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Abstract: In this paper, we use a Bayesian methodology to analyze the outcome of a hockey game
using different sources of information, such as points in previous games, home advantage, and
specialists’ opinions. Two different models to predict the number of goals are considered, taking into
account that it is the nature of hockey that goals are infrequent and rarely exceed six per team per
game. A Bayesian predictive density to predict the number of the goals using each model will be
used and the possible winner of the game will be predicted. The corresponding prediction error for
each model will be addressed.

Keywords: Conway–Maxwell–Poisson distribution; hockey; Poisson distribution; predictive density
estimation

1. Introduction

Finding ways of predicting the outcome in different sport games from past and current data
is an attractive problem for different people, ranging from the sports teams’ coaches to gambling
agencies to fans of that sport. There is no doubt that statistical tools are needed to construct an effective
and accurate model to predict the outcome of sporting events. In the last decades, predicting match
results has attracted much attention from researchers using new methods of statistics, data mining and
machine learning, especially in popular sports such as football, basketball, baseball and soccer.

Ice hockey is a popular sport especially in the US and Canada for which there exists a rich dataset
available at www.nhl.com. Several publications have appeared in recent years documenting different
statistical analysis of the hockey data. Gramacy et al. [1] studied individual contributions of team
members using regularized logistic regression. Sadeghkhani and Ahmed [2] estimated the density
of scoring time in a hockey game using prior information such as a team’s ranking in the previous
season and experts’ opinions. Suzuki et al. [3] proposed a Bayesian approach in predicting the match
outcomes in the 2006 World Cup.

However, to the authors’ best knowledge, very few publications currently available in the
literature address the issue of Bayesian density estimation of number of the goals. This paper proposes
a unique method to estimate the density of number of the goals. We also consider the points in the
previous games, away and home factors, and specialists’ opinions to improve our predictions.

The remainder of the paper is organized as follows: In Section 2, we provide definitions and
preliminary remarks about two assumptions to model the number of goals in a hockey game. Section 3
discusses how to find Bayesian predictive density estimators for each model. Section 4 addresses how
one can enter other factors such as home bonus, away malus, experts’ opinions in detail. In Section 5,
we study an application of the proposed methods in predicting the number of goals as well as the
result of the game. Finally, we make some concluding remarks in Section 6.
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2. Problem Set-Up and Different Models

Poisson distribution has been used in the context of count data, but the fact that the dispersion
index (the ratio of variance to mean) equals one is a big concern in practice. Conway and Maxwell
[4] introduced the Conway–Maxwell–Poisson (COM-P) distribution, which, similar to the Poisson
distribution, belongs to the exponential family of distributions and, therefore, the Bayesian analysis
(because of the conjugate prior) of number of events becomes more computationally tractable.

Kadane et al. [5] studied a necessary and sufficient condition on the hyperparameters of
the conjugate family for the prior to be proper and discussed methods of sampling from the
conjugate distribution.

The COM-P distribution processes an extra parameter and was originally developed as a solution
of handling a queuing system with state-dependant arrivals. It has has been used widely in the models
that that have over-dispersion or under-dispersion, i.e., the mean is smaller or larger than variance,
respectively. For more information, see Shmueli et al. [6].

A random variable (rv for short) has the COM-P(λ, r) distribution if it has the probability mass
function (pmf) in the form of

P(X = x | λ, r) =
1

Z(λ, r)
λx

(x!)r , x = 0, 1, . . . , r > 0, λ > 0 , (1)

where Z(λ, r) = ∑∞
j=0

λj

(j!)r is the normalizing constant. It is easy to see the Poisson distribution, Po(λ),
obtained when r = 1. Furthermore, the density in (1) belongs to exponential family and values of r > 1
and r < 1 are equivalent to under- and over- dispersion each. When λ ∈ (0, 1), tending r → inf gives
Bernoulli with parameter λ while the geometric distribution corresponds to limiting r → 0 with pmf
of P(X = x | λ) = λx(1− λ), for x = 0, 1, . . ..

Imoto [7] generalized the COM-P to a distribution which has a larger tail and embraces the
negative binomial distribution and applicable to the excess zeros model as well.

