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Abstract: The widely used fitting method of least squares is neither unique nor does it provide the
most accurate results. Other fitting methods exist which differ on the metric norm can be used for
expressing the total deviations between the given data and the fitted statistical model. The least
square method is based on the Euclidean norm L2, while the alternative least absolute deviations
method is based on the Taxicab norm, L1. In general, there is an infinite number of fitting methods
based on metric spaces induced by Lq norms. The most accurate, and thus optimal method, is the one
with the (i) highest sensitivity, given by the curvature at the minimum of total deviations, (ii) the
smallest errors of the fitting parameters, (iii) best goodness of fitting. The first two cases concern
fitting methods where the given curve functions or datasets do not have any errors, while the third
case deals with fitting methods where the given data are assigned with errors.

Keywords: fitting; regression; non-Euclidean norms

1. Introduction

The keys to evaluate experimental results—e.g., comparing with results anticipated by
theories—requires the right selection of statistical and data analysis techniques. These involve
three general types of problems: One problem arises when a function is given analytically by a
complicated formula, but we would like to find an alternative approximating function with a simpler
form (Figure 1a). The second problem concerns the fitting of the modeled function to a given set of a
discrete dataset, but all data points are considered to have large signal-to-noise and inconsiderable
errors (Figure 1b). The third problem involves fitting a noisy data set with random errors (Figure 1c).
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1. Introduction 

The keys to evaluate experimental results—e.g., comparing with results anticipated by 
theories—requires the right selection of statistical and data analysis techniques. These involve three 
general types of problems: One problem arises when a function is given analytically by a 
complicated formula, but we would like to find an alternative approximating function with a 
simpler form (Figure 1a). The second problem concerns the fitting of the modeled function to a given 
set of a discrete dataset, but all data points are considered to have large signal-to-noise and 
inconsiderable errors (Figure 1b). The third problem involves fitting a noisy data set with random 
errors (Figure 1c). 

 

Figure 1. Fitting of a modeled function to (a) a more complicated curve, (b) discrete data with low 
noise and inconsiderable errors, and (c) data with random errors. 

Figure 1. Fitting of a modeled function to (a) a more complicated curve, (b) discrete data with low
noise and inconsiderable errors, and (c) data with random errors.
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For the first problem, we come to the fitting of the statistical modeled function V(x;
{
p
}
) to the set

of given fixed function f (x) by minimizing the deviations
∣∣∣V(x;

{
p
}
) − f (x)

∣∣∣ integrated over the whole
domain x ∈ D ⊆ R, where the set of the parameters to be fitted and optimized are denoted with {p}. For
the second problem, the modeled function V(xi;

{
p
}
) is fitted to the data derived from an explicated

fixed function fi = f (xi), by minimizing the sum of the deviations
∣∣∣V(xi;

{
p
}
) − fi

∣∣∣. Finally, for the third
problem, the modeled function V(xi;

{
p
}
) is fitted to the data

{
fi
}

with errors {σi}, by minimizing the
sum of the normalized deviations

∣∣∣V(xi;
{
p
}
) − fi

∣∣∣/σi. For the integration or sum of the deviations, we
use any Lq-normed complete vector space (e.g., see references [1–7]).

The widely used fitting method of least squares involves minimizing the sum of the squares of the
residuals, i.e., the differences between the given fixed f (x) and the approximating V(x;

{
p
}
) functions.

However, the least square method is not unique. For instance, the absolute deviations minimization
method can also be applied. Generally, as soon as the desired norm of the metric space is given, the
respective method of minimizing the total deviations can be defined. The least square method is based
on the Euclidean norm L2, while the alternative absolute deviations method is based on the Taxicab
norm, L1 (see, for example references [5,8]). In general, an infinite number of fitting methods can be
used, based on metric spaces induced by Lq norms; these have been studied by references [7–15] (see
also the applications in references [16–28]).

Every norm can equivalently define a fitting method, different from any other fitting method
based on other norms. Each fitting method is characterized by different: (i) optimal values of the
parameters and their errors; (ii) sensitivity, which is given by the scalar curvature near the deviations
global minimum; (iii) goodness, which is associated with the estimated Chi-q value, the constructed
Chi-q distribution, and the corresponding p-value. All of these values depend strongly on the selection
of the q-norm.

Then, we may ask: If the results of each fitting method are strongly dependent on the selection
of the Lq-norm, how can we be sure that the widely used method of least squares provides the best
results? Instead, we must first employ the criteria for finding the optimal q-norm and the relevant
fitting method. Then, the results will be unaffected by systematic errors of mathematical origin.

The purpose of this paper is to improve our understanding and applicability of the Lq-normed fitting
methods. In Section 2, we present the method of the Lq-normed fitting. In Section 3, we show the concept
of sensitivity of fitting methods that mostly applies in the case of curve fitting. In Section 4, we show
the formulation of the error of the optimal fitting parameter values in Lq-normed fitting. In Section 5,
we present the case of multi-parametrical fitting (a number of n fitting parameters). Then, in Section 6,
we show the method of Lq-normed fitting of data without errors, characterized by a sufficiently high
signal-to-noise ratio, while in Section 7, we show the method of Lq-normed fitting of data with errors,
measuring the goodness of fitting. Finally, in Section 8 we summarize and discuss the results.

