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Abstract: We introduce new equivalence tests for approximate independence in two-way contingency
tables. The critical values are calculated asymptotically. The finite sample performance of the tests
is improved by means of the bootstrap. An estimator of boundary points is developed to make the
bootstrap based tests statistically efficient and computationally feasible. We compare the performance
of the proposed tests for different table sizes by simulation. Then we apply the tests to real data sets.
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1. Introduction

Testing for approximate row-column independence in two-way contingency tables is a common
task in statistical practice. The first publications on this topic go back to Hodges and Lehmann [1],
Diaconis and Efron [2]. More recently, Liu and Lindsay [3] applied the semi-parametric tubular
tolerance regions to the row-column independence model in two-way contingency tables. The method
relies on the analytical properties of the LRT statistic to obtain a closed form estimator of boundary
points. Wellek [4] develops a test for independence in multi-way contingency tables in Section 9.2.
For this purpose, he applies a test for consistency with a fully specified multinomial distribution as
follows. First, the marginal distributions of the contingency table are calculated. The test statistic is the
Euclidean distance between the product measure of the marginal distributions and the contingency
table. The critical value is calculated asymptotically.

Ostrovski [5] proposes a general method to test equivalence to families of multinomial
distributions, which is based on the minimum distance

d (p,M) = inf
q∈M

d (p, q) (1)

to a familyM of multinomial distributions. If d is Euclidean distance andM is the independence
model then the calculation of minimum distance Equation (1) requires numerical optimization.
Generally, the method relies on the existence of a continuous minimizer of Equation (1). Unfortunately,
it could not be shown if a continuous minimizer exists for the independence model. Instead,
Ostrovski [5] assumes the existence of a continuous minimizer at all points and then applies the
method to test for approximate independence. Additionally, numerical calculation of minimum
distance Equation (1) makes the bootstrap test computationally intensive.

We follow the lines of [5], but avoid the numerical valuation of the minimum distance Equation (1)
in the special case of independence testing. We also propose an efficient bootstrap test, which is based
on the randomized estimator of the boundary points.
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Any two-way contingency table of the size k1 × k2 corresponds to a probability matrix from Rk1 ×
Rk2 . Let p =

(
pij

)
denote the probability matrix. LetM be the independence model, which contains

all product measures of the corresponding dimensions. The approximate row-column independence
can be shown by testing

H0 = {d (p,M) ≥ ε} against H1 = {d (p,M) < ε} , (2)

where ε > 0 is a tolerance parameter.
Let r and c denote the probability vectors of the marginal distributions, which are defined by

ri = ∑k2
j=1 pij and cj = ∑k1

i=1 pij. A probability matrix p belongs to M iff the equality pij = ricj is
fulfilled for all pij. We consider the transformations ha and hr of the matrix p, which are defined by

ha (p) =
(

pij − ricj
)

and hr (p) =
( pij

ricj

)
.

For any differentiable distance l on Rk1 × Rk2 we define two new distances da (p, q) =

l (ha (p) , ha (q)) and dr (p, q) = l (hr (p) , hr (q)). It should be noted that da and dr are only
pseudo-metrics because dr (p, q) = 0 or da (p, q) = 0 does not imply p = q. We put these distances in
Equation (1) and obtain

da (p,M) = inf
q∈M

da (p, q) = inf
q∈M

l (ha (p) , 0) = l (ha (p) , 0)

and dr (p,M) = l (hr (p) , 1), where 0 denotes the zero matrix and 1 is the matrix of ones. The distances
da (p,M) and dr (p,M) can be interpreted respectively as the absolute deviation and the relative
deviation between p and the product measure of the marginal distributions. The distances da (p,M)

and dr (p,M) are easy to calculate without optimization.
Therefore, da and dr are good candidates for the general distance d in Definition (1) and we will

use only these two specific distances in remainder of the paper.
We observe a contingency table pn of relative frequencies, where n is the sample size and

p is the true underlying probability matrix. Then the test statistic for Equation (2) is Ta (pn) =√
n (da (pn,M)− ε) or Tr (pn) =

√
n (dr (pn,M)− ε) depending on user preference. Below we write

d∗ instead of da and dr if the statements are correct for both distances. We use the subscript ∗ instead
of a and r, if appropriate.