An rv X is said to have a generalized COM-P (GCOM-P) with three parameters λ > 0, r > 0 and
ν > 0, if

P(X = x | λ, r, ν) =
(Γ(x + ν))r λx

x! C(λ, r, ν)
, x = 0, 1, . . . , (2)

where C(λ, r, ν) = ∑∞
j=0

(Γ(j+ν))r λj

j! is the normalizing constant. When r < 1, ν > 0 and λ > 0 or r = 1,
ν > 0 and λ ∈ (0, 1), C(λ, r, ν) converge. This distribution reduces to a COM-P distribution with
parameter λ and 1− r when ν→ 1 and to a negative binomial when r = 1.

3. Bayesian Prior and Posterior Predictive Density Estimations

As can be seen in the literature, gamma distribution is being used as conjugate prior for a Poisson
distribution. Suppose X ∼ Po(λ), choosing λ | α, β ∼ Gam(α, β) with the pdf 1

Γ(α) βα λα−1 e−λ/β results

in the posterior density λ | x, α, β ∼ Gam(x + α, 1
1+1/β ). The marginal distribution of X, known as a

prior predictive density estimator, and posterior predictive density estimator are negative binomial
distribution. Rv X ∼ NB(r, p) has the pmf P(X = k) = ( k

k+r−1)(1− p)r pk, k = 0, 1, . . ..

Lemma 1. If X ∼ Po(λ) and λ | α, β ∼ Gam(α, β), the prior predictive density P(X = x | α, β) is given by

NB
(

α,
1

1 + 1/β

)
, (3)

while the posterior predictive density of future rv. Y, P(Y = y | X1 = x1, · · · , Xn = xn, α, β) is given by

NB

(
n

∑
1

xi + α,
1

1 + n + 1/β

)
. (4)
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Proof. The prior predictive in (3) is the marginal distribution of X and can be found as follows:

P(X = x | α, β) =
∫ ∞

0
P(X = x | λ)π(λ | α, β) dλ

=
1

x! Γ(α)
1
βα

∫ ∞

0
λα+x−1 e−λ(1+1/β) dλ

=
1

Γ(x + 1) Γ(α)
1
βα

Γ(α + x)
(

β

1 + β

)α+x

=

(
α + x− 1

x

)(
1

1 + β

)α (
1− 1

1 + 1/β

)x
.

Equation (4) can be obtained similarly from

p(y | x) =
∫ ∞

0
P(y | θ)π(θ | x) dθ ,

and the posterior density of λ based on x = (x1, · · · , xn), is Gam(x + α, 1
n+1/β ).

In the COM-P model, Equation (1), Kadane et al. [5] used the extended bivariate gamma
distribution denoted by EBG(a, b, c), and given by

π(λ, r | a, b, c) = κ(a, b, c) λa−1e−rbZ−c(λ, r) , (5)

where the normalization constant in (5), is given by

κ−1(a, b, c) =
∫ ∞

0

∫ ß

0
λa−1 e−rbZ−c(λ, r) dλ dr ,

and a > 0, b > 0 and c > 0 needs to satisfy the following condition so that κ−1(a, b, c) becomes finite:

b
c
> log(b a

c
c!) + (

a
c
− b a

c
c) log(b a

c
c+ 1) .

Next lemma, similarly to Lemma 1, provides the predictive distributions.

Lemma 2. If Xi ∼ COM-P(λ, r); i = 1, · · · , n, as in (1), for i = 1, . . . , n, and π(λ, r | a, b, c) presented
in (5), then:

1. the posterior has the same distribution to (5) with a∗ = a + ∑n
1 xi, b∗ = b + ∑n

1 log(xi!), and c∗ = c + n.
2. the prior predictive density (marginal density of X) is given by

P(X = x | a, b, c) =
κ(a, b, c)

κ(a + x, b + log(x!), c + 1)
. (6)

3. the posterior predictive density of future rv Y, P(Y = y | X1 = x1, . . . , Xn = xn, a, b, c) for y = 0, 1, . . .
is given by

κ(a∗, b∗, c∗)
κ(a∗ + y, b∗ + log(y!), c∗ + 1)

. (7)

Proof. The proof is straightforward and analogous to the proof of Lemma 1 and has therefore been
omitted.

