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1. Introduction

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed (iid) random variables
with a cumulative distribution function (cdf) F(x; θ) and a probability density function (pdf) f (x; θ),
where θ ∈ Θ could be a real-valued vector. We will say that Xj is an upper (lower) record value if it
exceeds all previous random variables, i.e., if Xj > (<)Xi for all j > i. By definition, X1 is the first
upper and lower record value.

The origin of the record value theory goes back to [1], where record values were introduced as a
model of the successive extreme sequence of iid random variables. Record value theory for the iid
case has been studied quite extensively in the literature. See, e.g., [2,3] for a detailed survey and the
references inside.

In the continuous case, the definition of the kth record values is as follows: For a fixed k, we define
the sequence {Tn,k, n ≥ 1}, of the kth lower record times of {Xn, n ≥ 1} as follows:

T1,k = 1,

Tn+1,k = min{j > Tn,k : Xk:Tn,k+k−1 > Xk:j+k−1}, n ≥ 1,

where Xj:n denotes the jth order statistic of the sample (X1, X2, . . . , Xn). The sequence {Rn(k), n ≥
1} = {Xk:Tn,k+k−1, n ≥ 1} is called the sequence of the kth lower record values of {Xn, n ≥ 1}. In [2],
these records are denoted as the Type 2 kth-record sequence. Note that for k = 1, ordinary lower record
times and values are recovered.

Record values can be found in many events in our everyday lives. We are especially interested in
observing new records in meteorology, hydrology, sports, and so on. Their usefulness is found
for characterization purposes, entropy measures, goodness-of-fit procedures, and various other
statistical inferences.

The joint density function of the first n kth lower records is obtained as (see [2]):

f1,...,n(r1(k), . . . , rn(k); θ) = kn(F(rn(k); θ)
)k

n

∏
i=1

f (ri(k); θ)

F(ri(k); θ)
, rn(k) < . . . < r1(k), (1)
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where r(k) = (r1(k), . . . , rn(k)) is denoted as an observed realization of R(k) = (R1(k), . . . , Rn(k)).
Suppose that Y1, Y2, . . . , Ym are iid observations with cdf F(x; θ) and pdf f (x; θ), which are

independent of the X-model. The order statistics of the sample are defined by the increasing order
of Y1, Y2, . . . , Ym, denoted as Y1:m ≤ Y2:m ≤ . . . ≤ Ym:m. Order statistics have a broad use in statistics;
their usefulness arises for characterization purposes, robust estimation, goodness-of-fit tests, reliability
theory, quality control, and so on. Various literature works on order statistics can be found; for a
detailed analysis, we recommend [4,5] and the references therein.

Prediction of future events based on current knowledge is a huge issue in statistics. It can be
expressed in various contexts, and it can be generated in different forms. Several papers have been
published on predicting future record values based on current records (see [2,3,6]) and prediction of
future order statistics based on current order statistics (see [4,5,7]). The problem of predicting record
values and order statistics from two independent sequences following two parameter exponential
distributions was extensively discussed in [8].

The motivation behind this research follows from the point predictors of order statistics of a
future sample from an exponential distribution based on the upper kth record values published in
[9]. In this paper, we deal with point predictors of order statistics based on the lower kth record
values from the generalized exponential distribution. Using a monotone transformation between the
generalized exponential distribution and exponential distribution, we extend the associated inference
and methodology found in [9] to our problem of interest.

This paper is organized as follows: In Section 2, we present a formal structure of the prior model
distribution with related posterior densities of the jth order statistics. The construction of predictive
intervals and the expressions for point predictors of the order statistics from a future sample, with the
maximum as a special case, is addressed in Sections 3 and 4. The overall analysis of derived estimators
is illustrated on a real data example and presented in Section 5.