2. General Lq-Normed Fitting Methods

We first consider the uni-parametrical case, i.e., fitting methods with a single fitting parameter.
Let the continuous description, where the given fixed function is f (x), while the one-parametrical
approximating function or statistical model is V(x; p). One approach to determining the optimal
approximation finding value of p = p∗ involves minimizing the sum of total absolute deviations (TD1):

TD1(p) =
∫

x∈D

∣∣∣V(x; p) − f (x)
∣∣∣ dx. (1)

This is actually equal to the total bounded area, that is, the total sum of the areas bounded between
the fixed f (x) and the approximating V(x; p) function. Of course, we may also use the traditional
method of least squares, which involves minimizing the sum called total square deviations (TD2):

TD2(p) =
∫

x∈D

∣∣∣V(x; p) − f (x)
∣∣∣2 dx. (2)
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In the general case, the metric induced [7] by the Lq norm for any q ≥ 1, the q-normed Total
Deviations function, denoted by TDq(p), between the fixed f (x) and the approximating V(x; p) function
in the domain D, is given by

TDq(p) =
∫

x∈D

∣∣∣V(x; p) − f (x)
∣∣∣q dx , with x ∈ D ⊆ < and p ∈ Dp ⊆ <. (3)

The optimal fitting value of the p parameter, p∗(q), involves minimizing TDq(p), given in Equation
(3). This is derived by setting its derivative to zero, TDq’(p = p*) = 0. For finding the optimal value
p∗(q), we may minimize either TDq(p), TDq

1/q(p), or any other monotonic function F[TDq(p)]. As we
will see, however, it is the minimum value and curvature of TDq(p) that plays a significant role in
detecting the most accurate q-norm for deriving the fitting parameter and its error.

Note that the transition of the continuous to discrete descriptions of the x-values can be set as:

L∫
0

(· · · ) dx = lim
N→∞

L
N
·

N∑
i=1

(· · · ). (4)

Then, the expression of the total deviations is given by:

TDq(p) =
∫

x∈D

∣∣∣V(x; p) − f (x)
∣∣∣q dx =

L
N
·

N∑
i=1

∣∣∣V(xi; p) − f (xi)
∣∣∣q = xres ·

N∑
i=1

∣∣∣V(xi; p) − f (xi)
∣∣∣q, (5)

where L is the length of domain D, while xres = L/N is the resolution of x-values (finest meaningful
x-value).

The analytical expressions of the total deviations TDq(p) near its minimum provide three sets of
equations, (i) the value of total deviations at the global minimum A0(q), (ii) the curvature at the global
minimum A2(q) (a matrix in multi-parametrical fitting), and (iii) the “normal equations”, whose root is
the parameter value at the global minimum, p* (a vector in multi-parametrical fitting).

The expansion of total deviations in terms of p, gives the definite positive quadratic expression:

TDq(p) = A0(q) + A2(q) · (p− p∗)2 + O(p− p∗)3, (6)

where its minimum value is

A0(q) =
∫
|u|q dx, (7)

while its curvature is

A2(q) = δ1 q · γ+
q
2
·

∫ |u|q−1
· sgn(u) ·

∂2

∂p2 V(x; p∗) + (q− 1) · |u|q−2
·

[
∂
∂p

V(x; p∗)
]2

dx, (8a)

where the element γ plays a significant role in the case of q = 1,

γ ≡
∑
∀i :

u(xi) = 0

1∣∣∣u′(xi)
∣∣∣ ·

[
∂V(xi; p∗)

∂p

]2

. (8b)

The optimal value of the fitting parameter, p*, is determined by the root of the normal equation:∫
|u|q−1

· sgn(u) ·
∂
∂p

V(x; p∗) dx = 0, (9)

where, for all the above, we set u = u(x) ≡ V(x; p∗) − f (x), for short.
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3. Sensitivity of Fitting Methods

The sensitivity of a fitting method is given by the curvature of the total deviations at the global
minimum A2(q). The smaller the curvature, the more outspread and flattened the minimum appears,
and thus, the fitting is characterized by less sensitivity.

We demonstrate the concept of sensitivity with the following two examples:
- Example-1: The examined functions, with domain D =

{
x ∈ [0, π]

}
, are:

f (x) = 1 and V(x; p) = p ·
4
π
·

M∑
k=0

1
1 + 2 · k

· sin[(1 + 2 · k) · x]. (10)

We have a large number of terms M=100 for calculating TDq(p), in order the statistical model
V(x;p = 1) to represent the Fourier expansion of f (x) in D. This is true only for p = 1, thus the fitting
parameter value must be p∗ � 1. We find that TDq(p) near its global minimum is:

TDq(p) �


0.02940 + 210 ·

∣∣∣p− 0.99993
∣∣∣2, q = 1 ,

0.07929 + 19.8 ·
∣∣∣p− 1.00000

∣∣∣2, q = 2 ,

0.15958 + 2.10 ·
∣∣∣p− 1.01375

∣∣∣2, q = 3 .