4. Modelling Number of Goals Using Prior Elicitation Method

In this section, we make two different assumptions: (I) let us assume the number of goals scored
by each team is a Poisson rv and (II) it has COM-P. In addition, suppose that A is a team playing home
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and B is a team playing away and hence, XAB is the number of goals scored by team A to team B and
XBA, vice-versa.

4.1. Assumption I: Po Distribution for Modelling Number of Goals

Assume that XAB and XBA, are independently distributed as follows:

XAB | λAB ∼ Po (λAB) , XBA | λBA ∼ Po (λBA) , (8)

where λAB can be interpreted as the mean number of goals team A scores against team B and λBA
is the number of goals team B scores against team A in a future game. As discussed earlier, one
can use conjugate prior π(λAB) (for home) as a Gam(α, β), where the jeffreys non–informative prior

π0(λ) ∝ λ
− 1

2
AB is its special case. Here, we are interested in employing experts’ opinions about the

upcoming match’s score. This is called prior elicitation and can be determined by πe(·):

πe(λAB) ∝ π(λA)

{
s

∏
i=1

e−λA λAB
x′i AB

}d

≡ Gam(α + d
s

∑
i=1

x′i AB,
1
β
+ s d) , (9)

where x′i AB, i = 1, 2, . . . , s, is the i-th expert’s opinion about number of goals that home team A will
score against away team B in the future game. Choosing d = 0 returns the π(·) as a prior and ignores
the specialists’ opinion factor. Analogously, we can set prior of λBA in the same manner.

We have used the specialists to improve our beliefs about λAB (or λBA), but we can also benefit
from other sources of information, such as previous data. Since usually (not necessarily) the number
of goals is larger when team plays home and smaller when team plays away, we can use the model
home-bonus factor h, and away or visiting-malus factor v.

h =
Mean of goals scored by team A at home versus team B in previous matches

Mean of goals by all the team in hosting their opponents
,

v =
Mean of goals scored by team B away versus team A in previous matches

Mean of goals by all the team on the way with their opponents
.

Alternatively, one can consider the teams’ points as well. The mean of number of goals A scores
versus team B is directly related to h and points obtained by team A, namely QA (in the previous
games or last season), and has an indirect relationship with a and points obtained by team B, QB.
Consequently, we can update prior density in (9) (for both λAB and λBA ) as follows:

λAB ∼ Gam

(
α + d

s

∑
i=1

x′i AB ,
QA
QB

h
v

(
1
β
+ s d

))
, (10)

λBA ∼ Gam

(
α + d

s

∑
i=1

x′i BA ,
QB
QA

v
h

(
1
β
+ s d

))
. (11)

Making use of Equations (10) and (11), along with Lemma 1, gives the prior and posterior
predictive density estimators for the number of goals team A scores to team B, which are, respectively,
given by

XAB ∼ NB

d
s

∑
i=1

x′i AB + α,
1

1 +
(

QA
QB

h
v

(
1
β + s d

))−1

 (12)
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and

XAB ∼ NB

nAB

∑
i=1

xi A + d
s

∑
i=1

x′i AB + α,
1

1 + n +
(

QA
Q̄E

h
v

(
1
β + s d

))−1

 , (13)

where xi A is the number of goals team A has scored in the previous season (or prior to the upcoming
game) when played at home versus opponents and Q̄E = ∑nAB

1 QEi /nAB and QEi ’s are (all) opponents’
points in previous season (or prior to the upcoming game) who faces team A and nAB is the number of
games team A host team B. Similarly, for the number of goals, team B scores in the home of team A,
we have

XBA ∼ NB

d
s

∑
i=1

x′i BA + α,
1

1 +
(

QB
QA

v
h

(
1
β + s d

))−1

 , (14)

