error) and power properties under the ridge regression model are not comparable
as a whole. Therefore, the important contribution of this paper is to make a more comprehensive
comparison of a much larger ensemble of available t test statistics for testing regression coefficients. We
consider in our analysis most of the ones analyzed in Gokpinar and Ebegil [28] and Kibria and Banik [29]
as well as other test statistics based on other ridge estimators not included in the aforementioned
studies at the same time. In total, our paper compares forty different t-tests statistics. The test statistics
were compared based on the empirical type I error and the power properties following the testing
procedures that are detailed in Halawa and Bassiouni [26]. These results are of interest for statistical
practitioners using ridge regression in different fields of application as a guide to which test statistics
to use when testing the significance of variables in their ridge regression models.

This paper is organized as follows. The proposed test statistics for the linear regression model
are described in Section 2. To compare the performance of the test statistics, a simulation study is
conducted in Section 3. An application is discussed in Section 4. Finally, some concluding remarks are
given in Section 5.

2. Test Statistics for Regression Coefficients

Let us consider the following multiple linear regression model:

Y = Xβ+ ε , ε ∼ N(0, σ2In) , rank(Xn×q) = q ≤ n (1)

Y is an (n × 1) dimensional vector of dependent variables centered about their mean, X is an (n × q)
dimensional observed matrix of the regressors centered and scaled such that XTX is in correlation
form, β is (q × 1) dimensional unknown coefficient vector, and ε is (n × 1) error vector distributed
as multivariate normal with mean 0 and variance–covariance matrix σ2In, where In is an (n × n)
identity matrix.

The ordinary least square estimator (OLS) of the parameter vector β is:

β̂ = (XTX)
−1

XTY (2)

To test whether the i-th component of the parameter vector β is equal to zero, the following test is
used based on the OLS estimator:

H0 : βi = 0 versus H1 : βi , 0t =
β̂i

S(β̂i)
(3)
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where β̂i is the ith component of β̂, and S(β̂i) is the square root of the ith diagonal element of
Var (β̂) = σ̂2(XTX)

−1 with:
σ̂2 = (Y −Xβ̂)T

(Y −Xβ̂)/(n− q− 1)

The test statistic in Equation (3) is the least square test statistic. Under the null hypothesis, it is
distributed as Student t- distribution with n−q−1 degrees of freedom. However, when XTX is ill
conditioned due to multicollinearity, the least square estimator in (2) produces unstable estimators
with unduly large sampling variance. Adding a constant k to the diagonal elements of XTX improves
the ill conditioned situation. This is called ridge regression. The ridge estimator of the parameter
vector β is then:

β̂(k) = (XTX + kIn)
−1

XTY (4)

where k > 0 is the ridge or shrinkage parameter.
The bias, the variance matrix, and the MSE expression of β̂(k) are respectively given as follows:

Bias = E(β̂(k)) − β = −k(XTX + kIp)
−1
β

Var ( ˆβ(k)) = σ2(XTX + kIn)
−1XTX(XTX + kIn)

−1

MSE ( ˆβ(k)) = σ2(XTX + kIn)
−1XTX(XTX + kIn)

−1
+ k2β(XTX + kIp)

−2
β

(5)

and σ2 is estimated as follows:

ˆσk
2 =

(Y −Xβ̂(k))
T
(Y −Xβ̂(k))

n− q− 1
. (6)

To test whether the i-th component of the parameter vector β is equal to zero, Halawa and
Bassouni [26] proposed the following t-test statistic based on the ridge estimator of the parameter vector:

tk =
β̂i(k)

S(β̂i(k))
(7)

where β̂i(k) is the ith element of β̂(k), and S(β̂i(k)) is the square root of the ith diagonal element of Var ( ˆβ(k)).
Under the null hypothesis, the test statistic (7) was shown to be approximately distributed as a

Student t-distribution with n− q− 1 degrees of freedom. For more details on this topic, see Halawa
and Bassiouni [26], among others.

Values of the Ridge Estimator k Considered for the Test Statistic tk

Since the ridge parameter k is unknown, it needs to be estimated from observed data. This section
gives the formulas for the forty different ridge regression estimators considered in our simulation
study for the test statistic defined in (7). Table 1 below shows the estimators. For details on how the
estimators were derived, we refer the readers to the corresponding original papers that are available in
the list of references [1–36].

Table 1. Some ridge regression estimators.

Authors Ridge Estimator Formula (k)

Hocking, Speed and Lynn [30] kHSL = σ̂2
q∑

j=1
α̂2

jλ
2
j /(

q∑
j=1

α̂2
jλ j)

2

Hoerl and Kennard [1] kHK70 = σ̂2

max(α̂2)

Thisted [31] kTH = (q− 2)σ̂2/
q∑

j=1
β̂2

j

Vennables and Rippley [32] kVR = n(q− 2)σ̂2/(β̂TXTXβ̂)

Lawless and Wang [3] kLW = qσ̂2/
q∑

j=1
α̂2

jλ j
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Table 1. Cont.