2. Asymptotic Tests

In this section, we derive the asymptotic distribution of the test statistic and give a detailed
description of the asymptotic test.

Let v : Rk1 ×Rk2 → Rk1+k2 be the usual bijection v(p) =
(

p11, p12, . . . , pk1k2

)
. Let d̊∗ denote the

derivative of the function q 7→ d∗
(
v−1 (q) ,M

)
, which can be easily calculated using the chain rule.

Proposition 1. Let p be a boundary point of H0 and q = v (p). Let Dq denote a square diagonal matrix, whose
diagonal entries are q1, . . . , qk1+k2 . Then the asymptotic distribution of T∗ (pn) is Gaussian with mean zero and
variance σ∗ (p) = d̊∗ (q)Σ (q) d̊∗ (q)

t, where Σ (q) = Dq − qqt is a covariance matrix.

Proof. Let qn = v (pn). The normalized vector
√

n (qn − q) converges weakly to a random variable,
which is Gaussian with mean zero and covariance matrix Σ (q), see [6], Theorem 14.3-4 for details. The
assertion follows by the delta method, see [7], p. 26, Theorem 3.1.

The asymptotic variance σ∗ (p) is unknown and can be estimated by σ∗ (pn). The estimator σ∗ (pn)

is consistent by the continuous mapping theorem because p 7→ σ∗ (p) is a continuous function. Let lα
denote the lower α-quantile of the normal distribution. Then the critical value of the asymptotic test is
lασ∗ (pn). Now we have all components of the asymptotic test, which can be carried out as follows:
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1. Given are the contingency table pn of relative frequencies, the tolerance parameter ε and the
significance level α.

2. Calculate the test statistic T∗ (pn) =
√

n (d∗ (pn,M)− ε).
3. Calculate the asymptotic variance σ∗ (pn).
4. Reject H0 if T∗ (pn) ≤ lασ∗ (pn).

The outlined test is locally asymptotically most powerful, see [8], Proposition 3.

Remark 1. The minimum tolerance parameter ε, for which the asymptotic test rejects H0, can be calculated as
d∗ (pn,M)− 1√

n lασ∗ (pn).

Remark 2. The asymptotic test can be straightforward generalized for the multi-way contingency tables.

3. Bootstrap Tests

The parametric bootstrap is an efficient method to improve the finite sample performance
of the proposed tests. Let ∂H0 denote the boundary of H0. Let p̃n denote an estimator of p,
which fulfills the condition p̃n ∈ ∂H0. The critical value c (α, p) can be estimated by c (α, p̃n) =

supx∈R {x : P (T∗ ( p̃n) ≤ x) ≤ α} because the critical value should be estimated so as if H0 were true.
The estimator c (α, p̃n) can be computed by the Monte Carlo method to any degree of accuracy.

The minimum distance estimator of p would be difficult to compute because the boundary
∂H0 cannot be parameterized to apply common optimization techniques. Therefore, we propose
a computationally feasible estimator of p, which is based on the randomized approximation to the
minimum distance estimator.

Let q be some probability matrix such that d∗ (q,M) > ε. If d∗ (pn,M) ≤ ε, then let an be the
largest number from [0, 1] such that d∗ (an pn + (1− an) q,M) = ε. Otherwise let an = 1. The linear
combination c (pn, q) = an pn + (1− an) q is a consistent estimator of the boundary point p under
additional requirements as shown below.

Proposition 2. Assume that d∗ (ap + (1− a) q,M) > ε for all a ∈ [0, 1). Then c (pn, q) → p a.e. for
n→ ∞.

Proof. We show that an → 1 for n→ ∞. Let d∗ (pn,M) < ε because an = 1 otherwise. The function
f : a 7→ d∗ (apn + (1− a) q,M) is continuous on [0, 1] and f (0) = d∗ (q,M) > ε as well as f (1) =
d∗ (pn,M) ≤ ε. Therefore, there exists a largest number an ∈ [0, 1] such that f (an) = ε. It is worth
mentioning that an is a function of pn.