(11)

In Figure 2a, the functional of total deviations at the global minimum, TDq(p)-A0, is plotted against
p-p*, on the same diagram for the norms q = 1, 2, and 3. We observe that the larger the value of q, the
more outspread and flattened the minimum, and thus, the fitting is characterized by smaller sensitivity.
Figure 2b plots the same quantities but on a log-log scale. As expected, these graphs approach the lines
with slopes equal to 2, due to the definite positive quadratic expression in Equation (4). The sensitivity
A2 is about an order of magnitude larger between each successive two norms. The curvature coefficient
A2 decreases as the q norm increases, leading to the conclusion that the best fitting method, namely the
one corresponding to the largest sensitivity, is the one with the taxicab norm (q = 1).
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decreases as the q norm increases. Indeed, A2 for q = 1 is about one order of magnitude larger than A2

derived for q = 2, which is also about one order of magnitude larger than A2 derived for q = 3 (Modified
from reference [7]).
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- Example-2: The examined functions are:

f (x) = H(x) =


0, x < 0,
1/2, x = 0,
1, x > 0,

and V(x; p) = p, (12)

with domain D = {−1 ≤ x ≤ 1}, p ∈ Dp =
{
0 ≤ p ≤ 1

}
. H(x) is the Heaviside step function.

It can be easily shown that the total deviations function TDq(p) equals exactly to

TDq(p)
q =

∣∣∣p∣∣∣q + ∣∣∣1− p
∣∣∣q . (13)

We can rewrite TDq(p) near its minimum, at p* = 1
2 , as follows:

TDq(p) = 21−q + q(q− 1)22−q
· (p−

1
2
)

2
. (14)

This Taylor expansion gives the definite positive quadratic expression in Equation (6), but all the
higher terms, O(p − 1

2 )3, are exactly zero. The curvature A2 measures how abrupt the TD’s variation is
near its minimum. The smaller the curvature, then, the more outspread and flattened the minimum. A
more flattened minimum is less sensitive, since it leads to an inappreciable variation, and thus, the
fitting parameter value at minimum, p*, is detected with a larger error. In particular, the curvature is:

A2(q) = 4q(q− 1)e− ln 2·q. (15)

It is apparent that the case of absolute fitting, that is, by using the norm q = 1, is characterized by
zero curvature, A2 = 0. Thus, it lacks of sensitivity, and it actually should not be used (the sensitivity
of the method becomes finite when considering higher-order terms in the Taylor expansion, but it is
orders of magnitude smaller. For more details, see reference [7]). The same problem characterizes the
case of uniform fitting, that is, by using the infinity norm, where the sensitivity is also zero. Since the
sensitivity of the two extreme norms is zero, there must be a norm 1 < q <∞ for which the sensitivity is
maximized. This is not the square norm, q = 2, but the value that maximizes A2(q) in Equation (15):

q = 1/2 + 1/ ln(2) +
√

1/4 + 1/ ln (2)2
≈ 3.470 with A2 ≈ 3.0939. (16)

In particular, the absolute deviations fitting method (q = 1) gives constant total deviations function
TD1(p) = 1

2 , while the least squares method (q = 2) gives TD2(p) = 1
2 + 2(p − 1

2 )2. Hence, the least square
deviations is more sensitive than the insensible case of q=1. However, it is surely not the most sensitive
case. Indeed, all the values of q in the interval 2 < q < 5.798 give a larger value of the coefficient A2

than the case of square norm, q = 2. Moreover, the optimal q-norm is the one maximizing the curvature
A2(q), and this is given for q ≈ 3.47. Figure 3 plots A2(q) as a function of the norm q.
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Figure 3. The curvature A2, which measures the sensitivity of fitting, is plotted as a function of the
norm q. Its largest value A2 ≈ 3.09 corresponds to the maximum sensitivity q ≈ 3.47. The corresponding
error of the optimal parameter value is minimized for the same norm that maximizes the sensitivity,
and is plotted for TDres = 0.001 (dash-dot), 0.01 (dash), 0.1 (dot), and 1 (solid blue line).