Authors Ridge Estimator Formula (k)

Hoerl, Kennard and Baldwin [2] kHKB = qσ̂2/
q∑

j=1
α̂2

j

Kibria [6] kKibAM = Arithmetic Mean (σ̂2/α̂2
j )

Kibria [6] kKibGM = Geometric Mean (σ̂2/α̂2
j )

Kibria [6] kKibMED = Median(σ̂2/α̂2
j )

Muniz and Kibria [10] kM2 = max(1/(σ̂2/α̂2
j )

1
2 )

Muniz and Kibria [10] kM3 = max((σ̂2/α̂2
j )

1
2 )

Muniz and Kibria [10] kM4 = Geometric Mean(1/(σ̂2/α̂2
j )

1
2 )

Muniz and Kibria [10] kM5 = Geometric Mean((σ̂2/α̂2
j )

1
2 )

Muniz and Kibria [10] kM6 = Median(1/(σ̂2/α̂2
j )

1
2 )

Muniz et al. [13] kM8 = max(1/g j), where g j = (λmax
ˆσ2)/((n− q)σ̂2 + λmaxα̂2

j )

Muniz et al. [13] kM9 = max(g j)

Muniz et al. [13] kM10 = Geometric Mean(1/g j)

Muniz et al. [13] kM11 = Geometric Mean(g j)

Muniz et al. [13] kM12 = Median(1/g j)

Dorugade and Kashid [33] kD = max(0, kHKB − 1/(n ∗VIFmax)

Khalaf and Shukur [8] kKS = (λmaxσ̂2)/((n− q)σ̂2 + λmaxα̂2
max)

Khalaf and Shukur [8] kK12 = kHK70 + 2/(λmax + λmin)

Alkhamisi and Shukur [9]
kKSAM = Arithmetic Mean(m j)

m j = (λ jσ̂2)/((n− q)σ̂2
j + λ jα̂

2
j )

Alkhamisi and Shukur [9] kKSMAX = max(m j)

Alkhamisi and Shukur [9] kKSMED = Median(m j)

Alkhamisi and Shukur [9] kASH = max(σ̂2/α̂2
j + 1/λ j)

Schaffer et al. [34] kSC = 1/max(α̂2)

Asar et al. [21] kA1 = (q2σ̂2)/(λ2
max

q∑
j=1

α̂2
j )

Asar et al. [21] kA2 = (q3σ̂2)/(λ3
max

q∑
j=1

α̂2
j )

Asar et al. [21] kA3 = (qσ̂2)/(λ1/3
max

q∑
j=1

α̂2
j )

Asar et al. [21] kA4 = (q2σ̂2)/{(
q∑

j=1

√
λ j)

1
3 q∑

j=1
α̂2

j }

Asar et al. [21] kA5 = (2qσ̂2)/(λ1/2
max

q∑
j=1

α̂2
j )

Nomura [22] kNOM = qσ̂2/
q∑

j=1

[
α̂2

j /
{

1 + (1 + λ j ((α̂
2
j /σ̂2))

1
2 )

}]
Goktas and Sevinc [22] kGS1 =

√
Median((σ̂2/α̂2

j )
1
2 )

Goktas and Sevinc [22] kGS2 = σ̂2/(Median((σ̂2/α̂2
j )

1
2 ))

2

Dorugade [35] kD1 = ArithmeticMean((2σ̂2)/(λmaxα̂2
j ))

Dorugade [35] kD2 = Median ((2σ̂2)/(λmaxα̂2
j ))

Dorugade [35] kD3 = Harmonic Mean((2σ̂2)/(λmaxα̂2
j ))

Dorugade [35] kD4 = Geometric Mean((2σ̂2)/(λmaxα̂2
j ))

Feras and Gore [11] kFG = qσ̂2/
q∑

j=1

[
α̂2

j /
{
(α̂4

jλ
2
j /4σ̂4 + 6α̂2

jλ j/σ̂2)
1
2
− α̂2

jλ j/2σ̂2

}]
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Here, α̂ is defined as:
α̂ = PTβ̂

where P is an orthonormal matrix that satisfies PTXTXP = Λ, and Λ is a diagonal matrix of eigenvalues
(λj j = 1, 2, . . . , q) of XTX. To calculate the value of test statistics, we considered each of the k values in
Table 1 in Equations (4)–(7) and thus obtained 40 different values of the test statistics. Since a theoretical
assessment among the test statistics was not possible, a simulation study was conducted to evaluate
the performances of the suggested tests in the following section.

3. Simulation Study

Our simulation study has two parts. First, we analyzed the empirical Type I error of the tests.
The test statistics that achieved the nominal size of 5% were kept, and the ones that deviated significantly
from the 5% size were discarded. Then, the second part of the simulation study compared the tests
statistics that achieved 5% nominal size in regards to statistical power.

3.1. Type I Error Rates Simulation Procedure

R Studio was used for all calculations of this paper. The R package lmridge was used to fit the
ridge regression models. For the empirical Type I error simulation and the power of the test, we
considered sample sizes n = 30, 50, 80, and 100, the number of regressors q = 4, 6, 8, 10, and 25, and
the standard deviation of the error term was chosen as σ = 1. To see the effects of multicollinearity by
stating the correlation matrix among the regressors, we assumed ρ = 0.80 and 0.95. An n × p matrix
X was created as H Λ0.5 GT, where H is any (n × p) matrix whose columns are orthogonal, Λ is the
diagonal matrix of eigenvalues of the correlation matrix, and G is the matrix of normalized eigenvectors
of the correlation matrix, respectively. Following Halawa and Bassiouni [26], our study was based
on the most favorable (MF) direction of β for model (1). The MF orientation of β corresponds to the
largest normalized eigenvector of the matrix XTX, which is a vector of the form (1/

√
q)1q. We chose

not to use the least favorable orientation (LF) of β in our simulation, since all the literature available
shows that both orientations give similar results in terms of Type I error and power. For a detailed
explanation of MF and LF directions of β and other details of the simulation procedure, please see the
paper by Halawa and Bassiouni [26].