Let E = {limn→∞ pn = p}. By the strong law of large numbers, pn converges to p a.e. for
n → ∞ and therefore P(E) = 1. Let ω ∈ E be an arbitrary point and let an (ω) denote an ( fn (ω)).
The sequence of an (ω) is bounded. Hence, there exists a convergent sub-sequence anj (ω)→ a0 (ω)

for j→ ∞. We obtain

anj (ω) pnj (ω) +
(

1− anj (ω)
)

q→ a0 (ω) p + (1− a0 (ω)) q

for j→ ∞ and consequently ∗ (a0 (ω) p + (1− a0 (ω)) q,M) = ε. We conclude a0 (ω) = 1 due to the
assumption d∗ (ap + (1− a) q,M) > ε for all a ∈ [0, 1). Overall, we have shown that an (ω)→ 1 for
all ω ∈ E.

Let Q = {q1, . . . , qm} be a finite set of probability matrices, such that any qi fulfills d∗ (qi,M) > ε.
We define the estimator p̃n as a minimum distance estimator among the linear combinations c (pn, q)
for all q ∈ Q. Formally, the estimator p̃n equals c (pn, qi), which fulfills the conditions qi ∈ Q and
l (c (pn, qi) , pn) = minq∈Q l (c (pn, q) , pn). Note that the distance l is used to define the estimator p̃n

because d∗ is a pseudo-metric only.
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Corollary 1. Let at least one q ∈ Q satisfy d∗ (ap + (1− a) q,M) > ε for all a ∈ [0, 1). Then p̃n → p a.e.
for n→ ∞.

Proof. By definition of p̃n, we obtain

l ( p̃n, pn) ≤ l (c (pn, q) , pn) ≤ l (c (pn, q) , p) + l (p, pn) ,

where l (c (pn, q) , p) → 0 a.e. by Proposition 2 and l (p, pn) → 0 a.e. by the strong law of
large numbers.

The bootstrap test can be carried out as follows:

1. Given are the contingency table pn of relative frequencies, the tolerance parameter ε, the number
of exterior points m and the significance level α.

2. Calculate the test statistic T∗ (pn) =
√

n (d∗ (pn,M)− ε).
3. If T∗ (pn) ≥ 0 then set p̃n = pn and go to step 7.
4. Find m different points q ∈ H0 such that d∗ (q,M) > ε. The following rejection algorithm can be

applied for the search:

(a) Simulate a random matrix w whose entries are independently uniformly distributed on [0, 1].
(b) Normalize w to a probability matrix q.
(c) Add q to Q if d∗ (q,M) > ε or reject q otherwise.
(d) Repeat previous steps until all exterior points are found.

5. Solve the equation d∗ (an pn + (1− an)q,M) = ε for an using some root finding method. Repeat
for all q ∈ Q.

6. Find the minimum distance estimator p̃n among all linear combinations c (pn, q), where q ∈ Q.
7. Estimate the critical value c (α, p̃n) using Monte Carlo simulation.
8. Reject H0 if T∗ (pn) ≤ c (α, p̃n).

Remark 3. The bootstrap test is asymptotically consistent, see [9], Theorem 15.6.1. Consequently, the test is
also locally asymptotically most powerful see [8], Proposition 3.

Remark 4. The appropriate number of exterior points m can be found empirically. We found that m =

(k1 + k2) ∗ 50 is sufficient and scales well with the table size.

Remark 5. The minimum tolerance parameter ε, for which the bootstrap test rejects H0, can be found
numerically. For this purpose, the equation T∗ (pn) = c (α, p̃n) should be solved for the tolerance parameter
ε using some root finding algorithm. The exterior points and bootstrap samples should remain unchanged
during optimization.

4. Simulation Study of Finite Sample Performance

We study the finite sample performance of the proposed tests by the Monte Carlo simulation for
different sample sizes and table sizes. The tests are implemented in VB.NET and available online,
see https://github.com/TestingEquivalence/TestingApproximateIndependence.