2. Prior Information and Predictive Distributions

In general, the two parameter generalized exponential distribution with the shape parameter θ

and scale parameter λ, denoted as GED(θ, λ), is determined by the pdf and cdf of the form:

f (x; θ, λ) = θλe−λx(1− e−λx)θ−1, x > 0, (2)

F(x; θ, λ) = (1− e−λx)θ , x > 0, (3)

where θ, λ > 0.
In this work, we deal with the one-parameter generalized exponential distribution, denoted as

GED(θ), with pdf and cdf given, respectively, by:

f (x; θ) = θe−x(1− e−x)θ−1, x > 0, (4)

F(x; θ) = (1− e−x)θ , x > 0, (5)

where θ > 0 is a shape parameter.
The generalized exponential distribution (GED) is often recognized as a good alternative in

situations when the Gamma and Weibull distributions lack efficient fits for skew data. For a detailed
discussion about the GED, we refer to [10]. One of the several properties of this distribution family
is that its nature (concave density, simple form of the pdf and cdf, behavior of the hazard rate
function, simple procedure for generating random numbers) leads to easier modeling of skew data
(see [11,12]). Specifically, we note that the GED distribution is a generalization of the standard
exponential distribution (which can be obtained for θ = 1). The connection between Exp(θ) and
GED(θ) is established by a monotone transformation τ(·) = − log(1− e−(·)). Several papers deal with
estimation procedures for the parameters of the GE distribution based on records and order statistics
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(see, for example, Raqab and Ahsanullah [13]) and prediction inference for order statistics from the
GED (see [7]).

Let us suppose we observed the first n kth lower record values R1(k) = r1(k), R2(k) =

r2(k), ..., Rn(k) = rn(k) from GED(θ). From (4), (5), and (1), we can easily construct the likelihood
function for θ, given r(k), as:

L(θ|r(k)) = knθnu(r(k))e
−θkτ(rn(k)), r1(k) > r2(k) > ... > rn(k) > 0, (6)

where u(r(k)) = ∏n
i=1 e−ri(k)/(1− e−ri(k)) and τ(rn(k)) = − log(1− e−rn(k)). Here, we denote log as the

natural logarithm.
Further, we can extend the reasoning about the parameter θ by supposing that it is a realization of

a random variable with prior distribution:

π(a,b)(θ) ∝ θa−1e−bθ , θ > 0, (7)

where a, b > 0 are parameters of the prior distribution. These parameters are chosen in most cases
based on realizations of previous experiments or relying on the knowledge that the researcher owns.
With this in mind, it is easy to obtain the posterior distribution of θ, given r(k), as:

π(a,b)(θ|r(k)) =
(b + kτ(rn(k)))

n+a

Γ(n + a)
θn+a−1e−θ(b+kτ(rn(k))), θ > 0, (8)

where Γ(·) is the complete gamma function. It is well known (see [14]) that the Bayes estimator of θ,
with respect to squared error loss (SEL), is the mean of the posterior density (8), i.e.,

θ̂ =
n + a

b + kτ(rn(k))
. (9)

The marginal density function of the jth order statistic from a sample of size m from GED(θ) is given
by (see [15]):

fYj:m(y|θ) =
1

B(j; m− j + 1)
θe−y(1− e−y)θ j−1(1− (1− e−y)θ)m−j, y > 0, (10)

where B(·; ·) is the complete beta function.
The Bayesian predictive density of X, given r(k), is obtained as an integral of the posterior

density (8) multiplied by the density function (4) with respect to θ, i.e.,

fX|r(k)(x|r(k)) =
∫

θ fX(x|θ)π(a,b)(θ|r(k)) dθ

=
(b+kτ(rn(k)))

n+a

Γ(n+a)
e−x

1−e−x

∫ ∞
0 θn+ae−θ(b+kτ(rn(k))+τ(x)) dθ

= e−x

1−e−x
n+a

b+kτ(rn(k))

(
1 + τ(x)

b+kτ(rn(k))

)−n−a−1
, x > 0.

(11)

By proceeding as before, the Bayesian predictive density of Yj:m, given r(k), is obtained as an
integral of the posterior density (8) multiplied by the conditional density (10) with respect to θ, i.e.,
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fYj:m(y|r(k)) =
∫

θ fYj:m(y|θ)π(a,b)(θ|r(k)) dθ

= e−y

1−e−y
(b+kτ(rn(k)))

n+a

Γ(n+a)B(j;m−j+1)

× ∑
m−j
l=0 (m−j

l )(−1)m−j−l ∫ ∞
0 θn+ae−θ(b+kτ(rn(k))+(m−l)τ(y)) dθ

= e−y

1−e−y
(b+kτ(rn(k)))

n+a(n+a)
B(j;m−j+1) ∑

m−j
l=0 (m−j

l )

× (−1)m−j−l

(b+kτ(rn(k))+(m−l)τ(y))n+a+1

= e−y

1−e−y
(n+a)

(b+kτ(rn(k)))B(j;m−j+1) ∑
m−j
l=0 (m−j

l )(−1)m−j−l

×
(

1 + (m−l)τ(y)
b+kτ(rn(k))

)−n−a−1
, y > 0.