To estimate the 5% nominal size (α = 0.05) for testing H0 : βi = 0 versus H1 : βi , 0 under different
conditions, 5000 pseudo random vectors from N(0, σ2) were created to compute the error term in (1).
Without loss of any generality, we let zero intercept for (1). Under the null model, substituting the
i-th element of the considered MF β by zero, model (1) was used to find 5000 simulated vectors of Y.
The estimated sizes were computed as the percentage of times the absolute values of all selected test
statistics were greater than the critical value of t0.025, (n-q-1).

3.2. Type I Error Rates: Simulation Results

In Tables 2 and 3, we recorded the empirical sizes of the tests for the MF orientation for correlation
levels of 0.80 and 0.95, respectively

Table 2. Simulated Type I errors for ρ = 0.80 and α = 0.05.

Statistics
n = 30 n = 50 n = 80 n = 100

q: 4 6 8 8 10 10 25 Average Type I Error

tOLS 0.0516 0.0553 0.0509 0.0525 0.0486 0.0490 0.0506 0.051

tKHSL 0.0537 0.0544 0.0441 0.0529 0.0445 0.0473 0.0416 0.048

tKHK70 0.0511 0.0546 0.0479 0.0532 0.0470 0.0478 0.0489 0.050

tKTH 0.0513 0.0537 0.0442 0.0522 0.0454 0.0472 0.0417 0.048

tKVR 0.1139 0.1745 0.2069 0.3280 0.3967 0.4864 0.8803 0.370

tKLW76 0.0473 0.0493 0.0349 0.0485 0.0418 0.0489 0.0346 0.044
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Table 2. Cont.

Statistics
n = 30 n = 50 n = 80 n = 100

q: 4 6 8 8 10 10 25 Average Type I Error

tKHKB 0.0548 0.0526 0.0434 0.0525 0.0447 0.0473 0.0412 0.048

tKKibAM 0.0828 0.1152 0.1327 0.1856 0.2249 0.2612 0.5162 0.217

tKKibMED 0.0597 0.0588 0.0444 0.0589 0.0520 0.0543 0.0369 0.052

tKKibGM 0.0639 0.0669 0.0487 0.0686 0.0598 0.0656 0.0394 0.059

tKM2 0.0955 0.1333 0.1387 0.1879 0.2063 0.2319 0.2572 0.179

tKM3 0.0917 0.1277 0.1488 0.2037 0.2470 0.2877 0.5848 0.242

tKM4 0.0770 0.0795 0.0603 0.0849 0.0744 0.0859 0.0478 0.073

tKM5 0.0650 0.0685 0.0497 0.0691 0.0612 0.0659 0.0396 0.060

tKM6 0.0798 0.0861 0.0692 0.0961 0.0842 0.0970 0.0572 0.081

tKM8 0.1229 0.1736 0.1836 0.2921 0.3180 0.4119 0.4440 0.278

tKM9 0.0428 0.0581 0.0708 0.0510 0.0661 0.0436 0.1802 0.073

tKM10 0.1197 0.1451 0.1062 0.2468 0.2174 0.3620 0.1286 0.189

tKM11 0.0420 0.0346 0.0282 0.0419 0.0304 0.0450 0.0307 0.036

tKM12 0.1204 0.1514 0.1209 0.2540 0.2322 0.3665 0.1616 0.201

tKD 0.0533 0.0570 0.0511 0.0536 0.0477 0.0483 0.0440 0.051

tKKS 0.0507 0.0546 0.0479 0.0532 0.0473 0.0478 0.0493 0.050

tKKSAM 0.0499 0.0529 0.0458 0.0529 0.0475 0.0481 0.0503 0.050

tKKSMAX 0.0482 0.0495 0.0399 0.0483 0.0408 0.0459 0.0349 0.044

tKKSMED 0.0518 0.0550 0.0497 0.0531 0.0485 0.0488 0.0504 0.051

tKSC 0.0520 0.0545 0.0473 0.0530 0.0469 0.0477 0.0486 0.050

tKA1 0.0508 0.0549 0.0487 0.0532 0.0480 0.0479 0.0504 0.051

tKA2 0.0511 0.0548 0.0487 0.0531 0.0476 0.0480 0.0503 0.051

tKA3 0.0527 0.0536 0.0455 0.0519 0.0466 0.0468 0.0468 0.049

tKA4 0.0528 0.0534 0.0453 0.0521 0.0463 0.0469 0.0462 0.049

tKA5 0.0522 0.0543 0.0482 0.0530 0.0474 0.0481 0.0504 0.051

tKASH 0.1223 0.1848 0.2238 0.3237 0.3951 0.4564 0.8705 0.368

tKNOM 0.0798 0.0693 0.0454 0.0652 0.0503 0.0568 0.0364 0.058

tKSG1 0.0643 0.0611 0.0410 0.0635 0.0525 0.0596 0.0379 0.054

tKSG2 0.0862 0.1125 0.1225 0.1767 0.2037 0.2432 0.4428 0.198

tKK12 0.0576 0.0499 0.0350 0.0482 0.0401 0.0439 0.0425 0.045

tKD1 0.0740 0.0920 0.0933 0.1250 0.1444 0.1583 0.2042 0.127

tKD2 0.0542 0.0525 0.0435 0.0512 0.0456 0.0476 0.0481 0.049

tKD3 0.0522 0.0543 0.0482 0.0530 0.0474 0.0481 0.0504 0.051

tKD4 0.0564 0.0542 0.0432 0.0527 0.0454 0.0482 0.0472 0.050

tKFG 0.0644 0.0566 0.0391 0.0550 0.0446 0.0500 0.0357 0.049

Table 3. Simulated Type I errors for ρ = 0.95 and α = 0.05.