XBA ∼ NB

nBA

∑
i=1

xi B + d
s

∑
i=1

x′i BA + α,
1

1 + n +
(

QB
Q̄D

h
v

(
1
β + s d

))−1

 , (15)

where xi B is the number of goals team B has scored in the previous season (or up to upcoming game)
when played on the way versus opponents and Q̄D = ∑nBA

1 QDi /nBA and QDi ’s are (all) opponents’
points in previous season (or prior to the upcoming match) who hosted team B.

4.2. Assumption II: COM− P Model of Number of Goals

A question that may arise is, “What if the distributions of the number of goals do not obey a
Poisson distribution?” In this assumption we contemplate the COM-P(λ, r) distribution given in (1)
as a distribution of the number of goals. Therefore, XAB and XBA are independently distributed as
follows:

XAB | λAB, rAB ∼ COM-P (λAB, rAB) , XBA | λBA, rBA ∼ COM-P (λBA, rBA) . (16)

We use EBG(a, b, c) in (5) as a conjugate prior. Note that for instance, the conditional distribution
π(λAB | rAB = 1) is Gam(a, c) and π(λAB | rAB = 0) is Bet(a, c + 1), where Bet is a beta distribution.
Similar to assumption (I), the corresponding prior elicitation can be defined as follows:

πe(λAB, rAB) ∝ π(λAB, rAB)

{
s

∏
i=1

e−rAB log(x′i AB !) λAB
x′i AB Z(λAB, rAB)

−1

}d

, (17)

which is the EBG(a′AB, b′AB, c′AB), with

a′AB = d
s

∑
1

x′i AB +
nAB

∑
1

xi AB + a ,

b′AB = d
s

∑
1

log(x′i AB!) +
nAB

∑
1

log(xi AB!) + b ,

c′AB = c + nAB + s d ,

where nAB is number of goals scored in a game where team A is at home, hosting teams similar to
team B when they were on the road. x′i AB, i = 1, 2, . . . , s, xi AB, i = 1, 2, . . . , nAB are as defined in
assumption (I). This can be done similarly to obtain πe(λBA, rBA), a′BA = d ∑s

1 x′i BA + ∑nBA
1 xi BA + a,

b′BA = d ∑s
1 log(x′i BA!) + ∑nBA

1 log(xi BA!) + b, and c′BA = c + nBA + s d, correspondingly.
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Finally, we can pose the other additional information home–bonus factor h, away–malus
factor v, points QA and, QB into our prior yielding the joint distribution (λAB, rAB) and (λBA, rBA)

obtained from

EBG
(

a′AB, b′AB,
QA
QB

h
v

c′AB

)
, (18)

EBG
(

a′BA, b′BA,
QB
QA

v
h

c′BA

)
. (19)

Using (18) and (19), along with Lemma 2, result in obtaining the prior predictive density estimation
of the number of goals team A scores against team B as follows:

κ
(

d ∑s
1 x′i AB + a, d ∑s

1 log(x′i AB!) + b, QA
QB

h
v (c + d)

)
κ
(

d ∑s
1 x′i AB + xAB + a, d ∑s

1 log(x′i AB!) + log(xAB!) + b, QA
QB

h
v (c + d) + 1

) . (20)

Furthermore, the posterior predictive density of the number of goals team A scores against team
B is as follows:

κ
(

a′AB, b′AB, QA
QB

h
v c′
)

κ
(

a′AB + x, b′AB + log(x!), QA
QB

h
v c′AB + 1

) . (21)

Equations (20) and (21) hold for number of goals teams B scores versus team A by replacing a′AB,
b′AB, with a′BA, b′BA, respectively.

5. Example of Predicting the Scores and Results

This section addresses prediction results based on our models, as attained in the previous section.
For a given match team where A hosts team B, outcomes of that match under the format win, draw and
loss can be predicted via the number of goals scored by the two teams, A and B. Let the probabilities
associated with win, draw and loss of team A from the predictive distributions versus team B, denoted
by πw, πd and πl . So we can write πw = P(XAB > XBA) = ∑∞

i=1 ∑i−1
j=0 P(XAB = i) P(XBA = j),

πd = P(XAB = XBA) = ∑∞
i=0 P(XAB = i) P(XBA = i), and πl = 1− πw − πd.

