

1 Supplement 1. Simulation-based Assessment of the Distribution of $d_{jk} = \frac{O_{jk} - I_{jk}}{O_{jk}}$.

2 Recall from Section 2 that to define a ratio that has finite variance, a truncated normal can be used as the data

3 model in Eq. (2) for
$$\boldsymbol{o}_{jk}$$
 in $\boldsymbol{d}_{jk} = 1 - \frac{i_{jk}}{o_{jk}}$, which is equal in distribution to $1 - \frac{\mu_{jk}(1 + \delta_{TI} \boldsymbol{z}_1)}{\mu_{jk}(1 + \delta_{TO} \boldsymbol{z}_2)} = 1 - R$,

4 which involves a ratio $R = \frac{(1 + \delta_{TT} z_1)}{(1 + \delta_{TD} z_2)}$ of independent normal random variables z_1 and z_2 (for the case of

5 one measurement per group; multiple measurements per group is treated similarly). Section 2 claimed that

6 provided
$$\delta_{TO} \leq 0.02$$
 and $\delta_{TI} \leq 0.05$, the distribution of the truncated version of the ratio $d_{jk} = \frac{o_{jk} - i_{jk}}{o_{jk}}$ is

- 7 extremely close to a normal distribution.
- 8

9 Supplement 1 provides 4 example numerical simulation results involving the distribution (*O-I*)/*O*, with O

- 10 assumed to be a truncated normal, with truncation occurring only if O is at least 25 standard deviations from
- 11 its mean value. Example 1 is the approximate variance result. Example 2 is a tolerance interval example with
- 12 random normal error (no systematic error) for which there is an exact expression for the tolerance interval
- 13 coverage factor, so simulation using a normal and a normal divided by a truncated normal can be compared.
- 14 Example 3 is example density plots and normal probability plots with error bars showing that *O-I*/*O* with a
- 15 truncated O is approximately normal provided $\delta_{TO} \leq 0.02$. Example 4 investigates the variances of the
- 16 estimators $\hat{\delta}_R^2$ and $\hat{\delta}_S^2$ that arise from applying ANOVA to $d_{jk} = \frac{o_{jk} l_{jk}}{o_{jk}}$.

17 Example S1.1: Approximate variance result for a ratio of a normal to a truncated normal

- 18 In R, the # sign denotes a comment. Comments are inserted below in red to explain.
- 19 $nsim = 10^{6}$; kx = 5; ky = 5. # factors to increase deltaor, deltaor, deltair, deltais
- 20 deltaor = .01*kx; deltaos = .01*kx; deltair = .01*ky; deltais = .01*ky
- 21 deltaot = $(deltaor^2+deltaos^2)^{.5}$; deltait = $(deltair^2+deltais^2)^{.5}$
- 22 temptrue =100; N = 100
- 23 temp1 = numeric(nsim); temp2 = numeric(nsim)
- 24 check = matrix(0,nrow=nsim,ncol=2)
- 25 for(isim in 1:nsim) {
- 26 x = temptrue*(1+deltaor*rnorm(N) + deltaos*rnorm(N)) # note N for sys, so 1 obs per group
- 27 $x_1 = pmax(lboundx,x)$. # truncation: assume operator measurement is truncated normal
- 28 y = temptrue*(1+deltair*rnorm(N) + deltais*rnorm(N))
- 29 y1 = pmax(lboundy,y) # truncation not necessary for inspector, but does no harm
- 30 temp1[isim] = var((x-y)/x)^.5 # non-truncated version
- 31 temp2[isim] = $var((x1-y1)/x1)^{.5}$. # truncated version
- 32