(12)

For special cases j = 1 and j = m, the previous formulae reduce to:

fY1:m(y|r(k)) =
e−y

1− e−y
m(n + a)

(b + kτ(rn(k)))

m−1

∑
l=0

(
m− 1

l

)
(−1)m−1−l

×
(

1 +
(m− l)τ(y)
b + kτ(rn(k))

)−n−a−1

, y > 0,

and:

fYm:m(y|r(k)) =
me−y

1− e−y
n + a

b + kτ(rn(k))

(
1 +

mτ(y)
b + kτ(rn(k))

)−n−a−1

, y > 0,

which represent the predictive densities of the minimum and the maximum of a future sample of size
m, given r(k).

3. Prediction Intervals of Order Statistics

In this section, we construct 100(1− α)% prediction intervals for Yj:m, given r(k), 1 ≤ j ≤ m.
For the Bayesian two-sided equi-tailed interval, we need to obtain the solutions of the

following equations

FYj:m(L|r(k)) =
α

2
, and FYj:m(U|r(k)) = 1− α

2
, (13)

where L and U are lower and upper interval bounds, respectively, with FYj:m(x|r(k)) = P{Yj:m ≤ x|r(k)}
as the predictive distribution function of Yj:m, given r(k). Its form is given by:

FYj:m(y|r(k)) =
1

B(j; m− j + 1)

m−j

∑
l=0

(
m− j

l

)
(−1)m−j−l

m− l

(
1 +

(m− l)τ(y)
b + kτ(rn(k))

)−n−a

, (14)

for y > 0. Due to a rather complicated form of (14), we can only find the solutions of (13) numerically.
If (12) possesses a unimodal shape, the 100(1− α)% highest posterior density (HPD) interval for

Yj:m, given r(k), could be presented by the set:

R(πα) = {y : fYj:m(y|r(k)) ≥ πα},

where πα is the largest constant such that P(Yj:m ∈ R(πα)) ≥ 1− α. The lower and upper bounds
of the 100(1− α)% HPD interval for this case, denoted as (uYj:m ;1, uYj:m ;2), are the solutions of the
following optimization problem (see [16], Theorem 1).
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min
uYj:m ;1<uYj:m ;2

(
| fYj:m(uYj:m ;2|r(k))− fYj:m(uYj:m ;1|r(k))|

+ |FYj:m(uYj:m ;2|r(k))− FYj:m(uYj:m ;1|r(k))− (1− α)|
)
. (15)

In Section 5, we present the construction of these posterior intervals on an example.
Case When j = m (Maximum of the Future Sample)

Within this special case, (14) simplifies to:

FYm:m(z|r(k)) =
(

1 +
mτ(z)

b + kτ(rn(k))

)−n−a

, z > 0, (16)

so we can express the lower αth quantile ξYm:m ,α(a, b) of (16) explicitly as:

ξYm:m ,α(a, b) = − log

(
1− exp

{
−

b + kτ(rn(k))

m

(
1

n+a
√

α
− 1
)})

(17)

= τ

(
b + kτ(rn(k))

m

(
1

n+a
√

α
− 1
))

. (18)

Therefore, it is then reasonable to think of the interval (0, ξYm:m ,1−α) as the upper one-sided
100(1− α)% Bayesian predictive interval for Ym:m, given r(k).

Moreover, we can directly obtain the 100(1− α)% Bayesian two-sided equi-tailed prediction
interval for the maximum of a future sample of size m by:[

τ

(
b + kτ(Rn(k))

m

(
1

n+a
√

α/2
− 1
))

, τ

(
b + kτ(Rn(k))

m

(
1

n+a
√

1− α/2
− 1
))]

. (19)

The uni-modal shape of the pdf of Ym:m, given r(k), can be confirmed based on (16). Therefore,
the procedure (15) for obtaining HPD intervals holds.