Statistics
n = 30 n = 50 n = 80 n = 100

q: 4 6 8 8 10 10 25 Average Type I Error

tOLS 0.0480 0.0489 0.0508 0.0522 0.0524 0.0510 0.0507 0.051

tKHSL 0.0582 0.0467 0.0374 0.0499 0.0426 0.0507 0.0327 0.045

tKHK70 0.0480 0.0464 0.0487 0.0505 0.0508 0.0499 0.0495 0.049

tKTH 0.0479 0.0442 0.0439 0.0482 0.0465 0.0477 0.0424 0.046

tKVR 0.1913 0.3010 0.3954 0.5188 0.6153 0.6867 0.9799 0.527

tKLW76 0.0624 0.0537 0.0429 0.0620 0.0589 0.0704 0.0375 0.055

tKHKB 0.0497 0.0433 0.0412 0.0467 0.0453 0.0470 0.0416 0.045

tKKibAM 0.0898 0.1321 0.1615 0.2074 0.2474 0.2783 0.4582 0.225

tKKibMED 0.0614 0.0510 0.0403 0.0499 0.0448 0.0510 0.0366 0.048
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Table 3. Cont.

Statistics
n = 30 n = 50 n = 80 n = 100

q: 4 6 8 8 10 10 25 Average Type I Error

tKKibGM 0.0630 0.0505 0.0393 0.0518 0.0467 0.0520 0.0331 0.048

tKM2 0.1903 0.2978 0.3915 0.4868 0.5710 0.6307 0.9065 0.496

tKM3 0.1359 0.1961 0.2473 0.3083 0.3705 0.4085 0.6832 0.336

tKM4 0.1694 0.2243 0.2548 0.3093 0.3243 0.3603 0.2893 0.276

tKM5 0.0634 0.0515 0.0395 0.0523 0.0472 0.0523 0.0331 0.048

tKM6 0.1730 0.2364 0.2793 0.3378 0.3683 0.4111 0.3880 0.313

tKM8 0.1914 0.3016 0.3962 0.5100 0.5917 0.6685 0.9287 0.513

tKM9 0.0659 0.1081 0.1673 0.1393 0.1956 0.1311 0.4297 0.177

tKM10 0.1906 0.2728 0.2940 0.4405 0.4541 0.6072 0.4127 0.382

tKM11 0.0296 0.0417 0.0388 0.0393 0.0469 0.0350 0.0314 0.038

tKM12 0.1921 0.2657 0.2635 0.4501 0.4538 0.6200 0.4060 0.379

tKD 0.0481 0.0489 0.0508 0.0522 0.0524 0.0510 0.0507 0.051

tKKS 0.0480 0.0464 0.0488 0.0508 0.0509 0.0502 0.0495 0.049

tKKSAM 0.0443 0.0397 0.0361 0.0477 0.0451 0.0494 0.0472 0.044

tKKSMAX 0.0452 0.0543 0.0854 0.0432 0.0480 0.0435 0.0376 0.051

tKKSMED 0.0479 0.0482 0.0502 0.0526 0.0526 0.0507 0.0506 0.050

tKSC 0.0483 0.0456 0.0481 0.0502 0.0505 0.0499 0.0494 0.049

tKA1 0.0483 0.0473 0.0494 0.0520 0.0526 0.0506 0.0504 0.050

tKA2 0.0484 0.0473 0.0494 0.0519 0.0525 0.0506 0.0504 0.050

tKA3 0.0483 0.0449 0.0459 0.0492 0.0487 0.0495 0.0483 0.048

tKA4 0.0490 0.0442 0.0451 0.0489 0.0474 0.0490 0.0469 0.047

tKA5 0.0479 0.0465 0.0484 0.0508 0.0513 0.0502 0.0503 0.049

tKASH 0.1859 0.2986 0.3967 0.5238 0.6191 0.6850 0.9770 0.527

tKNOM 0.0631 0.0445 0.0345 0.0445 0.0405 0.0454 0.0352 0.044

tKSG1 0.1040 0.0908 0.0676 0.0902 0.0786 0.0881 0.0418 0.080

tKSG2 0.1100 0.1484 0.1721 0.2247 0.2554 0.2853 0.3872 0.226

tKK12 0.0897 0.0508 0.0309 0.0457 0.0393 0.0458 0.0351 0.048

tKD1 0.0712 0.0892 0.0988 0.1241 0.1380 0.1530 0.1683 0.120

tKD2 0.0525 0.0425 0.0426 0.0484 0.0480 0.0479 0.0490 0.047

tKD3 0.0479 0.0465 0.0484 0.0508 0.0513 0.0502 0.0503 0.049

tKD4 0.0526 0.0435 0.0411 0.0470 0.0463 0.0470 0.0484 0.047

tKFG 0.0483 0.0381 0.0318 0.0429 0.0390 0.0440 0.0346 0.040

If the true Type I error rate is 5%, then, for a simulation based in 5000 runs, the observed Type I error

will be in the following interval 95% of the times 0.05± 2
√

0.05×0.95
5000 ≈ (4.4%, 5.6%). We did not consider

those tests for comparison’s purpose whose observed average Type I error was not in the above range.
Based on the above tables, we observed the following:

(i) The tests based on the following ridge estimators, KVR, KKibAM, KM2, KM3, KM4, KM6, KM8, KM9,
KM10, KM12, KASH, KSG1, KSG2, and KD1, have Type I errors very well above the 5% nominal size
and therefore cannot be recommended.