4. Errors of the Optimal Fitting Parameter Values

The curvature can be used to derive the error δp* of the optimal value of the parameter p*. For a
small variation of the parameter value, p = p* + δp, the corresponding variation of the total deviations
function TDq(p) from its minimum, ∆TDq(p) ≡ TDq(p) −A0(q), is:

∆TDq(p) ≡ TDq(p) −A0(q) � A2(q) · δp2, (17)

(ignoring higher terms, O(δp3))). Given the smallest value of ∆TD, denoted with δTD, the error is:

δp∗(q) =
√
δTD(q) ·A2

−1(q). (18a)

Note that the above derivation comes from the geometric interpretation of errors [15]. However,
the statistical derivation of error, derived from maximizing the likelihood [11], has an additional factor
q/2, so that

δp∗(q) =

√
δTD(q) ·

q
2

A2
−1(q). (18b)

(Note: The derivation of errors comes from two distinct analyses: geometric intuition [11], and
maximization of likelihood [15]. Both derivation methods give the same results, aside from the
proportionality constant q/2 that was caught by references [15].)

Moreover, it has been shown [15] that the smallest value of ∆TD is given by δTD = A0/N, where N
is the number of data points given for describing the fixed function f (x). (In the continuous description,
N is given by L/xres). Hence,

δTD(q) =
1
N

A0(q) =
xres

L
A0(q). (18c)

As we expected, the error δp*(q) is smaller when the curvature A2(q) increases or when the
minimum of the total deviations A0(q) decreases.

There are cases where the total deviations value is subject to an experimental, reading, or any
other type of a non-statistical error. In general, this is called the resolution value TDres. Then, the
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smallest possible value δTD is meaningful only when it stays above the threshold of TDres. In other
words, if δTD ≥ TDres or if A0/N ≤ TDres, then δTD = TDres. Hence,

δTD(q) =

 1
N ·A0(q) , if A0

N > TDres ,
TDres , if A0

N ≤ TDres .
(19)

When the number of data points is large, or in the continuous description where N ≈ L/xres→∞,
then, the possible value δTD is given by the constant TDres. Hence, the error (at its geometric
interpretation) depends exclusively on the curvature A2,

δp∗(q) ∝
√

A2
−1(q). (20)

Therefore, the local minimum of the error implies the local maximum of the sensitivity.

5. Multi-Parametrical Fitting

In the case of multi-parametrical fitting, i.e., when we have more than one parameter to fit, the
statistical model is V(x; p1, p2 , . . . , pn), or V(x;

{
pk

}
) for short, which denotes a multi-parametrical

approximating function, with x ∈ D ⊆ < and (p1, p2 , . . . , pn) ⊆ <n. Given the metric induced by the
q-norm, the total deviations value between the fixed f (x) and the approximating V(x;

{
pk

}
) function is

TDq(
{
pk

}
) =

∫
x∈D

∣∣∣V(x;
{
pk

}
) − f (x)

∣∣∣q dx. (21)

The analytical expressions of the total deviations function near its global minimum are as follows.
The Taylor series expansion of TDq({pk}) up to the second order is:

TDq({pk}) � A0(q) +
n∑

k1=1

n∑
k2=1

A2,k1k2(q) ·
(
pk1 − pk1

∗
)
·

(
pk2 − pk2

∗
)
, (22a)

where A0, A2,k1k2 ≥ 0, ∀ k1, k2 = 1, 2, . . . , n.
Using Equation (20), we define the deviation of the total deviations functional from its minimum,

∆TD(
{
δpk

}
) ≡ TDq(

{
pk

}
)q
−TDq(

{
pk
∗
}
)q = TDq(

{
pk
∗ + δpk

}
)q
−TDq(

{
pk
∗
}
)q, which is expressed with the

definite positive quadratic form:

∆TD(
{
δpk

}
) =

n∑
k1,k2=1

A2,k1k2(q) · δpk1δpk2 , (22b)

where we set δpk ≡ pk − pk
∗, ∀k = 1, . . . , n.

The total deviation function at its minimum is given by:

A0(q) =
∫

x∈D

|u|q dx, (23)

the curvature tensor is given by the Hessian matrix:

A2,k1k2(q) = δ1 q · γk1k2+
q
2 ·

∫
x∈D

[
|u|q−1

· sgn(u) · ∂
2V(x; {pk

∗})
∂pk1

∂pk2
+ (q− 1) · |u|q−2

·
∂V(x; {pk

∗})
∂pk1

·
∂V(x; {pk

∗})
∂pk2

]
dx , (24a)
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where

γk1k2 ≡

∑
∀i :

u(xi) = 0

1∣∣∣u′(xi)
∣∣∣ · ∂V(xi;

{
pk
∗
}
)

∂pk1

·
∂V(xi;

{
pk
∗
}
)

∂pk2

, (24b)

and the normal equations, whose roots are the optimal values of the fit parameters p1
*, . . . , pn

*, are:∫
x∈D

|u|q−1
· sgn(u) ·

∂V(x;
{
pk
∗
}
)

∂pl
dx = 0, ∀ l = 1, 2, . . . , n, (25)

where we set u = u(x) ≡ V(x;
{
pk
∗
}
) − f (x), for short.

