Supplement 1. Simulation-based Assessment of the Distribution of $d_{j k}=\frac{o_{j k}-i_{j k}}{o_{j k}}$.
Recall from Section 2 that to define a ratio that has finite variance, a truncated normal can be used as the data model in Eq. (2) for $O_{j k}$ in $d_{j k}=1-\frac{i_{j k}}{o_{j k}}$, which is equal in distribution to $1-\frac{\mu_{j k}\left(1+\delta_{T I} z_{1}\right)}{\mu_{j k}\left(1+\delta_{T o} z_{2}\right)}=1-R$, which involves a ratio $R=\frac{\left(1+\delta_{T I} z_{1}\right)}{\left(1+\delta_{T O} z_{2}\right)}$ of independent normal random variables z_{1} and z_{2} (for the case of one measurement per group; multiple measurements per group is treated similarly). Section 2 claimed that provided $\delta_{T O} \leq 0.02$ and $\delta_{T I} \leq 0.05$, the distribution of the truncated version of the ratio $d_{j k}=\frac{o_{j k}-\boldsymbol{i}_{j k}}{\boldsymbol{o}_{j k}}$ is extremely close to a normal distribution.

Supplement 1 provides 4 example numerical simulation results involving the distribution $(O-I) / O$, with O assumed to be a truncated normal, with truncation occurring only if O is at least 25 standard deviations from its mean value. Example 1 is the approximate variance result. Example 2 is a tolerance interval example with random normal error (no systematic error) for which there is an exact expression for the tolerance interval coverage factor, so simulation using a normal and a normal divided by a truncated normal can be compared. Example 3 is example density plots and normal probability plots with error bars showing that $O-I) / O$ with a truncated O is approximately normal provided $\delta_{T O} \leq 0.02$. Example 4 investigates the variances of the estimators $\hat{\delta}_{R}^{2}$ and $\hat{\delta}_{S}^{2}$ that arise from applying ANOVA to $d_{j k}=\frac{o_{j k}-i_{j k}}{o_{j k}}$.

Example S1.1: Approximate variance result for a ratio of a normal to a truncated normal