4. Point Predictors of Order Statistics

In this section, we obtain Bayes point predictors for order statistics from a future sample of size m
based on the observed kth lower record values, with respect to the squared error loss (SEL) function, as:

Ŷj:m =
(b+kτ(Rn(k)))

n+a

Γ(n+a)B(j;m−j+1)

∫ ∞
0

∫ ∞
0 yθn+ae−θ(b+kτ(Rn(k)))e−y

×(1− e−y)θ j−1(1− (1− e−y)θ)m−j dy dθ

=
(b+kτ(Rn(k)))

n+a

Γ(n+a)B(j;m−j+1) ∑
m−j
l=0 (m−j

l )(−1)m−j−l ∫ ∞
0 θn+ae−θ(b+kτ(Rn(k)))

×
∫ ∞

0 ye−y(1− e−y)θ(m−l)−1 dy dθ

=
(b+kτ(Rn(k)))

n+a

Γ(n+a)B(j;m−j+1) ∑
m−j
l=0 (m−j

l )(−1)m−j−l ∫ ∞
0 θn+ae−θ(b+kτ(Rn(k)))

×
∫ 1

0 (− log(1− t))tθ(m−l)−1 dt dθ

=
(b+kτ(Rn(k)))

n+a

Γ(n+a)B(j;m−j+1) ∑
m−j
l=0 (m−j

l ) (−1)m−j−l

m−l

∫ ∞
0 θn+a−1e−θ(b+kτ(Rn(k)))

×(ψ(1 + θ(m− l))− ψ(1)) dθ,

(20)
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where we have
∫ 1

0 (− log(1− t))tθ(m−l)−1 dt = (ψ(1+ θ(m− l))−ψ(1))/(θ(m− l)), according to ([17],

p. 543), and where ψ(x) = d log Γ(x)
dx .

Let us denote:

A(m, j, n, a, b, k, Rn(k)) =

(b+kτ(Rn(k)))
n+a

Γ(n+a)B(j;m−j+1) ∑
m−j
l=0 (m−j

l ) (−1)m−j−l

m−l

∫ ∞
0 θn+a−1e−θ(b+kτ(Rn(k)))

×(ψ(1 + θ(m− l))− ψ(1)) dθ.

(21)

For special cases j = 1 and j = m, we have:

Ŷ1:m =
m(b + kτ(Rn(k)))

n+a

Γ(n + a)

m−1

∑
l=0

(
m− 1

l

)
(−1)m−1−l

m− l

∫ ∞

0
θn+a−1e−θ(b+kτ(Rn(k)))

× (ψ(1 + θ(m− l))− ψ(1)) dθ

and:

Ŷm:m =
(b + kτ(Rn(k)))

n+a

Γ(n + a)

∫ ∞

0
θn+a−1e−θ(b+kτ(Rn(k)))(ψ(1 + mθ)− ψ(1)) dθ.

Further, we find the mean squared prediction error (MSPE) of Ŷj:m, for 1 ≤ j ≤ m, as:

MSPE(Ŷj:m) = E(Ŷj:m −Yj:m)
2

= E(A(m, j, n, a, b, k, Rn(k))
2 − 2A(m, j, n, a, b, k, Rn(k))Yj:m + Y2

j:m)

= E(A(m, j, n, a, b, k, Rn(k)))
2 − 2E(A(m, j, n, a, b, k, Rn(k)))E(Yj:m)

+ E(Y2
j:m)

(22)

The value of MSPE(Ŷj:m) can only be estimated numerically because of its complicated form.
For case j = m, the MSPE (22) slightly reduces its complexity.

Remark 1. When applying absolute error loss function, the point predictor of the maximum of a
future sample is the median of the predictive density (12), i.e.,

Ŷm:m = τ

(
b + kτ(Rn(k))

m
(
2

1
n+a − 1

))
.