In the multi-parametrical fitting, the sensitivity can be defined by the determinant of the Hessian
matrix [7], namely:

S1(q) =
n
√

Det
[
A2,i j(q)] · n. (26a)

However, it can also be defined by the inverse product of all the n errors of the optimal
fitting parameters,

S2(q) =
n∏

j=1

δp j
∗(q)−1. (26b)

The former definition can be used to finding the optimal norm in the curve fitting, while the latter
can be used in discrete fitting of data points with no errors. (The effective sensitivity can be deduced
from the smaller value among these definitions).

Finally, the n errors, δp1
*, δp2

*, . . . , δpn
*, of the optimal fitting parameters are given by [7,11,15]:

δp j
∗(q) =

√
1
N

A0(q) ·
q
2

(
A2
−1

)
j j
(q), A0/N > TDres, ∀ j = 1, 2, . . . , n, (27a)

that is, when A0/N ≤ TDres, otherwise

δp j
∗(q) =

√
TDres ·

q
2

(
A2
−1

)
j j
(q), A0/N ≤ TDres∀ j = 1, 2, . . . , n. (27b)

As an example, consider the case of two-parametrical approximating functions, V(x; p1, p2). Then,
the quadratic form of Equation (22b) defines the 2-dimensional paraboloid ∆TD = ∆TD(δp1, δp2),
immersed into the 3-dimensional space with Cartesian axes given by (x ≡ δp1, y ≡ δp2, z ≡ ∆TD)

(see Figure 4). The 2-dimensional ellipsoid is defined by the space bounded by the locus
δTD = ∆TD(δp1, δp2), which is the intersection of the 2-dimensional paraboloid ∆TD = ∆TD(δp1, δp2)

and the 2-dimensional hyperplane ∆TD = δTD.
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2* *

1
( ) 0

N q

i i
i
p f p f

−

=

− ⋅ − = . (28)

Here, the p* is interpreted as the Lq-normed mean of the N elements {fi}. The corresponding 
Lq-normed mean estimator ˆqμ  is defined by the nonlinear equation [11–13]: 

2

1

ˆ ˆ( ) 0
N q

q i q i
i

f fμ μ
−

=

− ⋅ − = . (29)

Then, the Lq expectation value of the Lq mean estimator equals the Lq expectation value of the 
random variables fi [14]. This generalizes the definition and properties of the L2 mean estimator: 

1
2 2

1 1

ˆ ˆ( ) 0
N N

q i q iN
i i

f fμ μ= =
= =

− = ⇔ =  . (30)

Figure 4. (a) The n-dimensional paraboloid ∆TD(
{
δpk

}
) is the definite positive quadratic form

constructed for small deviations of the total residuals from its minimum value, e.g., see Equation (22b).
The illustrated example is for the n = 2 dimensional case. (b) The intersection between the paraboloid
and a constant hyper-plane ∆TD(

{
δpk

}
) = δTD is a rotated n-dimensional ellipsoid, or a rotated ellipsis

for the case of n = 2. (Modified from [15]).

6. Fitting of Data without Errors

We fit the modeled function V(xi;
{
p
}
) to the data derived from an explicated fixed function

fi = f (xi). The data points do not have errors while the signal-to-noise ratio is considered to be quite
large. Then, the general fitting methods based on Lq-norm can be applied, whereas the optimal norm is
the one minimizing the error δp∗ of the fitting parameter value p∗. In the multi-parametrical fitting, we
minimize the product of the errors, that is, maximize the second definition of sensitivity in Equation
(26b).

We apply a constant statistical model V(xi; p) = p to time series. Then, the corresponding normal
equation coincides with the generalized definition of Lq-normed means [9–11]:

N∑
i=1

∣∣∣p∗ − fi
∣∣∣q−2
· (p∗ − fi) = 0. (28)

Here, the p* is interpreted as the Lq-normed mean of the N elements {fi}. The corresponding
Lq-normed mean estimator µ̂q is defined by the nonlinear equation [11–13]:

N∑
i=1

∣∣∣µ̂q − fi
∣∣∣q−2
· (µ̂q − fi) = 0. (29)
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Then, the Lq expectation value of the Lq mean estimator equals the Lq expectation value of the
random variables fi [14]. This generalizes the definition and properties of the L2 mean estimator:

N∑
i=1

(µ̂q=2 − fi) = 0 ⇔ µ̂q=2 =
1
N

N∑
i=1

fi. (30)

It is noted that Equation (30) is generally an M-estimator, a broad class of extremum estimators,
which are obtained by minimizing the sums of functions of data. An M-estimator can be defined to be
a zero of an estimating function that often is the derivative of another statistical function [29,30].

We demonstrate the optimization of the Lq-normed method based on the error local minimum
with the following example:
- Example-3: Earth’s magnetic field.

We consider the time series of the Earth’s magnetic field magnitude (in nT). In particular, we focus
on a stationary segment recorded by the GOES-12 satellite between the month 1/1/2008 and 1/2/2008,
that is a sampling of one measurement per minute, constituting a segment of N = 46080 data points,
plotted in Figure 5a.
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Figure 5. (a) Magnitude of the Earth’s magnetic field recorded between 1/1/2008 and 1/2/2008. (b)
Sampling distribution of these time series values. (c) Lq-expectation values of this dataset plotted
against the Lq-norm. (Modified from [11]).