In R, the \# sign denotes a comment. Comments are inserted below in red to explain. nsim $=10^{\wedge} 6 ; \mathrm{kx}=5 ; \mathrm{ky}=5$. \# factors to increase deltaor, deltaor, deltair, deltais
deltaor $=.01 * \mathrm{kx}$; deltaos $=.01 * \mathrm{kx}$; deltair $=.01 * \mathrm{ky}$; deltais $=.01 * \mathrm{ky}$
deltaot $=\left(\text { deltaor }^{\wedge} 2+\text { deltaos }^{\wedge} 2\right)^{\wedge} .5$; deltait $=\left(\text { deltair }^{\wedge} 2+\text { deltais }^{\wedge} 2\right)^{\wedge} .5$
temptrue $=100 ; \mathrm{N}=100$
temp $1=$ numeric $($ nsim $) ;$ temp2 $=$ numeric $($ nsim $)$
check $=\operatorname{matrix}(0$, nrow $=$ nsim,ncol $=2)$
for(isim in 1:nsim) \{
$\mathrm{x}=$ temptrue ${ }^{*}\left(1+\right.$ deltaor* ${ }^{*}$ norm $(\mathrm{N})+$ deltaos*rnorm(N$\left.)\right)$ \# note N for sys, so 1 obs per group
$\mathrm{x} 1=\mathrm{pmax}($ lboundx, x$)$. \# truncation: assume operator measurement is truncated normal
$\mathrm{y}=$ temptrue ${ }^{*}(1+$ deltair* rnorm $(\mathrm{N})+$ deltais*rnorm(N) $)$
$\mathrm{y} 1=\operatorname{pmax}($ lboundy,y) \# truncation not necessary for inspector, but does no harm
temp1[isim] $=\operatorname{var}((x-y) / \mathrm{x})^{\wedge} .5$ \# non-truncated version
temp2 $[\mathrm{isim}]=\operatorname{var}((\mathrm{x} 1-\mathrm{y} 1) / \mathrm{x} 1)^{\wedge} .5$. \# truncated version
\}
temptot $=\left(\text { deltaor }^{\wedge} 2+\text { deltaos }^{\wedge} 2+\text { deltair }^{\wedge} 2+\text { deltais }^{\wedge} 2\right)^{\wedge} .5$
c (nsim,N,deltaor, deltaos, deltair, deltais,temptot)
[1] 1e $+061 \mathrm{e}+021 \mathrm{e}-021 \mathrm{e}-021 \mathrm{e}-021 \mathrm{e}-022 \mathrm{e}-02$. \# approximation is 0.02
$\mathrm{c}($ mean(temp1), mean(temp2))
[1] 0.019960 .01996 \# actual rounds to 0.02 for untruncated or truncated with 10^{6} simulations $\mathrm{c}(\mathrm{nsim}, \mathrm{N}$, deltaor, deltaos, deltair, deltais,temptot)
[1] $1 \mathrm{e}+061 \mathrm{e}+022 \mathrm{e}-022 \mathrm{e}-022 \mathrm{e}-022 \mathrm{e}-024 \mathrm{e}-02$. \# approximation is 0.04
$\mathrm{c}($ mean(temp1), mean(temp2))
[1] 0.039990 .03999 \# actual via simulation rounds to 0.04 for untruncated or truncated
temptot $=\left(\text { deltaor } r^{\wedge} 2+\text { deltaos }^{\wedge} 2+\text { deltair }^{\wedge} 2+\text { deltais } \wedge 2\right)^{\wedge} .5$
c (nsim,N,deltaor, deltaos, deltair, deltais,temptot)
[1] $1 \mathrm{e}+061 \mathrm{e}+025 \mathrm{e}-025 \mathrm{e}-025 \mathrm{e}-025 \mathrm{e}-021 \mathrm{e}-01$ \# exact is 0.10
$\mathrm{c}($ mean(temp1), mean(temp2))
1] 0.10110 .1011 \# actual via simulation rounds to 0.10 , truncated or not c (nsim,N,deltaor, deltaos, deltair, deltais,temptot)
[1] 1e $+061 \mathrm{e}+021 \mathrm{e}-011 \mathrm{e}-011 \mathrm{e}-011 \mathrm{e}-012 \mathrm{e}-01$. \# approximation is 0.20
$\mathrm{c}($ mean(temp1),mean(temp2))
[1] 0.21185750 .2118575 \# actual rounds to 0.21 , so the approximation begins to show error
[1] $1.0 \mathrm{e}+061.0 \mathrm{e}+021.5 \mathrm{e}-011.5 \mathrm{e}-011.5 \mathrm{e}-011.5 \mathrm{e}-013.0 \mathrm{e}-01 \#$ approximation is $0.30>0.20$ $\mathrm{c}($ mean(temp1), mean(temp2), mean(temp3))
[1] 0.35874350 .3587435 \# actual rounds to 0.36 , which is unacceptably different from 0.30

Example S1.2: Approximate normality of the ratio of a normal to a truncated normal