The distance l is scaled Euclidean distance l2, where the scale factor is necessary to obtain
comparable test results for different table sizes. We use l = 1√

k1k2
l2 in case of dr and l =

√
k1k2l2 in

case of da. Alternatively the smoothed total variation distance would be a good choice, see [8].
The minimum ε, for which the test power equals 0.9, is calculated for different table sizes and

sample sizes at the uniform probability matrices for the purpose of throwing some light on the
appropriate values of ε and the effective sample sizes. Table 1 shows the minimum ε for the distance
dr. The minimum ε for da can be found in Table A1 because the results are very similar for da and dr.
The minimum ε decreases with the increasing sample size at the rate n−

1
2 . The minimum parameter

ε climbs with the increasing table size at the rate k1 + k2. Thus, the test power falls slowly with the

https://github.com/TestingEquivalence/TestingApproximateIndependence
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increasing table size. The bootstrap tests have a smaller minimum ε than the asymptotic tests and the
difference increases considerably with the table size.

Table 1. Minimum tolerance parameter ε, for which the test power equals 0.9 at nominal level α = 0.05,
is calculated at the uniform probability matrices using the distance dr. The sample size is 100, . . . , 10,000.

Asymptotic Test

table size 100 200 500 1000 2000 5000 10,000

2 × 4 0.390 0.272 0.171 0.120 0.085 0.054 0.038
3 × 3 0.418 0.295 0.185 0.130 0.092 0.058 0.041
3 × 4 0.474 0.331 0.208 0.146 0.104 0.066 0.046
4 × 4 0.540 0.375 0.236 0.166 0.117 0.074 0.052
4 × 5 0.593 0.413 0.258 0.181 0.128 0.081 0.057
5 × 5 0.655 0.453 0.283 0.200 0.141 0.089 0.063

Bootstrap Test

2 × 4 0.382 0.271 0.171 0.121 0.085 0.054 0.038
3 × 3 0.400 0.284 0.179 0.126 0.089 0.056 0.040
3 × 4 0.431 0.302 0.190 0.134 0.095 0.060 0.042
4 × 4 0.464 0.322 0.203 0.143 0.101 0.064 0.045
4 × 5 0.488 0.339 0.212 0.149 0.106 0.067 0.047
5 × 5 0.519 0.356 0.223 0.158 0.111 0.071 0.050

We study the type I error rates at 100 randomly selected points from ∂H0 because the boundary
of H0 is a very complex set and it is difficult to identify particularly interesting boundary points.
The points are found using steps 4 and 5 of the algorithm at the end of Section 3. The sample size
n equals 100 ∗ (k1 + k2) to maintain similar test power for different table sizes because test power
falls with increasing table size. The simulation results are summarized in Table 2. The power of all
tests varies considerably from point to point. The averaged power of the asymptotic tests decreases
quickly with the table size. The asymptotic tests are not conservative for the small tables and become
very conservative for the larger tables. The averaged power of the bootstrap tests is very close to the
nominal level for all table sizes. However, the bootstrap tests are not conservative for all table sizes.
Particularly, the dr based bootstrap test shows strong anti-conservative tendency.

A detailed analysis of the boundary points shows that the test power is far above the nominal
level at the points, where ricj is close to zero for some i and j. Therefore, the test results should be
treated with caution, if the marginal probability is close to zero for at least one category.

Table 2. Summary of the simulated exact rejection probability of the equivalence tests at nominal level
α = 0.05 and tolerance parameter ε = 0.2. The rejection probability is simulated at 100 randomly
selected boundary points. The sample size is (k1 + k2) ∗ 100 and the number of replications is 10.000
for each experiment.