Remark 1. The flexibility of the shape of the prior density is allowed by considering mixtures of prior
distributions. Following the same construction principle of (8), if we take π(θ) = ∑d

j=1 β jπ(aj ,bj)
(θ) as a prior

distribution, then π(θ|r(k)) = ∑d
j=1 β j(r(k))π(aj ,bj)

(θ|r(k)), where βs(r(k)) = βsws(r(k))/ ∑d
j=1 β jwj(r(k))

and ws(r(k)) = bas
s Γ(n + as)/Γ(as)(bs + kτ(rn(k)))

n+as for s = 1, . . . , d. The Bayes point predictor Ŷj:m, in
this case, is given by:

Ŷj:m =
1

B(j; m− j + 1)

d

∑
s=1

m−j

∑
l=0

βsws(R(k))
Γ(as)

bas
s

(
m− j

l

)
(−1)m−j−l

m− l

×
∫ ∞

0
θn+as−1e−θ(bs+kτ(Rn(k)))(ψ(1 + θ(m− l))− ψ(1)) dθ,

where ψ(·) is a digamma function.

5. An Illustrative Examples

In this section, we investigate and compare the performances, through an illustrative example,
of the inferential procedures presented in this paper.
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For illustrating the usefulness of our proposed predictors, we used a dataset representing time to
failure of steel specimens subjected to cyclical stress loading of 35.5 stress amplitudes. The dataset
goes as follows:

156, 173, 125, 852, 559, 442, 168, 286, 261, 227,

285, 253, 166, 133, 309, 247, 112, 202, 365, 702.

In [18], the authors assumed that these data followed the two-parameter GED(4.1016,0.0062).
Therefore, when all elements of this dataset are multiplied by 0.0062, we have a dataset that

follows the one parameter GE(4.1016); see [10].
The kth lower records from newly formed data:

i 1 2 3 4 5 6 7

Ri(1) 0.9672 0.7750 0.6944
Ri(2) 1.0726 0.9672 0.8246 0.775
Ri(3) 1.0726 1.0416 1.0292 0.9672 0.8246
Ri(4) 5.2824 3.4658 2.7404 1.0726 1.0416 1.0292 0.9672

provide us the basis for the Bayesian inferential procedures developed in previous sections.
It is interesting to make results comparable with those found in [9], where the kth observed upper

record values are used as the basis of Bayesian inferential procedures for the exponential distribution.
Therefore, we consider three cases with (a, b) = {(0.5, 0.5), (1, 1), (2, 2)} as the parameter values of
prior distribution, denoted as Cases I, II, and III, respectively. Jeffrey’s non-informative prior with
(a, b) = (0, 0) is considered as well.

To compare the proposed methods, a numerical study was conducted in statistical software R [19],
up to four digit accuracy. It is important to note that the shape of the posterior density function for
all cases under consideration followed a similar uni-modal shape as the one presented in Figure 1.
Therefore, using the nominal value α = 0.05, we obtained the 95% Bayesian two-sided equi-tailed and
HPD intervals for the order statistics from future samples of size m = 5, 10, and 20.

Figure 1. Posterior density function for Case I when (m, j, k) = (10, 9, 1).

The data analysis indicated that the corresponding Bayesian credible intervals differed notably when
compared with the case of non-informative priors in the sense that they provided more accurate results.
Furthermore, when the prior information became available, the width of the intervals decreased. Case
III dominated in these circumstances, which was quite reasonable due to the mean and variance of the
prior distribution for this case. Furthermore, the HPD method was seen to be more precise than the
other method. However, it was seen that the HPD method had several drawbacks when considering the
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minimum of the sample as the size of the future sample increased. Therefore, the Bayesian equi-tailed
interval was adopted as preferable for considerations in practice. Since the MSPEs of the point predictors
depend on θ, we evaluated the estimate of θ from (9). These results are presented in Tables 1–4 for Cases I,
II, and III and for the case of non-informative priors, respectively, when k = 1 and 2.

MSPEs were increasing with respect to k, while the equi-tailed credible interval width was
decreasing with respect to k. Case III did not dominate other cases. Case III did not have the smallest
values of the MSPEs, and it did not have the shortest intervals everywhere. In the most cases, the HPD
intervals were shorter than the equi-tailed ones.