This example computes a tolerance interval coverage factor using either a normally distributed variate, or a ratio of normal variates in the one-sided normal case. In this one-sided one-group normal case, the exact coverage factor is known analytically (this is the only such case where the exact tolerance interval coverage factor is known analytically). This example is a "bottom-line" normality check in the context of this paper: and essentially the same result is obtained using normal or using a ratio of a normal to a truncated normal. Compare the boldface numbers below (all three are equal to within the simulation error in using a finite but large $\left(10^{6}\right)$ number of simulations). The simulation results reported use (O-I)/O to compute the tolerance intervals in structured data (random and systematic errors).
$\mathrm{n} 1=30 ; \mathrm{p} 1=.05 ; \mathrm{p} 2=.01 \# \mathrm{p} 1$ is 0.05 coverage, p 2 is 99% confidence
del $=$ qnorm $(\mathrm{p}=1-\mathrm{p} 1)^{*} \mathrm{n} 1^{\wedge} .5 ; \mathrm{sd} 1=.05 ; \mathrm{sd} 2=.02 ; \mathrm{tsd}=\left(\mathrm{sd} 1 \wedge 2+\mathrm{sd} 2^{\wedge} 2\right)^{\wedge} .5$
$\mathrm{nsim}=10^{\wedge} 6 ; \mathrm{mu}=0 ; \mathrm{k} . \mathrm{n}=10^{\wedge} 3 ; \mathrm{kseq}=\operatorname{seq}(2.3,2.7$, length=k.n) \# after initial run to zoom kseq
tempmat $1<-$ matrix $(0$, nrow $=$ nsim,ncol=k.n); tempmat2 $<-$ matrix $(0$, nrow=nsim,ncol=k.n)
for(isim in 1:nsim) \{
temp $1=\mathrm{mu}+\operatorname{rnorm}(\mathrm{n}=\mathrm{n} 1, \mathrm{sd}=$ tsd $)$
truncated.normal $=\operatorname{pmax}(0.5,1+\operatorname{rnorm}(\mathrm{n}=\mathrm{n} 1, \mathrm{sd}=\mathrm{sd} 2))$ \# this truncation will almost never occur templa $=(1+\operatorname{rnorm}(\mathrm{n}=\mathrm{n} 1, \mathrm{sd}=\mathrm{sd} 1)) /$ truncated.normal
temp1a $=$ temp $1 \mathrm{a}-1$

```
    temp2 = mean(temp1) + kseq*var(temp1)^. 5
    temp2a = mean(temp1a) + kseq*var(temp1a)^.5
    tempmat1[isim,] = as.numeric(temp2 >= qnorm(1-p1,sd=tsd))
    tempmat2[isim,] = as.numeric(temp2a >= qnorm(1-p1,sd=tsd))
}
c(n1,p1,p2,del,sd1,sd2,tsd,nsim)
min(kseq[apply(tempmat1,2,mean)>= 1-p2])
min(kseq[apply(tempmat2,2,mean)>= 1-p2])
#rep1 of 106 simulations
c(n1,p1,p2,del,sd1,sd2,tsd,nsim)
3.00e+01 5.00e-02 1.00e-02 9.01e+00 5.00e-02 2.00e-02 5.39e-02 1.00e+06
min(kseq[apply(tempmat1,2,mean)>= 1-p2])
2.516617. # simulation-based, using a normal
min(kseq[apply(tempmat2,2,mean)>= 1-p2])
2.515015 # simulation-based, using a ratio of a normal to a truncated normal
#rep2.of }1\mp@subsup{0}{}{6}\mathrm{ simulations to be sure that 106 is enough simulations to ignore simulation error
min(kseq[apply(tempmat1,2,mean)>= 1-p2])
2.517417 # simulation-based, using a normal
min(kseq[apply(tempmat2,2,mean)>= 1-p2])
2.517017# simulation-based, using a ratio of a normal to a truncated normal
# exact for 1 sided. # the exact k value is only available for the 1-sided normal tolerance interval
del <- qnorm(p=1-pl)*n1^. 5
# this is k:
qt(p=1-p2,df=n1-1,ncp=del)/n1^.5
2.515486. \# exact, essentially the same as those above from simulation.
```


Example S1.3: Example normality checks for the ratio

A large number $\left(10^{4}\right)$ observations were simulated from a normal and from a ratio of a normal to a truncated normal. Figures S1.1, S1.2, and S1.3 illustrate that the ratio is extremely close to normal in distribution provided $\delta_{T O} \leq 0.02$ and $\delta_{T I} \leq 0.05$.

Figure S1.1. Normality checks using normal probability plots and "error bars" (based on simulation) for a normal random variable using 10^{4} observations. As expected, normal data "passes" this normality test. In all plots (Figures a-d), $\delta_{T I}=\sqrt{\delta_{R I}^{2}+\delta_{S I}^{2}}=0.05$ as an example.

Figure S1.2. Normality checks using normal probability plot sand "error bars" for a ratio of a normal to a truncated normal using 10^{4} observations. This ratio data "passes" this normality test provided $\delta_{T O}=\sqrt{\delta_{R O}^{2}+\delta_{S O}^{2}} \leq 0.02$ (top two plots), and begins to show departure from normality if $\delta_{T O}=\sqrt{\delta_{R O}^{2}+\delta_{S O}^{2}}=0.05$ in these plots with $\delta_{T I}=\sqrt{\delta_{R I}^{2}+\delta_{S I}^{2}}=0.05$.