(ii) The tests based on the following ridge estimators, KM11, KNOM, and KFG, did not surpass the 5%
nominal size but stayed below it—around 3% to 4%—and therefore cannot be recommended.

(iii) The rest of the tests (including the test based on the ordinary least squares estimator) were, on average,
very close to the nominal size of 5% for different sample sizes, number of variables, and levels of
correlation analyzed. These tests were the ones that were compared in terms of statistical power.

We also carried out simulations for nominal sizes of 10% and 1%, and the behavior of the tests was
consistent with what was observed for a nominal size of 5%. Those results are available upon request.



Stats 2020, 3 47

However, we are including a table of simulated Type I errors for nominal size 1% and correlation level
0.95 in Table 4 so that one can verify that the behavior of the tests was consistent with the results for 5%
nominal size shown before.

Table 4. Simulated Type I errors for ρ = 0.95 and α = 0.01.

Statistics
n = 30 n = 50 n = 80 n = 100

p: 4 6 8 8 10 10 25 Average Type I
Error Probability

tOLS 0.0130 0.0138 0.0066 0.0098 0.0090 0.0106 0.0088 0.010

tKHSL 0.0112 0.0092 0.0030 0.0062 0.0054 0.0080 0.0042 0.007

tKHK70 0.0126 0.0128 0.0062 0.0096 0.0090 0.0104 0.0084 0.010

tKTH 0.0122 0.0126 0.0056 0.0092 0.0080 0.0094 0.0070 0.009

tKVR 0.0514 0.0956 0.1228 0.2274 0.2946 0.3896 0.9000 0.297

tKLW 0.0092 0.0070 0.0010 0.0102 0.0068 0.0118 0.0050 0.007

tKHKB 0.0106 0.0118 0.0050 0.0092 0.0076 0.0092 0.0070 0.009

tKKibAM 0.0198 0.0324 0.0360 0.0748 0.1018 0.1290 0.3414 0.105

tKKibMED 0.0130 0.0110 0.0042 0.0086 0.0058 0.0082 0.0044 0.008

tKKibGM 0.0122 0.0098 0.0046 0.0066 0.0056 0.0094 0.0044 0.008

tKM2 0.0482 0.0928 0.1222 0.2134 0.2784 0.3388 0.7274 0.260

tKM3 0.0330 0.0564 0.0612 0.1182 0.1544 0.1898 0.5078 0.160

tKM4 0.0474 0.0740 0.0750 0.1222 0.1272 0.1560 0.1094 0.102

tKM5 0.0120 0.0100 0.0046 0.0066 0.0056 0.0096 0.0044 0.008

tKM6 0.0478 0.0760 0.0836 0.1376 0.1488 0.1834 0.1706 0.121

tKM8 0.0454 0.0904 0.1222 0.2270 0.2916 0.3768 0.7718 0.275

tKM9 0.0144 0.0278 0.0406 0.0458 0.0688 0.0496 0.2704 0.074

tKM10 0.0457 0.0820 0.0850 0.1804 0.1977 0.3089 0.1871 0.155

tKM11 0.0062 0.0059 0.0015 0.0043 0.0042 0.0065 0.0028 0.004

tKM12 0.0494 0.0830 0.0744 0.1964 0.2058 0.3322 0.1914 0.162

tKD 0.0130 0.0138 0.0066 0.0098 0.0090 0.0106 0.0088 0.010

tKKS 0.0126 0.0128 0.0062 0.0096 0.0090 0.0104 0.0086 0.010

tKKSAM 0.0092 0.0092 0.0058 0.0086 0.0068 0.0096 0.0072 0.008

tKKSMAX 0.0082 0.0138 0.0240 0.0056 0.0062 0.0074 0.0056 0.010

tKKSMED 0.0130 0.0132 0.0064 0.0098 0.0090 0.0108 0.0086 0.010

tKSC 0.0122 0.0126 0.0062 0.0096 0.0088 0.0102 0.0082 0.010

tKA1 0.0128 0.0132 0.0064 0.0100 0.0090 0.0106 0.0088 0.010

tKA2 0.0128 0.0132 0.0064 0.0098 0.0090 0.0106 0.0088 0.010

tKA3 0.0114 0.0126 0.0062 0.0094 0.0084 0.0098 0.0080 0.009

tKA4 0.0110 0.0126 0.0058 0.0094 0.0080 0.0096 0.0078 0.009

tKA5 0.0122 0.0128 0.0062 0.0096 0.0090 0.0106 0.0088 0.010

tKASH 0.0398 0.0748 0.0996 0.2200 0.2900 0.3884 0.8944 0.287

tKNOM 0.0136 0.0080 0.0038 0.0062 0.0048 0.0078 0.0044 0.007

tKSG1 0.0250 0.0176 0.0064 0.0196 0.0124 0.0224 0.0068 0.016

tKSG2 0.0254 0.0380 0.0368 0.0736 0.1010 0.1254 0.2874 0.098

tKK12 0.0206 0.0086 0.0010 0.0070 0.0036 0.0072 0.0046 0.008

tKD1 0.0152 0.0186 0.0188 0.0408 0.0518 0.0634 0.1054 0.045

tKD2 0.0114 0.0112 0.0052 0.0080 0.0080 0.0090 0.0084 0.009

tKD3 0.0122 0.0128 0.0062 0.0096 0.0090 0.0106 0.0088 0.010

tKD4 0.0106 0.0110 0.0046 0.0082 0.0074 0.0086 0.0080 0.008

tKFG 0.0098 0.0080 0.0026 0.0054 0.0044 0.0076 0.0044 0.006

3.3. Statistical Power Simulation Procedure

After calculating the empirical type I error rates of the tests based on our initial forty ridge
estimators, we discarded seventeen that did not have a nominal size between 4.4% and 5.6%.
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The remaining twenty-three test statistics were compared in terms of power. Following the paper
by Gokpinar and Ebegil [28], we replaced the i-th component of the β vector by J w(0)σβi, where J is
a whole positive number, and w2(0) = (1 + (q− 2)ρ)/[(1− ρ)(1 + (q− 1)ρ)]. We picked J = 6 since
that value achieved approximately a power of 80% for the OLS test when q = 4, and having a sizeable
power for the OLS test allowed for a better comparison with the other ones.