Let us suppose that we are interested in predicting the match outcome of A: Edmonton Oilers
(home) vs B: Arizona Coyotes (away). Data for the season 2017/18 plus current season 2018/19 until the
date of writing this manuscript on 29 January 2019 available at nhl.com has been used. In order to use
experts’ opinions, we have asked 5 specialists to give their opinion about the upcoming match result,
x′i AB and x′i BA as follows:

x′i AB 5 1 6 1 4

x′i BA 2 3 3 2 1

Moreover, the number of goals the Edmonton Oilers scored versus teams which had similar
performance to the Arizona Coyotes when playing as a visitor, points per game, and the number of
goals Arizona scored versus the teams had similar performance to Edmonton when playing at home
(we asked specialists about those teams) are given in Table 1 .

 https://www.nhl.com
nhl.com
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Table 1. (Left) Table of the number of goals the Edmonton Oilers scored in the 2018/19 season (up to
29 January) versus the Arizona Coyotes as well as teams with the similar abilities to the Arizona
Coyotes, playing away. (Right) Table of number of goals the Arizona Coyotes scored in the 2017/18
and 2018/19 season (up to 29 January) scored versus the Edmonton Oilers as well as teams with similar
abilities to the Edmonton Oilers when playing at home.

Away XAB Qi AB Home XBA Qi BA

Pittsburgh 5 1.81 Winnipeg 3 1.32
Montreal 6 1.2 Washington 4 1.2

Vegas 3 1.19 Detroit 1 0.88
Dallas 1 1.06 Los Angles 2 0.88

Los Angeles 3 0.88 Buffalo 1 1.14
Vegas 2 1.19 San Jose 4 1.25

Calgary 1 1.39 Los Angles 1 0.88
Philadelphia 4 0.96 Vancouver 4 1.02
Tampa Bay 3 1.55 Edmonton 3 1
Vancouver 2 1.02

Arizona 2 1
Calgary 2 1.39

Therefore, we have

12

∑
1

xi AB = 34,
9

∑
1

xi BA = 23,
12

∑
1

Qi AB = 29.11,
12

∑
1

Qi BA = 20.15 , QA = 0.98, QB = 1.

Assumption I: Gam(0.5, 8) is considered for the prior distribution (since in practice the mean of scores
by each team is about 4 goals) along with d = 1 as in (9).

(a) Prior predictive density estimator corresponds to no matches having been played and we do
not have any source of information but experts’ opinions about the upcoming game, Edmonton Oilers
vs Arizona Coyotes. Making use of Equations (12) and (14) yield

XAB ∼ NB(17.5, 0.806), XBA ∼ NB(11.5, 0.86) ,

which correspond to the probabilities below in Table 2.

Table 2. Winning probabilities of future upcoming match: Edmonton Oilers vs Arizona Coyotes, based
on specialists’ opinion.

πw Probability that Edmonton Oilers wins the next match 0.75
πl Probability that Arizona Coyotes wins the next match 0.13
πd Probability that next match draws 0.12

(b) We consider the posterior predictive densities using Equations (13) and (15) respectively.
Therefore, we have

XAB ∼ NB(51.5, 0.924), XBA ∼ NB(34.5, 0.90) . (22)

In other words, making use of data from season 2017/18 up to current date and specialists’
opinions, we are expecting Edmonton Oilers will score 3.25923, while Arizona Coyotes scores 4.69523.
Table 3 and Figure 1 illustrate the result.
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Table 3. Winning probabilities of future upcoming match: Edmonton Oilers vs Arizona Coyotes based
on specialists’ opinion and the dataset for season 2017/18 and current season up to 29 January 2019.

πw Probability that Edmonton Oilers wins the next match 0.48
πl Probability that Arizona Coyotes wins the next match 0.37
πd Probability that next match draws 0.15

Figure 1. Pmf of number of Edmonton Oilers vs Arizona Coyotes from (22) based on specialists’
opinion and dataset 2017/18 and 2018/19 season (up to 29 January).