Figure S1.3. The estimated probability density for the same 4 cases as in Figure 2.

Example S1.4. The Variances of the ANOVA-based Estimators $\hat{\delta}_{R}^{2}$ and $\hat{\delta}_{S}^{2}$

Example 4 investigates the variances of the estimators $\hat{\delta}_{R}^{2}$ and $\hat{\delta}_{S}^{2}$ that arise from applying ANOVA to $d_{j k}=\frac{o_{j k}-\boldsymbol{i}_{j k}}{\boldsymbol{o}_{j k}}$. The point of this example is that it is defensible to assume that $\mathrm{d}_{\mathrm{ij}}=\left(\mathrm{o}_{\mathrm{jk}}-\mathrm{i} \mathrm{jk}\right) / \mathrm{o}_{\mathrm{jk}}$ is approximately normal under Eq. (2), with a variance that is well approximately by linear propagation of error variance (Example S1.1), and that the variance of the variance estimates are also well approximated as follows:
\# columns 1 and 2 are $\hat{\delta}_{R}^{2}$ and $\hat{\delta}_{S,}^{2}$, respectively, for $\mathrm{d}_{\mathrm{ij}}=\left(\mathrm{o}_{\mathrm{jk}}-\mathrm{i}_{\mathrm{jk}}\right) / \mathrm{o}_{\mathrm{jk}}$
$\#$ columns 3 and 4 are $\hat{\delta}_{R}^{2}$ and $\hat{\delta}_{S,}^{2}$, respectively, for $\mathrm{d}_{\mathrm{ij}}=\left(\mathrm{o}_{\mathrm{jk}}-\mathrm{i}_{\mathrm{jk}}\right) / \square \mathrm{jk}$
\# so, columns 3 and 4 are the same as an additive model, as in standard ANOVA with normal data nsim $=10^{\wedge} 5$; check.mat $=$ matrix $(0$, nrow $=$ nsim, ncol $=4)$
for(isim in 1:nsim) \{
\# simulate 3 groups of 10 measurements per group from Eq. (2):
temp1 =
generate.data(ngroups $=3$, nvec $=$ rep $(10,3)$,sigma.r. $o=0.01$,sigma.r. $i=0.01$, sigma.s. $=0.005$,sigma.s. $i=0.01$)
\# compute d:
dtemp $=($ temp $1[3]-$ temp $1[2]) /$ temp $1[, 2]$
\# use the usual ANOVA estimates of random and systematic error variances:
temp2 = estvars0(groups=temp1[,1],d=dtemp). \# gives same result as lmer() in R
check.mat[isim, 1:2] = temp2[1:2]
temp $1=$ generate.data(ngroups $=3$, nvec $=$ rep $(10,3)$,

```
apply(check.mat,2,var)^. 5
5.462549e-05 1.455530e-04 5.468783e-05 1.455614e-04
161 \# column 1 (ratio) is approximately the same as column 3 (normal) and \# column 2 (ratio) is approximately the same as column 4 (normal).
\# rep2 of \(10^{\wedge} 5\) simulations:
apply(check.mat,2,mean)
0.00019990140 .00012393020 .00020004790 .0001243459
apply(check.mat,2,var)^. 5
5.439924e-05 1.437925e-04 5.456276e-05 1.438669e-04
    sigma.r.o=0,sigma.r.i=rtotsd,sigma.s.o=0,sigma.s.i=stotsd)
dtemp = (temp1[,3]-temp1[,2])/temp1[,2]
    temp2 = estvars0(groups=temp1[,1],d=dtemp)
    check.mat[isim,3:4] = temp2[1:2]
}
# compare approximation to "exact' (nearly exact with 105 simulations)
apply(check.mat,2,mean)
0.0002001705 0.0001255540 0.0002001561 0.0001255132.
# column 1 (ratio) is approximately the same as column 3 (normal) and
# column 2 (ratio) is approximately the same as column 4 (normal).
stotvar = (.01^2+.005^2); rtotvar = (.01^2+.01^2)
c(rtotvar,stotvar)
0.000200 0.000125 # agrees with simulation
apply(check.mat,2,var)^.5
```

-