The distribution of these values is almost symmetric (Figure 5b), so the Lq-normed mean <B>q is
weakly dependent on q. Indeed, as it has been shown [11] that when the curves f (x) or data points fi
have a symmetric distribution of values D(f ), then the corresponding fitting parameter value p∗ is not
dependent on the q-norm. However, the error exhibits a largely variation with the Lq-norm.

The Lq-expectation value of the magnitude of the Earth’s total magnetic field B (also plotted in
Figure 5c), ‹B›q, together with its error δ‹B›q, are plotted against the q-norm in Figure 6a,b, respectively.
A local minimum of the error is found close to the Euclidean norm, i.e., for q = 2:05, as is shown within
the magnified inset in Figure 6c.
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7. Fitting of Data with Errors: Goodness of Fitting

The previous sections concern the fitting of a statistical model V(x; p) to a given fixed function f (x)
or a dataset in the absence of any errors. The fitting of the given dataset

{
fi ± σi

}N
i=1 to the values {Vi}

N
i=1

of a statistical model V(X; p) in the domain X ∈ DX ⊆ <, involves finding the optimal parameter value
p = p* in p ∈ DP ⊆ < that minimizes the total deviations (TD), which are now:

TDq(p) =
N∑

i=1

σ f
−q
i

∣∣∣ fi −V(xi; p)
∣∣∣q. (31)

The fitting method is characterized by the same expressions as given by Equations (6)–(9) and

(18), with the only difference that the included summations are weighted with
{
wi = σ f

−q
i

}N

i=1
.

The difference is that the best fitting method is not determined by the sensitivity, but by the
estimated value of the Chi-q value and the Chi-q distribution. The Chi-q distribution is the analog of
the Chi-square distribution but for datasets with statistical errors that follow the General Gaussian
(GG) distributions of shape q, instead of the standard Gaussian distribution (with the shape q = 2):

P(x;µ, σ; q)dx = Cq · e−ηq·|
x−µ
σ |

q

d(
x− µ
σ

), with Cq ≡

√
q sin(πq )

4π(q− 1)
, ηq ≡

sin(πq )Γ(
1
q )

2

π q(q− 1)


1
2 q

. (32)

Then, the goodness of the fitting is rated based on the p-value, indicating the specific q-norm for
which the p-value is maximized. This is achieved with the following steps [6]: (i) Estimate the Chi-q
value, that is, the total deviations in Equation (22) at its global minimum, χ q

est = TDq(p∗). (ii) Construct
the Chi-q distribution for degrees of freedom M = N − n, where N is the number of data points, while

n is the number of the parameters to be fitted: P(X; M; q) = ηq
M
q Γ(M/q)−1 e−ηqXX

M
q −1, with X ≡ χq.

(iii) Use this Chi-q distribution to estimate the p-value of fitting, that is, the probability of having the
estimated Chi-q value or larger, P(χq

est ≤ X < ∞).
We demonstrate the goodness of fitting with the following two examples:
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- Example-4: Data following GG distribution with q = 3.

Let the stationary time series
{

fi ± σ f i
}N

i=1
for N = 104 data points that follow the GG distribution of

zero mean, fixed standard deviation to 1, and unknown shape parameter q, i.e., fi ∼ GG(µ = 0, σ = 1, q)
(Figure 7a). Finding the average of the time series requires the statistical model to fits a constant to
the stationary time series, i.e., V(xi,p) = p. Since the time series has zero-mean, the optimal parameter

value is p* ≈ 0; hence, χ q
est = TDq(0)=

∑N
i=1 σ f

−q
i

∣∣∣ fi∣∣∣q. The p-value is ∝
(

e
M qηqχ

q
est)

M
q e−ηqχ

q
est for large

degrees of freedom (M = 9999), and is plotted as a function of q-norms in Figure 7b. We observe that
the p-value for q = 2 is practically zero, while the maximum q-norm that makes the optimal case is
q = 3. Indeed, Figure 7a shows that the given datasets are distributed with a GG distribution of shape
parameter q ≈ 3.
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Table 1. Sunspot umbral area per latitude. 

Heliographic Latitude (degrees) Ratio of Umbral Area if  (%) Standard Deviation iσ  (%) 
0–5 0.1708 0.0053 

5–10 0.1677 0.0019 
10–15 0.1624 0.0016 
15–20 0.1610 0.0019 
20–25 0.1594 0.0026 

>25 0.1627 0.0040 

Figure 7. (a) The N = 104 data points of the examined time series are distributed with fi ∼ GG
(µ = 0, σ = 1, q = 3). (b) The derived p-value is plotted as a function of the q-norm, where it is
maximized for q ≈ 3. (Modified from [12]).

- Example-5: Sunspot umbral areas.
Table 1 shows measurements of the ratios of the umbral area of sunspots for low heliolatitudes.