}

(all

33	$temptot = (deltaor^{2}+deltaos^{2}+deltair^{2}+deltais^{2})^{5}$
34	c(nsim,N,deltaor,deltaos,deltair,deltais,temptot)
35	[1] 1e+06 1e+02 1e-02 1e-02 1e-02 2e-02. # approximation is 0.02
36	c(mean(temp1),mean(temp2))
37	[1] 0.01996 0.01996 # actual rounds to 0.02 for untruncated or truncated with 10^6 simulations
38	c(nsim,N,deltaor,deltaos,deltair,deltais,temptot)
39	[1] 1e+06 1e+02 2e-02 2e-02 2e-02 2e-02 4e-02. # approximation is 0.04
40	c(mean(temp1),mean(temp2))
41	[1] 0.03999 0.03999 # actual via simulation rounds to 0.04 for untruncated or truncated
42	$temptot = (deltaor^{2}+deltaos^{2}+deltair^{2}+deltais^{2})^{.5}$
43	c(nsim,N,deltaor,deltaos,deltair,deltais,temptot)
44	[1] 1e+06 1e+02 5e-02 5e-02 5e-02 5e-02 1e-01 # exact is 0.10
45	c(mean(temp1),mean(temp2))
46	1] 0.1011 0.1011 # actual via simulation rounds to 0.10, truncated or not
47	c(nsim,N,deltaor,deltaos,deltair,deltais,temptot)
48	[1] 1e+06 1e+02 1e-01 1e-01 1e-01 2e-01. # approximation is 0.20
49	c(mean(temp1),mean(temp2))
50	[1] 0.2118575 0.2118575 # actual rounds to 0.21, so the approximation begins to show error
51	[1] 1.0e+06 1.0e+02 1.5e-01 1.5e-01 1.5e-01 1.5e-01 3.0e-01 # approximation is 0.30 > 0.20
52	c(mean(temp1),mean(temp2),mean(temp3))
53	[1] 0.3587435 0.3587435 # actual rounds to 0.36, which is unacceptably different from 0.30
54	
55	
56	Example S1.2: Approximate normality of the ratio of a normal to a truncated normal
57	This example computes a tolerance interval coverage factor using either a normally distributed
58	variate, or a ratio of normal variates in the one-sided normal case. In this one-sided one-group
59	normal case, the exact coverage factor is known analytically (this is the only such case where the
60	exact tolerance interval coverage factor is known analytically). This example is a "bottom-line"
61	normality check in the context of this paper: and essentially the same result is obtained using
62	normal or using a ratio of a normal to a truncated normal. Compare the boldface numbers below (a
63	three are equal to within the simulation error in using a finite but large (10 ⁶) number of
64	simulations). The simulation results reported use (O-I)/O to compute the tolerance intervals in
65	structured data (random and systematic errors).
66	
67	n1 = 30; $p1 = .05$; $p2 = .01 # p1$ is 0.05 coverage, p2 is 99% confidence
68	$del = qnorm(p=1-p1)*n1^{.5}; sd1 = .05; sd2 = .02; tsd = (sd1^{2} + sd2^{2})^{.5}$
69	$nsim = 10^{6}$; $mu = 0$; $k.n = 10^{3}$; $kseq = seq(2.3,2.7,length=k.n) #$ after initial run to zoom kseq
70	tempmat1 <- matrix(0,nrow=nsim,ncol=k.n); tempmat2 <- matrix(0,nrow=nsim,ncol=k.n)
71	for(isim in 1:nsim) {
72	temp1 = mu + rnorm(n=n1,sd=tsd)
73	$truncated.normal = pmax(0.5, 1+rnorm(n=n1, sd=sd2)) \ \# \ this \ truncation \ will \ almost \ never \ occur$
74	temp1a = (1 + rnorm(n=n1,sd=sd1))/truncated.normal
75	temp1a = temp1a-1

- 76 $temp2 = mean(temp1) + kseq*var(temp1)^{.5}$
- 77 $temp2a = mean(temp1a) + kseq*var(temp1a)^{.5}$
- 78 tempmat1[isim,] = as.numeric(temp2 >= qnorm(1-p1,sd=tsd))
- 79 tempmat2[isim,] = as.numeric(temp2a >= qnorm(1-p1,sd=tsd))
- 80

}

- 81
- 82 c(n1,p1,p2,del,sd1,sd2,tsd,nsim)
- 83 min(kseq[apply(tempmat1,2,mean)>=1-p2])
- 84 min(kseq[apply(tempmat2,2,mean)>= 1-p2])
- 85 #rep1 of 10^6 simulations
- 86 c(n1,p1,p2,del,sd1,sd2,tsd,nsim)
- 87 3.00e+01 5.00e-02 1.00e-02 9.01e+00 5.00e-02 2.00e-02 5.39e-02 1.00e+06
- 88 min(kseq[apply(tempmat1,2,mean)>= 1-p2])
- 89 2.516617. # simulation-based, using a normal
- 90 min(kseq[apply(tempmat2,2,mean)>= 1-p2])
- 91 2.515015 # simulation-based, using a ratio of a normal to a truncated normal
- 92 #rep2.of 10⁶ simulations to be sure that 10⁶ is enough simulations to ignore simulation error
- 93 min(kseq[apply(tempmat1,2,mean)>=1-p2])
- 94 2.517417 # simulation-based, using a normal
- 95 min(kseq[apply(tempmat2,2,mean)>=1-p2])
- 96 2.517017# simulation-based, using a ratio of a normal to a truncated normal
- 97 # exact for 1 sided. # the exact k value is only available for the 1-sided normal tolerance interval
- 98 del <- qnorm(p=1-p1)* $n1^{.5}$
- **99** *#* this is k:
- 100 qt(p=1-p2,df=n1-1,ncp=del)/n1^.5
- 101 2.515486. # exact, essentially the same as those above from simulation.
- 102
- 103