Table 1. The 95% Bayesian prediction interval and point predictor for Yj:m of a future sample of size m
when (a, b) = (0.5, 0.5). HPD, highest posterior density.

m j Equi-Tailed (L) HPD (L) Point Predictor M̂SPE

k = 1 5 1 (0.0002, 0.8441)(0.8439) (0, 0.4078)(0.4078) 0.1979 0.3539
4 (0.1518, 2.9883)(2.9883) (0.0071, 2.5511)(2.544) 1.2169 1.0381
5 (0.4213, 5.2704)(4.8491) (0.1649, 4.6581)(4.4933) 2.1937 2.1237

10 1 (0.0001, 0.4914)(0.4913) (0, 0.152)(0.152) 0.1059 0.2134
4 (0.0229, 1.2191)(1.1962) (0.0114, 0.6015)(0.5901) 0.4488 0.4485
9 (0.5101, 3.7272)(3.2171) (0.3605, 3.4754)(3.1149) 1.843 1.1235

10 (0.8827, 5.9623)(5.0795) (0.6198, 5.4447)(4.825) 2.831 2.1681
20 1 (0, 0.3007)(0.3007) (1.0004, 1.9989)(0.9985) 0.0592 0.1422

4 (0.0035, 0.6687)(0.6652) (0.72, 2.0887)(1.3688) 0.1095 0.2697
10 (0.0849, 1.3732)(1.2883) (0.0194, 1.2548)(1.2354) 0.6277 0.4575
18 (0.7677, 3.5322)(2.7645) (0.6768, 3.4091)(2.7322) 2.0063 0.9099
20 (1.4513, 6.6548)(5.2035) (1.1921, 6.1853)(4.9932) 3.4943 2.1922

k = 2 5 1 (0.0004, 0.7382)(0.738) (0, 0.6065)(0.6065) 0.1664 0.9503
4 (0.1544, 2.8678)(2.7134) (0.021, 2.508)(2.487) 1.1481 4.3966
5 (0.4156, 5.1632)(4.7475) (0.1711, 4.5431)(4.3719) 2.1188 7.3214

10 1 (0.0004, 0.4006)(0.4005) (0, 0.1592)(0.1592) 0.0833 0.5601
4 (0.0265, 1.0913)(1.0648) (0.004, 0.5882)(0.5842) 0.4021 1.8838
9 (0.5153, 3.605)(3.0897) (0.367, 3.3418)(2.9748) 1.7666 5.9481

10 (0.8751, 5.8549)(4.9798) (0.6159, 5.3185)(4.7026) 2.7516 8.4322
20 1 (0, 0.2271)(0.2271) (0, 0.0171)(0.0171) 0.043 0.4344

4 (0.0048, 0.5561)(0.5513) (0, 0.5804)(0.5804) 0.1776 1.001
10 (0.0966, 1.2327)(1.1362) (0, 1.831)(1.831) 0.5684 2.52
18 (0.782, 3.3997)(2.6178) (0.686, 3.2627)(2.5767) 1.9287 6.0765
20 (1.4425, 6.5473)(5.1048) (1.1834, 6.0553)(4.8719) 3.4133 9.5048

Table 2. The 95% Bayesian prediction interval and point predictor for Yj:m of a future sample of size m
when (a, b) = (1, 1).

m j Equi-Tailed (L) HPD (L) Point Predictor M̂SPE

k = 1 5 1 (0.0002, 0.8366)(0.8364) (0, 0.4079)(0.4079) 0.1587 0.4678
4 (0.1642, 2.9848)(2.8206) (0.0177, 2.6214)(2.6037) 1.2222 1.3447
5 (0.4395, 5.2719)(4.8324) (0.1854, 4.6633)(4.4779) 2.2024 2.4408

10 1 (0.0001, 0.4832)(0.4831) (0, 0.1464)(0.1464) 0.1053 0.2956
4 (0.0274, 1.2083)(1.181) (0.0073, 0.657)(0.6497) 0.4552 0.6576
9 (0.5335, 3.7237)(3.1902) (0.3848, 3.472)(3.0872) 1.8502 1.4587

10 (0.9072, 5.9637)(5.0565) (0.6453, 5.4435)(4.7982) 2.8392 2.5194
20 1 (0, 0.2931)(0.2931) (0, 0.0271)(0.0271) 0.0579 0.1985