Based on 5000 simulation runs, the powers of the tests were computed by the proportion of times
the absolute value of the test statistic exceeded the critical value t0.025, (n-q-1). All combinations of sample
sizes of n = 30, 50, 100 and number of regressors q = 4, 6, 10 were considered under correlation levels of
0.80 and 0.95, respectively.

3.4. Statistical Power: Simulation Results

We recorded the empirical statistical power of the tests for the MF orientation for correlation levels
of 0.8 and 0.95 in Tables 5 and 6, respectively.

Table 5. Powers of tests for ρ = 0.80 and α = 0.05.

Statistics
q = 4 q = 6 q = 10

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

tOLS 0.8074 0.8254 0.8496 0.6362 0.6532 0.6774 0.4318 0.4496 0.449

tKHSL 0.8728 0.8912 0.907 0.7198 0.728 0.7634 0.4678 0.5092 0.524

tKHK70 0.8746 0.8912 0.9062 0.7034 0.7122 0.7478 0.453 0.4804 0.4856

tKTH 0.8790 0.8976 0.9154 0.7346 0.7478 0.7878 0.4766 0.5214 0.5406

tKLW76 0.8840 0.901 0.9136 0.7398 0.7506 0.7878 0.485 0.5396 0.5624

tKHKB 0.9332 0.9468 0.956 0.7806 0.8034 0.8402 0.4888 0.5430 0.566

tKKibMED 0.9636 0.975 0.9804 0.8558 0.8798 0.906 0.5666 0.6454 0.6726

tKKibGM 0.9706 0.9796 0.9858 0.8952 0.916 0.9328 0.6472 0.7282 0.7546

tKM5 0.9718 0.98 0.986 0.9004 0.9184 0.9336 0.6568 0.7322 0.7566

tKD 0.8390 0.9012 0.9424 0.6732 0.7332 0.808 0.4444 0.4966 0.5398

tKKS 0.8534 0.861 0.8684 0.6856 0.6882 0.7056 0.4502 0.4728 0.4724

tKKSAM 0.8532 0.8518 0.858 0.6788 0.6812 0.69 0.3578 0.4718 0.4596

tKKSMAX 0.9362 0.9026 0.8822 0.8664 0.766 0.7342 0.7006 0.6278 0.5148

tKKSMED 0.8158 0.8298 0.85 0.6452 0.6574 0.681 0.4376 0.4528 0.451

tKSC 0.8720 0.8888 0.905 0.7010 0.7114 0.7474 0.4542 0.4810 0.4856

tKA1 0.8612 0.8774 0.8952 0.6782 0.689 0.7216 0.445 0.4632 0.4692

tKA2 0.8698 0.8868 0.904 0.6864 0.6972 0.7308 0.4472 0.4666 0.4734

tKA3 0.9042 0.9176 0.933 0.7272 0.737 0.7748 0.463 0.4950 0.5094

tKA4 0.9064 0.9198 0.9346 0.7304 0.7406 0.7788 0.465 0.4978 0.5118

tKA5 0.8936 0.9094 0.9266 0.7016 0.7106 0.7458 0.4508 0.4728 0.4788

tKK12 0.9934 0.9974 0.998 0.8958 0.9158 0.9342 0.5158 0.5902 0.6074

tKD2 0.9384 0.957 0.9642 0.7634 0.7794 0.8126 0.4694 0.4974 0.5086

tKD3 0.8936 0.9094 0.9266 0.7016 0.7106 0.7458 0.4508 0.4728 0.4788

tKD4 0.9494 0.9636 0.9716 0.7966 0.8152 0.8422 0.4826 0.5248 0.5394

For a better visualization of the power of the ridge tests vs. The OLS test, we provided the power
of the test for α = 0.05 and ρ = 0.80 and q = 4, 6, and 10 in Figures 1–3, respectively.
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Table 6. Powers of tests for ρ = 0.95 and α = 0.05.