104 Example S1.3: Example normality checks for the ratio

- 105 A large number (10^4) observations were simulated from a normal and from a ratio of a normal to a
- truncated normal. Figures S1.1, S1.2, and S1.3 illustrate that the ratio is extremely close to normal
- 107 in distribution provided $\delta_{TO} \leq 0.02$ and $\delta_{TI} \leq 0.05$.
- 108

Figure S1.1. Normality checks using normal probability plots and "error bars" (based on

111 simulation) for a normal random variable using 10^4 observations. As expected, normal data

112 "passes" this normality test. In all plots (Figures a-d), $\delta_{TI} = \sqrt{\delta_{RI}^2 + \delta_{SI}^2} = 0.05$ as an example. 113

116

109

118 normal to a truncated normal using 10⁴ observations. This ratio data "passes" this normality test 119 provided $\delta_{TO} = \sqrt{\delta_{RO}^2 + \delta_{SO}^2} \le 0.02$ (top two plots), and begins to show departure from normality

120 if
$$\delta_{TO} = \sqrt{\delta_{RO}^2 + \delta_{SO}^2} = 0.05$$
 in these plots with $\delta_{TI} = \sqrt{\delta_{RI}^2 + \delta_{SI}^2} = 0.05$.

123 Figure S1.3. The estimated probability density for the same 4 cases as in Figure 2.

124

Example S1.4. The Variances of the ANOVA-based Estimators $\hat{\delta}_{R}^{2}$ and $\hat{\delta}_{S}^{2}$ 125

- Example 4 investigates the variances of the estimators $\hat{\delta}_R^2$ and $\hat{\delta}_S^2$ that arise from applying 126
- ANOVA to $d_{jk} = \frac{o_{jk} i_{jk}}{o_{jk}}$. The point of this example is that it is defensible to assume that 127
- 128 $d_{ij} = (o_{jk} - i_{jk})/o_{jk}$ is approximately normal under Eq. (2), with a variance that is well
- 129 approximately by linear propagation of error variance (Example S1.1), and that the variance of the
- 130 variance estimates are also well approximated as follows:
- # columns 1 and 2 are $\hat{\delta}_{R}^{2}$ and $\hat{\delta}_{S,}^{2}$, respectively, for $d_{ij} = (o_{jk} i_{jk})/o_{jk}$ 131
- 132 # columns 3 and 4 are $\hat{\delta}_R^2$ and $\hat{\delta}_{S_i}^2$, respectively, for $d_{ij} = (o_{ik} - i_{ik})/\Box_{ik}$
- 133 # so, columns 3 and 4 are the same as an additive model, as in standard ANOVA with normal data
- 134 nsim = 10^5; check.mat =matrix(0,nrow=nsim,ncol=4)
- 135 for(isim in 1:nsim) {
- 136 # simulate 3 groups of 10 measurements per group from Eq. (2):
- 137 temp1 =
- 138 generate.data(ngroups=3,nvec=rep(10,3),sigma.r.o=0.01,sigma.r.i=0.01,sigma.s.o=0.005,sigma.s.i=0.01)
- 139 # compute d:
- 140 dtemp = (temp1[,3]-temp1[,2])/temp1[,2]
- 141 # use the usual ANOVA estimates of random and systematic error variances:
- 142 temp2 = estvars0(groups=temp1[,1],d=dtemp). # gives same result as lmer() in R
- 143 check.mat[isim, 1:2] = temp2[1:2]
- 144 temp1 = generate.data(ngroups=3,nvec=rep(10,3),

145	sigma.r.o=0,sigma.r.i=rtotsd,sigma.s.o=0,sigma.s.i=stotsd)
146	dtemp = (temp1[,3]-temp1[,2])/temp1[,2]
147	temp2 = estvars0(groups=temp1[,1],d=dtemp)
148	check.mat[isim,3:4] = temp2[1:2]
149	}
150	# compare approximation to "exact' (nearly exact with 10 ⁵ simulations)
151	apply(check.mat,2,mean)
152	0.0002001705 0.0001255540 0.0002001561 0.0001255132.
153	# column 1 (ratio) is approximately the same as column 3 (normal) and
154	# column 2 (ratio) is approximately the same as column 4 (normal).
155	stotvar = (.01^2+.005^2); rtotvar = (.01^2+.01^2)
156	c(rtotvar,stotvar)
157	0.000200 0.000125 # agrees with simulation
158	
159	apply(check.mat,2,var)^.5
160	5.462549e-05 1.455530e-04 5.468783e-05 1.455614e-04
161	# column 1 (ratio) is approximately the same as column 3 (normal) and
162	# column 2 (ratio) is approximately the same as column 4 (normal).
163	# rep2 of 10^5 simulations:
164	apply(check.mat,2,mean)
165	0.0001999014 0.0001239302 0.0002000479 0.0001243459
166	apply(check.mat,2,var)^.5
167	5.439924e-05 1.437925e-04 5.456276e-05 1.438669e-04
168	
169	
170	
171	
172	
173	

174