4 (0.0047, 0.6569)(0.6522) (0, 0.491)(0.491) 0.2146 0.4057
10 (0.0966, 1.3597)(1.2631) (0, 0.9271)(0.9271) 0.6309 0.694
18 (0.7977, 3.5255)(2.7278) (0.706, 3.4001)(2.6941) 2.0138 1.2505
20 (1.4795, 6.6562)(5.1767) (1.2203, 6.1813)(4.961) 3.5031 2.5501

k = 2 5 1 (0.0003, 0.7386)(0.7383) (0, 0.3248)(0.3248) 0.1682 0.9574
4 (0.1633, 2.8722)(2.7089) (0.03, 2.5178)(2.4878) 1.1558 4.3035
5 (0.429, 5.1705)(4.7415) (0.1853, 4.553)(4.3677) 2.1285 6.8663

10 1 (0.0001, 0.3996)(0.3994) (0, 0.0837)(0.0.0837) 0.0841 0.5643
4 (0.0299, 1.0902)(1.0603) (0.0021, 0.6624)(0.6603) 0.4062 1.8799
9 (0.532, 3.6094)(3.0774) (0.3844, 3.3467)(2.9623) 1.7762 5.6689

10 (0.8932, 5.8623)(4.9691) (0.6347, 5.3249)(4.6903) 2.7622 7.7939
20 1 (0.0001, 0.2256)(0.2255) (0, 0.0085)(0.0085) 0.0434 0.3443

4 (0.0058, 0.5532)(0.5475) (0, 0.3071)(0.3071) 0.1796 1.0142
10 (0.1053, 1.2299)(1.1246) (0, 0.9707)(0.9707) 0.574 2.4084
18 (0.8032, 3.4023)(2.599) (0.707, 3.2642)(2.5571) 1.9387 5.6668
20 (1.4634, 6.5547)(5.0913) (1.2044, 6.06)(4.8556) 3.4244 9.0046
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Table 3. The 95% Bayesian prediction interval and point predictor for Yj:m of a future sample of size m
when (a, b) = (2, 2).

m j Equi-Tailed (L) HPD (L) Point Predictor M̂SPE

k = 1 5 1 (0.0004, 0.8245)(0.8241) (0, 0.4076)(0.4076) 0.1983 0.5943
4 (0.1848, 2.9793)(2.7945) (0.0426, 2.6312)(2.5887) 1.2306 1.6946
5 (0.4685, 5.2742)(4.8057) (0.2178, 4.6699)(4.452) 2.2139 2.8466

10 1 (0.0004, 0.4698)(0.4697) (0, 0.137)(0.137) 0.1048 0.3808
4 (0.0356, 1.1906)(1.1551) (0.0032, 0.7704)(0.7672) 0.4582 0.8932
9 (0.5709, 3.7181)(3.1472) (0.4236, 34657)(3.0422) 1.8608 1.8736

10 (0.9457, 5.9661)(5.0203) (0.6855, 5.4411)(4.7556) 2.8521 2.9438
20 1 (0.0001, 0.2805)(0.2804) (0, 0.0218)(0.0218) 0.0572 0.2559

4 (0.0072, 0.6373)(0.6302) (0, 0.4761)(0.4601) 0.2146 0.5685
10 (0.1172, 1.3372)(1.22) (0, 0.9402)(0.9402) 0.6358 0.9711
18 (0.8455, 3.5147)(2.6692) (0.7525, 3.3851)(2.6327) 2.0257 1.6483
20 (1.5235, 6.6586)(5.1351) (1.2645, 6.1749)(4.9103) 3.5167 3.0199

k = 2 5 1 (0.0004, 0.7391)(0.7387) (0, 0.3311)(0.3311) 0.1712 0.9406
4 (0.1789, 2.8797)(2.7008) (0.0457, 2.5329)(2.4873) 1.169 3.9559
5 (0.4517, 5.183)(4.7312) (0.2092, 4.569)(4.3599) 2.1449 6.3233

10 1 (0.0001, 0.3976)(0.3975) (0, 0.0825)(0.0825) 0.0856 0.5619
4 (0.0362, 1.0882)(1.052) (0.0003, 0.784)(0.7836) 0.4133 1.8005
9 (0.5605, 3.6169)(3.0564) (0.4138, 3.3547)(2.9409) 1.7923 5.1354

10 (0.9235, 5.8747)(4.9512) (0.6661, 5.3355)(4.6694) 2.78 7.1274
20 1 (0.0001, 0.2228)(0.2227) (0, 0.0076)(0.0076) 0.044 0.3505