Statistics
q = 4 q = 6 q = 10

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100 n = 30 n = 50 n = 100

tOLS 0.8076 0.8254 0.8416 0.6284 0.6528 0.6738 0.4156 0.4418 0.4592

tKHSL 0.891 0.9046 0.9164 0.7478 0.7702 0.792 0.4768 0.5505 0.58

tKHK70 0.8812 0.8986 0.911 0.6916 0.7146 0.7378 0.428 0.465 0.4844

tKTH 0.8846 0.906 0.9168 0.7264 0.7616 0.7864 0.4468 0.5018 0.5314

tKLW76 0.8926 0.9064 0.9198 0.7528 0.7776 0.7992 0.4834 0.546 0.5964

tKHKB 0.9412 0.9582 0.9664 0.785 0.8168 0.8442 0.4546 0.5212 0.5526

tKKibMED 0.9664 0.9796 0.9846 0.8554 0.892 0.905 0.5358 0.6202 0.6554

tKKibGM 0.9754 0.9868 0.9894 0.901 0.9318 0.9436 0.6094 0.7022 0.7344

tKM5 0.9776 0.9868 0.9898 0.907 0.934 0.9442 0.6194 0.708 0.7374

tKD 0.8076 0.8254 0.8416 0.6284 0.6528 0.6738 0.4156 0.4418 0.4592

tKKS 0.8712 0.8844 0.8892 0.6848 0.7044 0.7208 0.428 0.4628 0.4826

tKKSAM 0.7096 0.9358 0.8868 0.4198 0.7978 0.7218 0.1308 0.5156 0.4874

tKKSMAX 0.953 0.9918 0.9598 0.7946 0.9734 0.884 0.4756 0.8742 0.7224

tKKSMED 0.816 0.8286 0.844 0.6348 0.657 0.675 0.4178 0.4442 0.4598

tKSC 0.8768 0.8978 0.9096 0.689 0.7136 0.7384 0.4294 0.4636 0.4856

tKA1 0.849 0.8702 0.8842 0.6554 0.6782 0.7034 0.422 0.4508 0.4676

tKA2 0.8508 0.8722 0.8854 0.6568 0.6794 0.7044 0.4222 0.4512 0.4678

tKA3 0.9088 0.9268 0.9356 0.7116 0.7418 0.7666 0.4352 0.4782 0.4984

tKA4 0.9216 0.9376 0.9438 0.7284 0.7626 0.7862 0.4378 0.4856 0.5094

tKA5 0.8902 0.909 0.9192 0.6798 0.704 0.731 0.426 0.4574 0.4768

tKK12 1 1 1 0.9988 0.9992 0.9996 0.6938 0.7774 0.8222

tKD2 0.937 0.9548 0.9632 0.7384 0.768 0.7832 0.4358 0.4802 0.4986

tKD3 0.8902 0.909 0.9192 0.6798 0.704 0.731 0.426 0.4574 0.4768

tKD4 0.9492 0.9622 0.9696 0.7722 0.7998 0.8204 0.4484 0.5002 0.5206

For a better visualization of the power of the ridge tests vs. The OLS test, we provided the power
of the test for α = 0.05 and ρ = 0.90 and q = 4, 6, and 10 in Figures 4–6, respectively.
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The following Table 7 provides the average gains in power for the tests with respect to the OLS
test for both levels of correlations, namely 0.80 and 0.95.

Table 7. Average gain in power over the ordinary least squares (OLS) test for α = 0.05 and q = 0.06.

Statistics
Average Gain in Power Over OLS Test

ρ = 0.80 ρ = 0.95

tKHSL 7% 10%

tKHK70 5% 5%

tKTH 8% 8%

tKLW76 9% 10%

tKHKB 12% 12%

tKKibMED 19% 18%

tKKibGM 23% 23%

tKM5 23% 23%

tKD 7% 0%

tKKS 3% 4%

tKKSAM 1% -2%

tKKSMAX 13% 21%
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Table 7. Cont.

Statistics
Average Gain in Power Over OLS Test

ρ = 0.80 ρ = 0.95

tKKSMED 0% 0%

tKSC 5% 5%

tKA1 4% 3%

tKA2 4% 3%

tKA3 8% 7%

tKA4 8% 9%

tKA5 6% 5%

tKK12 19% 28%

tKD2 10% 9%

tKD3 6% 5%

tKD4 12% 11%

Based on the above tables, we observed the following:

(i) All the considered tests (with the exception of the one based on KKSAM when n = 30) achieved
higher statistical power than the OLS test.

(ii) Keeping the number of variables in the model fixed, if the sample size increased, the power of the
tests also increased, as was expected.

(iii) Keeping the sample size fixed, increasing the number of variables in the model decreased the
power of the tests.

(iv) Among the tests considered, the ones with the highest gain in power over the OLS test across
different values of q, n, and ρ were the ones based on the following ridge estimators: KHKB,
KKibMED, KKibGM, KM5, KKSMAX, KK12, and KD4. The observed gains over the OLS test were
between 12% to 28% (see Table 7). Therefore, we recommend these seven tests to data analysis
practitioners since they achieve the highest power among the ones considered while maintaining
a 5% probability of Type I error.

4. Application Example

The following car consumption dataset available in the webpage http://data-mining-tutorials.
blogspot.com/2010/05/solutions-for-multicollinearity-in.html (See Appendix A) was used to illustrate
the finding of the paper.

The goal was to create a linear regression model to predict the consumption of cars from various
characteristics such as: price, engine size, horsepower, and weight. There were n = 27 observations in
the dataset. We made use of the mctest and the lmridge R packages in our computations. For more
info on the functionality of the aforementioned packages, see Ullah, Aslam, and Altaf [36].

There was strong evidence of multicollinearity in the data, as evidenced by all of the VIFs (variance
inflation factors) being greater than 10 (See Table 8 below).

Table 8. Variance inflation factors (VIFs) of the regressors.

Variable VIF

Price 19.7919
Engine Size 12.8689
Horsepower 14.8922

Weight 10.2260

Also, the condition number (CN), which is defined as CN = (
largest eigenvalue (XTX)

smallest eigenvalue(XTX)
)

2
= 38.3660, was

greater than 30, indicating high dependency between the explanatory variables. Since multicollinearity

http://data-mining-tutorials.blogspot.com/2010/05/solutions-for-multicollinearity-in.html
http://data-mining-tutorials.blogspot.com/2010/05/solutions-for-multicollinearity-in.html
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existed, ridge regression estimation was preferable to OLS estimation for this model. We contrasted
the results of the OLS method with ridge regression using two of the ridge estimators that showed
higher power, namely KKibMED and KKibGM, and the analyses are given in the following Table 9.