The most probable result is 4–3, in favor of Edmonton. Without using experts’ opinions, i.e., d = 0,
we have XAB ∼ NB(34.5, 0.96) and XBA ∼ NB(23.5, 0.9414), which corresponds to πw = 0.37, πl = 0.35
and πd = 0.25, respectively.

Assumption II: Let us take a = b = c = 1, d = 1 and r = 0.9. These choices result in having the
expectation of λ equals 3.88 based on the prior distribution in (5). By applying (21), the posterior
predictive densities of the number of the goals in the upcoming match Edmonton versus Arizona,
along with corresponding plot, are given in Table 4 and Figure 2.

Table 4. Posterior predictive densities of number of goals scored by Edmonton versus Arizona.

x 0 1 2 3 4 5 6 7 8

P(XAB = x) 0.06 0.16 0.21 0.21 0.16 0.1 0.06 0.03 0.01

P(XBA = x) 0.13 0.24 0.25 0.19 0.11 0.06 0.02 0 0

Also from Table 4, we are expecting to see 1.96 for Edmonton and 2.6 goals for Arizona. Table 5
shows the winning probabilities and one can predict that in the upcoming match, based on assumption
II, Arizona will win the match in the Edmonton’s home, and most probable result is 3–2.

Table 5. Winning probabilities of future upcoming match: Edmonton Oilers vs Arizona Coyotes based
on specialists’ opinion and dataset season 2017/18 and current season up to 29 January 2019.

πw Probability that Edmonton Oilers wins the next match 0.55
πl Probability that Arizona Coyotes wins the next match 0.29
πd Probability that next match draws 0.16
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Figure 2. Pmf of number of Edmonton Oilers vs Arizona Coyotes from Table 4 based on specialists’
opinion and dataset season 2017/18 and 2018/19 season (up to 29 January).

5.1. Prediction Errors

Prediction errors (pe’s) of our posterior predictive distributions in the two assumptions, when the
specialists’ opinions matter, (namely q̂1(xAB) and q̂2(xAB) respectively) are evaluated by measuring
the Kullback–Leibler distance as below.

pe(q̂i,AB) = EXAB log
qλAB(xAB)

q̂i(xAB)
, i = 1, 2 ,

where qλAB(xAB) is the Poisson distribution in (8) and q̂i(xAB) for i = 1, 2 are given in (13) and (21),
respectively. This can be repeated for q̂1(xBA) and q̂2(xBA) as well.

According to Table 1, one needs to calculate the distance between Po(5) and NB(51.5, 0.924)
regarding number of goals team A scores against team B and the distance between Po(3) and
NB(34.5, 0.90) regarding number of goals team B scores A in Assumption I. There we have
pe(q̂1,AB) = 0.026 and pe(q̂1,BA) = 0.033. In contrast, if we follow Assumption II based on Table 4,
the prediction errors become pe(q̂2,AB) = 0.18 and pe(q̂2,BA) = 0.046, respectively.

5.2. Simulation Study

We consider a small simulation study based on a sample of size of 1000, in order to investigate the
proposed posterior density estimators regarding number of goals team B scores against team A
in Section 5. Figure 3 depicts the assumed underlying model Po (Assumption I) and COM-P
(Assumption II) along with their corresponding posterior predictive densities. It can be seen that
model assumption I and its posterior predictive density estimator performs better for the number
of goals.
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Figure 3. Simulation study of based on sample of size 1000, under model Assumption I (above) and
Assumption II (below).

6. Conclusions

In summation, we have proposed Bayesian predictive density estimators for the number of goals
in a hockey match and consequently predicting the winner of the game. We considered two different
assumptions and furthermore we considered points in previous games, away and home factors,
and specialists’ opinions to improve our predictions. Assumption I, is based on that the underlying
model, i.e., the number of goals in hockey, follows the Poisson distributions, and Assumption II
considers the COM-P. However, based on prediction errors, it is easier to assume Assumption I.
Eventually, the predictors based on either Assumption I or II, confirm that Edmonton (home team)
will win game the next match versus Arizona (away team) by a difference of one goal with 48 and
55 percent, respectively.
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