4 (0.0078, 0.5481)(0.5403) (0, 0.306)(0.306) 0.1831 1.001
10 (0.1211, 1.2248)(1.1037) (0, 0.9725)(0.9725) 0.5834 2.3601
18 (0.8392, 3.4065)(2.5673) (0.7426, 3.2664)(2.5238) 1.9556 5.3681
20 (1.4982, 6.5671)(5.069) (1.2396, 6.0678)(4.8282) 3.4431 8.1053

Table 4. The 95% Bayesian prediction interval and point predictor for Yj:m of a future sample of size m
when (a, b) = (0, 0).

m j Equi-Tailed (L) HPD (L) Point Predictor M̂SPE

k = 1 5 1 (0.0001, 0.8527)(0.8526) (0, 0.4075)(0.4075) 0.1977 0.4131
4 (0.1376, 2.9923)(2.8548) (0.0097, 2.4327)(2.423) 1.2106 0.9424
5 (0.3998, 5.2686)(4.8689) (0.1401, 4.6506)(4.5105) 2.1864 1.9324

10 1 (0.0001, 0.501)(0.5009) (0, 0.1583)(0.1583) 0.1064 0.3042
4 (0.0184, 1.2316)(1.2132) (0.0174, 0.5405)(0.5231) 0.4512 0.4798
9 (0.4826, 3.7313)(3.2488) (0.3315, 3.4788)(3.1473) 1.8341 1.0576

10 (0.8534, 5.9605)(5.1071) (0.5891, 5.4459)(4.8568) 2.8212 1.9971
20 1 (0, 0.3096)(0.3096) (0, 0.0349)(0.0349) 0.0595 0.1999

4 (0.0025, 0.6823)(0.6798) (0, 0.5055)(0.5055) 0.2141 0.2011
10 (0.0723, 1.3888)(1.3165) (0, 0.9072)(0.9072) 0.6243 0.2287
18 (0.7322, 3.54)(2.8078) (0.6422, 3.4193)(2.7771) 1.9972 0.8487
20 (1.4174, 6.653)(5.2356) (1.1582, 6.1899)(5.0317) 3.4839 1.9905

k = 2 5 1 (0.0001, 0.7377)(0.7376) (0, 0.317)(0.317) 0.1645 1.092
4 (0.1445, 2.8628)(2.7183) (0.0105, 2.4955)(2.485) 1.1392 4.5601
5 (0.4006, 5.1548)(4.7542) (0.1552, 4.5314)(4.3762) 2.1077 7.4088

10 1 (0.0001, 0.4018)(0.4017) (0, 0.0849)(0.0849) 0.0823 0.5972
4 (0.023, 1.0925)(1.0694) (0.0051, 0.5453)(0.5402) 0.3975 1.9586
9 (0.4964, 3.5999)(3.1035) (0.3474, 3.336)(2.9886) 1.7557 6.4913

10 (0.8546, 5.8465)(4.9919) (0.5947, 5.3111)(4.7165) 2.7395 8.9099
20 1 (0, 0.2288)(0.2288) (0, 0.0097)(0.0097) 0.0426 0.3672

4 (0.0038, 0.5591)(0.5553) (0, 0.3072)(0.3072) 0.1754 1.5641
10 (0.0873, 1.2357)(1.1485) (0,0.9673)(0.9673) 0.5622 2.5221
18 (0.7579, 3.3968)(2.6389) (0.6621, 3.2609)(2.5987) 1.9173 6.318
20 (1.4187, 6.5389)(5.1202) (1.1594, 6.0499)(4.8905) 3.4007 10.2724

6. Conclusions

In this paper, we addressed the problem of presenting Bayesian point predictors of order statistics
of a future sample of size m based on the kth lower record values from a GED. With respect to the
SEL, we investigated the point prediction of order statistics from a future sample. Furthermore, we
presented the construction of Bayesian and HPD intervals. An illustrative example was given to show
the implementation of the procedures developed.
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It may be interesting to compare point predictors for order statistics based on lower record values
from GED with those point predictors of order statistics when upper record values are observed from
the exponential distribution. This may motivate researchers to transform data from the exponential
distribution to the GED in order to obtain better point predictors.
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