Asymptotic Test Based on dr Asymptotic Test Based on da

2 × 4 3 × 3 3 × 4 4 × 4 4 × 5 5 × 5 2 × 4 3 × 3 3 × 4 4 × 4 4 × 5 5 × 5

Minimum 0.02 0.01 0.01 0.00 0.00 0.00 0.04 0.03 0.02 0.01 0.00 0.00
Maximum 0.12 0.10 0.06 0.05 0.03 0.01 0.08 0.08 0.06 0.03 0.02 0.01
Average 0.05 0.04 0.02 0.01 0.01 0.00 0.06 0.05 0.03 0.02 0.01 0.00

Deviation 0.02 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

Bootstrap Test Based on dr Bootstrap Test Based on da

Minimum 0.00 0.00 0.01 0.03 0.03 0.04 0.04 0.03 0.04 0.04 0.04 0.04
Maximum 0.07 0.08 0.10 0.13 0.10 0.11 0.09 0.08 0.07 0.07 0.07 0.06
Average 0.04 0.05 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.05 0.05 0.05

Deviation 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00
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The conservative tests can be obtained by shrinking the tolerance parameter ε. Table A5
summarizes the simulation results for ε = 0.18, where the test power is calculated at the same points
as in Table 2, i.e., d∗ (p,M) = 0.2 at all considered points. Then the da based tests are conservative at
all points and the dr based tests are still non conservative at some points.

The type II error rates are studied at 100 randomly selected product measures for each table
size, see Table 3. It should be noted that Table 3 contains test power and the type II error rate equals
1 minus test power. The sample size equals 100 ∗ (k1 + k2) to be comparable to the type I error analysis.
The power of dr-based tests changes very strongly from point to point. Given the fixed table size, the
power of the da-based tests is almost constant at all considered points. The averaged power of the
asymptotic tests decreases slightly with the increasing table size. The averaged power of the bootstrap
tests does not change with the table size.

Table 3. Summary of the simulated test power at nominal level α = 0.05 and tolerance parameter
ε = 0.2. The rejection probability is simulated at 100 randomly selected product measures. The sample
size is (k1 + k2) ∗ 100 and the number of replications is 10.000 for each experiment.

Asymptotic Test Based on dr Asymptotic Test Based on da

2 × 4 3 × 3 3 × 4 4 × 4 4 × 5 5 × 5 2 × 4 3 × 3 3 × 4 4 × 4 4 × 5 5 × 5

Minimum 0.20 0.09 0.13 0.10 0.16 0.26 0.99 0.98 0.96 0.94 0.93 0.90
Maximum 0.99 0.98 0.97 0.95 0.92 0.87 1.00 1.00 0.99 0.97 0.96 0.92
Average 0.84 0.80 0.80 0.77 0.70 0.64 0.99 0.99 0.98 0.96 0.95 0.91

Deviation 0.17 0.21 0.18 0.16 0.18 0.15 0.00 0.00 0.00 0.00 0.01 0.00

Bootstrap Test Based on dr Bootstrap Test Based on da

Minimum 0.13 0.13 0.22 0.28 0.56 0.73 0.98 0.97 0.97 0.98 0.98 0.99
Maximum 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 0.99 0.99 1.00 1.00
Average 0.82 0.80 0.86 0.89 0.90 0.94 0.99 0.99 0.99 0.99 0.99 0.99

Deviation 0.20 0.22 0.17 0.11 0.10 0.06 0.00 0.01 0.00 0.00 0.00 0.00

5. Real Data Sets

To demonstrate the application of the proposed tests, three examples with real data sets are
considered: gender and nitrendipine therapy (Nitrendipine); eye color and hair color (Color);
children number and income (Children). The corresponding two way contingency tables are given in
Appendix A, Tables A2, A3 and A4. Table 4 displays the minimum tolerance parameter ε, for which
H0 can be rejected at the nominal level α = 0.05. The three examples are also used in [5], such that
a direct comparison is possible. The results for distance da are similar to those presented in [5] after
appropriate re-scaling. However, we avoid the unproven assumptions and the extensive use of the
numeric optimization, which are necessary in [5].

The first example concerns with the question if the treatment outcome on nitrendipine
mono-therapy in patients suffering from mild arterial hypertension depends on gender. The data set is
also an example for approximate independence in [4]. The asymptotic and bootstrap test results for dr

are very close to each other. The results for da differ considerably for the asymptotic and bootstrap
test. Given the small sample size, the treatment outcome and gender can be considered approximately
independent.

A common example for independence testing is the cross-classification of eye color and hair color,
see [2,3]. The test results in Table 4 reflect the well known fact that eye color and hair color are not
independently distributed. All tests behave very similarly and can reject H0 only for very large values
of ε.