There is no physical reason to expect dependence of these ratios on latitudes. As a result, we want
to find the average value of these measurements and its standard deviation. Therefore, the null
hypothesis is that the measurements are described by the statistical model of a constant value, i.e.,{
V(xi; p) = p

}N
i=1. Then, we minimize the Chi-q, given by χq(p) = TDq(p), so that the Lq-mean value

p = p∗(q) is implicitly given by:

N∑
i=1

σ f
−q
i

∣∣∣ fi − p∗
∣∣∣q−2

( fi − p∗) = 0, (33)

and the minimized Chi-q, given by χ q
est(p

∗) = TDq(p∗)=
∑N

i=1 σ f
−q
i

∣∣∣ fi − p∗
∣∣∣q.

Table 1. Sunspot umbral area per latitude.

Heliographic Latitude (degrees) Ratio of Umbral Area fi (%) Standard Deviation σi (%)

0–5 0.1708 0.0053
5–10 0.1677 0.0019

10–15 0.1624 0.0016
15–20 0.1610 0.0019
20–25 0.1594 0.0026
>25 0.1627 0.0040
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Figure 8a shows the six data points co-plotted with four values of p*, corresponding to q = 1,
q → ∞, and q1, q2 for which the p-value is equal to 0.05. The whole diagram of p∗(q) is shown
in Figure 8b, while the p-value as a function of q-norm is plotted in Figure 8c. We observe that
the function p∗(q) is monotonically increasing converging with the q-norm, where for q → ∞,
p∗(∞) = (σ−1

xmin
xmin + σ−1

xmaxxmax)/(σ−1
xmin

+ σ−1
xmax) � 0.166. The p-value has a minimum value at

q~2.08 and increases for larger shape values q until it reaches q~5.77 where p-value~0.5 (not shown in
the figure). The p-value is < 0.05 for the norms between q1~1.7 and q2~2.5.
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Figure 8. (a) The data of Table 1 is co-plotted with four values of p*(q) that correspond to q = 1, q→∞,
and the two norms q1~1.7 and q2~2.5 for which the p-value is equal to 0.05. (b) The diagram of p*(q).
(c) The p-value as a function of q. We observe that for the Euclidean norm q = 2, the null hypothesis is
rejected, i.e., sunspot area ratio data are not invariant with heliolatitude and cannot be represented
by an average value. However, the examined data are expected to be invariant, and thus, the null
hypothesis to be accepted, hence, norms between q1 and q2 (green) are rejected because lead to p-value
< 0.05. Instead, the largest p-value indicates the optimal norm, q~5.77. (Modified from [12]).

Since the data are expected to be invariant with latitude, the null hypothesis should be accepted.
Hence, the desired norm is the one that maximizes the p-value, i.e., q~5.77. On the other hand, the
norms between q1~1.7 and q2~2.5 lead to false results, since p-value < 0.05. Thus, the null-hypothesis
would have been rejected for the least square method, and the fitting would have not been accepted as
being good.

Note: The derived p-value that measures the goodness of fitting, expressed as a function of the
q-norm, may not indicate to a unique, finite, and clear maximum, thus, finding the optimal q-norm that
maximizes the p-value may not be possible. Then, we will focus on the maximum p-value that appears
closer to q = 2.

8. Discussion and Conclusions

The widely used fitting method of least squares is neither unique nor does it provide the most
accurate results. Other fitting methods based on Lq norms can be used for expressing the deviations
between the given data and the fitted model. The most accurate method is the one with the (i) highest
sensitivity, for curve fitting, (ii) smallest errors for fitting of data w/o errors, and (iii) best goodness of
fitting for data assigned with errors.

In particular, the general fitting methods based on Lq norms minimize the sum of the power q of
the absolute deviations between the given data and the fitted statistical model. Clearly, the q-exponent
generalizes the case of q = 2, e.g., the least squares method. The mathematical analysis behind the
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general methods of q , 2 is complicated in contrast to the simplicity that characterizes the case of
q = 2. However, the least square method is not the optimal one among the variety of Lq-normed
fitting methods.

The optimization of the fitting methods seeks for that method with the highest sensitivity, smallest
error, or best goodness:

- In the case of curve fitting where the data are given in continuous description, the sensitivity of a
fitting method is measured by the curvature of the total deviations at the global minimum. The
smaller the curvature, the more outspread and flattened the minimum appears, and thus, the
fitting method is characterized by less sensitivity. The optimal q-norm maximizes the sensitivity.

- In the case of fitting data points without errors, i.e., with sufficiently high signal-to-noise ratio, the
variance of the determined fitting parameter is given by the ratio of the total deviations minimum
over the curvature. The optimal q-norm stabilizes the error exhibiting local minimum.