Table 9. Regression analysis.

Variable OLS (k = 0) KKibMED (k = 0.34766) KKibGM (k = 0.38798)

coef t-stat p-value coef t-stat p-value coef t-stat p-value

Price 3 × 10−5 0.7697 0.4497 4 × 10−5 7.8052 <0.0001 4 × 10−5 8.2386 <0.0001

Engine Size 0.0012 1.7103 0.1013 0.0007 5.9079 <0.0001 0.0007 6.2434 <0.0001

Horsepower −0.0037 −0.2546 0.8014 0.0108 4.5418 0.0001 0.0111 4.9219 <0.0001

Weight 0.0037 2.9330 0.0077 0.0022 7.6687 <0.0001 0.0021 7.9105 <0.0001

Intercept 1.8380 −0.9442 0.3553 3.1625 −8.6380 <0.0001 3.2371 −9.1118 <0.0001

MSE(β̂) 23.4343 15.4460 16.0363

From Table 9, we observed that no variable except for weight was a significant predictor of car
consumption under the OLS estimation. When ridge regression was applied, all variables (price,
engine size, horsepower, and weight of the car) became significant predictors of car consumption,
and the MSE [computed using Equation (5) of the coefficient vector also decreased compared to the
OLS estimate, as is expected when a ridge regression approach is appropriate. Also, we could see
that the sign of the coefficient of horsepower reversed from negative and not significant under the
OLS estimation to positive and significant under ridge regression estimation. Change of sign in the
coefficients is one of the signals that the ridge regression approach is a good fit for this particular
problem according to what is explained in the foundational paper by Hoerl and Kennard [1]. Also,
it makes physical sense that higher horsepower of the car leads to higher gas consumption, thus a
positive sign for the coefficient would be the right choice.

5. Some Concluding Remarks

In this paper, we investigated forty different ridge regression estimators in order to find some
good test statistics for testing the regression coefficients of the linear regression model in case of
multicollinearity. A simulation study under different conditions was constructed to make the empirical
comparison among the ridge regression estimators. We compared the performance of the test statistics
based on the empirical size and the power of the test. It was observed from our simulations that
the tests based on ridge estimators KHKB, KKibMED, KKibGM, KM5, KKSMAX, KK12, and KD4 were the
best in terms of achieving higher power gains with respect to the OLS test while maintaining a 5%
nominal size.

Our results are consistent with Kibria and Banik [29], although they did not conclude which
tests were the best ones. While Gokpinar and Ebergil [28] concluded that the best tests in terms of
power were the ones based on KHSL and KHKB, we found that the gains in power over the OLS test for
KHSL are somewhat smaller than the gains in power for the tests based on the seven estimators we
mentioned above, and therefore we did not include KHSL in our final list.

All in all, based on our simulation results, we recommend the tests based on KHKB, KKibMED,
KKibGM, KM5, KKSMAX, KK12, and KD4 to statistical practitioners for the purpose of testing linear
regression coefficients when multicollinearity is present.
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Appendix A

Table A1. Data set.

Model Price Engine Size Horsepower Weight Gas Consumption

Daihatsu Cuore 11600.00 846.00 32.00 650.00 5.70
Suzuki Swift 1.0 GL 12490.00 993.00 39.00 790.00 5.80
Fiat Panda Mambo L 10450.00 899.00 29.00 730.00 6.10

VW Polo 1.4 60 17140.00 1390.00 44.00 955.00 6.50
Opel Corsa 1.2i Eco 14825.00 1195.00 33.00 895.00 6.80
Subaru Vivio 4WD 13730.00 658.00 32.00 740.00 6.80

Toyota Corolla 19490.00 1331.00 55.00 1010.00 7.10
Opel Astra 1.6i 16V 25000.00 1597.00 74.00 1080.00 7.40
Peugeot 306 XS 108 22350.00 1761.00 74.00 1100.00 9.00
Renault Safrane 2.2 36600.00 2165.00 101.00 1500.00 11.70
Seat Ibiza 2.0 GTI 22500.00 1983.00 85.00 1075.00 9.50
VW Golt 2.0 GTI 31580.00 1984.00 85.00 1155.00 9.50

Citroen ZX Volcane 28750.00 1998.00 89.00 1140.00 8.80
Fiat Tempra 1.6 Lib 22600.00 1580.00 65.00 1080.00 9.30
Fort Escort 1.4i PT 20300.00 1390.00 54.00 1110.00 8.60

Honda Civic Joker 1 19900.00 1396.00 66.00 1140.00 7.70
Volvo 850 2.5 39800.00 2435.00 106.00 1370.00 10.80

Ford Fiesta 1.2 Zet 19740.00 1242.00 55.00 940.00 6.60
Hyundai Sonata 3000 38990.00 2972.00 107.00 1400.00 11.70

Lancia K 3.0 LS 50800.00 2958.00 150.00 1550.00 11.90
Mazda Hachtback V 36200.00 2497.00 122.00 1330.00 10.80
Opel Omega 2.5i V6 47700.00 2496.00 125.00 1670.00 11.30

Peugeot 806 2.0 36950.00 1998.00 89.00 1560.00 10.80
Nissan Primera 2.0 26950.00 1997.00 92.00 1240.00 9.20
Seat Alhambra 2.0 36400.00 1984.00 85.00 1635.00 11.60

Toyota Previa salon 50900.00 2438.00 97.00 1800.00 12.80
Volvo 960 Kombi aut 49300.00 2473.00 125.00 1570.00 12.70
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