The cross-classification of the number of children by the annual income has a large sample size.
However, the category, where the number of children is larger than or equal 4, is sparsely populated.
Therefore, the dr based tests can reject H0 only for comparatively large values of ε and the test power
is low. The da based tests show that the number of children and annual income may be considered
approximately independent, but the approximation is very inaccurate.



Stats 2019, 2 245

Table 4. Minimum tolerance parameter ε, for which H0 can be rejected at the nominal level α = 0.05.

Data Set n
Tests Based on dr Tests Based on da

Asymptotic Bootstrap Asymptotic Bootstrap

Nitrendipine 217 0.23 0.22 0.15 0.18
Color 592 0.59 0.58 0.59 0.59

Children 25263 0.28 0.31 0.18 0.18

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A

Table A1. Minimum tolerance parameter ε, for which the test power equals 0.9 at nominal level
α = 0.05, is calculated at the uniform probability matrices using the distance da. The sample size is
100, . . . , 10,000.

Asymptotic Test

table size 100 200 500 1000 2000 5000 10,000

2 × 4 0.377 0.267 0.169 0.120 0.085 0.054 0.038
3 × 3 0.405 0.290 0.183 0.130 0.092 0.058 0.041
3 × 4 0.458 0.327 0.207 0.146 0.104 0.065 0.046
4 × 4 0.520 0.368 0.234 0.165 0.117 0.074 0.052
4 × 5 0.567 0.403 0.255 0.180 0.128 0.081 0.057
5 × 5 0.623 0.444 0.281 0.199 0.141 0.089 0.063

Bootstrap Test

2 × 4 0.378 0.268 0.170 0.120 0.085 0.054 0.038
3 × 3 0.396 0.282 0.178 0.125 0.089 0.056 0.040
3 × 4 0.423 0.302 0.190 0.134 0.095 0.060 0.042
4 × 4 0.457 0.320 0.203 0.143 0.101 0.064 0.045
4 × 5 0.478 0.337 0.212 0.149 0.106 0.067 0.047
5 × 5 0.501 0.354 0.222 0.158 0.111 0.070 0.050

Table A2. Contingency table relating gender and treatment outcome on nitrendipine mono-therapy in
patients suffering from mild arterial hypertension.

Gender
Outcome Category

1 2 3 4

female 9 13 13 48
male 24 18 20 72

Table A3. Cross-classification of eye color and hair color.

Eye Color
Hair Color

Black Brunette Red Blonde

Brown 68 119 26 7
Blue 20 84 17 94

Hazel 15 54 14 10
Green 5 29 14 16
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Table A4. Cross-classification of number of children by annual income.

No. of Children
Annual Income

0–1 1–2 2–3 3+

0 2161 3577 2184 1636
1 2755 5081 2222 1052
2 936 1753 640 306
3 225 419 96 38

4+ 39 98 31 14

Table A5. Summary of the simulated exact rejection probability of the equivalence tests at nominal
level α = 0.05 and shrunk tolerance parameter ε = 0.18. The rejection probability is simulated at 100
randomly selected boundary points of H0 = {d∗ (p,M) ≥ 0.2}. The sample size is (k1 + k2) ∗ 100 and
the number of replications is 10.000 for each experiment.

Asymptotic Test Based on dr Asymptotic Test Based on da

2 × 4 3 × 3 3 × 4 4 × 4 4 × 5 5 × 5 2 × 4 3 × 3 3 × 4 4 × 4 4 × 5 5 × 5

Minimum 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
Maximum 0.08 0.06 0.03 0.02 0.01 0.00 0.04 0.04 0.02 0.01 0.00 0.00
Average 0.02 0.02 0.01 0.00 0.00 0.00 0.02 0.02 0.01 0.00 0.00 0.00

Deviation 0.01 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00

Bootstrap Test Based on dr Bootstrap Test Based on da

Minimum 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Maximum 0.05 0.06 0.09 0.12 0.06 0.07 0.04 0.04 0.03 0.03 0.02 0.02
Average 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01

Deviation 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00
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