- In the case of fitting data with errors, the goodness of a fitting method is rated based on the
fitting p-value, namely, the optimal q-norm maximizes the p-value. This is achieved as follows:
(i) Estimate the Chi-q value, that is, the total deviations at its global minimum. (ii) Construct
the Chi-q distribution for degrees of freedom M = N − n, where N is the number of data points,
while n is the number of the fitting parameters. (iii) Use this Chi-q distribution to estimate the
p-value of fitting, that is, the probability of having the estimated Chi-q value or larger. Note: All
the above are count for uni- or multi-parametrical fitting.

Below we describe the next steps in the development of the general fitting methods and their
applications in statistical and data analysis:

(1) Derivation of iteration method(s) and algorithm(s) for solving the Lq normal equations, whose
roots are the optimal values of the fitting parameters. In contrast to the least squares fitting
method, where the optimal fitting parameters are explicitly derived from the normal equations,
in the case of the least q’s fitting method, the optimal fitting parameters are implicitly given by
the normal equations (see Equations (9) and (25)). These must be numerically solved to find their
roots. For the uni-parametrical fitting, the normal equation is given by:∫ ∣∣∣V(x; p∗) − f (x)

∣∣∣q−2
· [V(x; p∗) − f (x)] ·

∂
∂p

V(x; p∗) dx = 0. (34)

We solve this equation and find its root with an effective iteration process. Setting

φ(x) =
∣∣∣V(x ; p∗) − f (x)

∣∣∣q−2
and ∂p ≡ ∂/∂p, Equation (34) is written as

φt → p∗t+1 :
∫
φt(x) ·

[
V(x ; p∗t+1) − f (x)

]
· ∂pV(x; p∗t+1)dx = 0 ,

p∗t+1 → φt+1 : φt+1(x) =
∣∣∣V(x ; p∗t+1) − f (x)

∣∣∣q−2
.

(35)

As an example, we use the model V(x ; p) = p · h(x). Then, Equation (35) becomes:∫ ∣∣∣V(x; p∗) − f (x)
∣∣∣q−2
· [V(x; p∗) − f (x)] ·

∂
∂p

V(x ; p∗) dx = 0. (36)

Namely, starting from an initial value φ0, we find p1
* and φ1. Afterwards, from φ1, we find p2

*

and φ2, etc., until we find pt
* and φt for some large number of iterations t. Nonetheless, different

numerical root finding methods may be used (e.g., reference [31]).
(2) Equations (18a) and (18b) and Equations (27a) and (27b) provide the error of each optimal fitting

parameter(s). This is a statistical type of error, whose origin is the nonzero residuals (A0 , 0).
Indeed, if the total deviations function were zero at its minimum (A0 = 0), then there was zero
statistical error. This type of error has nothing to do with the errors of the involved variables. On
the other hand, the propagation type error of the optimal fitting parameter(s) is the error that is
caused by the propagation of the errors of the involved variables, e.g., {σxi,σyi}.
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(3) Once the Euclidean, L2 norm, and the induced least-squares fitting method are proved to be
the optimal options among all the Lq-normed fitting methods, then, we may continue with the
standard tools for statistical and data analysis which are based on the L2 norm. Numerical criteria
that can be used are the following: (i) The methodology of general fitting method must lead
to results statistically similar to those obtained with the classical method of least squares. The
differentiation of the results of the fitting methods should be measured with 1-sigma confidence,
i.e., the results p2

*
± δp2

* and pq
*
± δpq

* must be clearly different: |pq* − p2*| > (δpq
2 + δp2

2)
1
2 .

(ii) The methodology of general fitting method must conclude that the optimal norm q = q0, which
will be used for finding the fitting parameters, does coincide with the classical Euclidean norm
q = 2. We may ask for: |q0−2| > 10%, and |p(q0) − p(2)| > 10%.

(4) The paper showed the application of the Lq-normed fitting methods for significantly improving
statistical and data analyses. Applications can be ranged in various topics, including among
others: (i) curve fitting (inter/extrapolation, smoothing), (ii) time series and forecasting analysis,
(iii) regression analysis, (iv) statistical inference problems; (see, for example references [32–35]).
More precisely: (i) Curve fitting involves interpolation, where an exact fit to the data is required,
or smoothing, in which a smoothed function is constructed that approximately fits a more
complicated curve or data. Extrapolation refers to the use of a fitted curve beyond the range
of the observed data. The results depend on the statistical model, i.e., using various functional
forms polynomial, exponential etc. (ii) There are various tools used in time series and forecasting
analyses, e.g., Moving average (Weighted, Autoregressive, etc.), Trend estimation, Kalman and
nonlinear filtering, Growth curve (generalized multivariate analysis of variance), just to mention
a few. (iii) Similar to (i), the regression analysis involves fitting with various statistical models.
(iv) Statistical inference is the process of using data analysis to deduce properties of an underlying
probability distribution.

The methodology of general fitting methods using metrics based on Lq-norms is now
straight-forward to apply in various topics, such as, statistics, signal processing, pattern recognition,
econometrics, mathematical finance, weather forecasting, earthquake prediction, control engineering,
communications engineering, space physics, and astrophysics.
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