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Abstract: We construct a point and interval estimation using a Bayesian approach for the difference
of two population proportion parameters based on two independent samples of binomial data subject
to one type of misclassification. Specifically, we derive an easy-to-implement closed-form algorithm
for drawing from the posterior distributions. For illustration, we applied our algorithm to a real data
example. Finally, we conduct simulation studies to demonstrate the efficiency of our algorithm for
Bayesian inference.
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1. Introduction

Misclassifications can occur in binomial data due to human errors or imprecise diagnostic
procedures. Typically, misclassifications of both types (false-positive or false-negative) are possible.
In a one-sample case, for instance, with an imperfect blood test, a healthy patient can be mistakenly
classified as sick and vice versa. However, in some cases, only one type of misclassification exists.
For example, Moors et al. [1] presented auditing data where only false-negative (under-reported) errors
occurred. Perry et al. [2] showed blood testing data which had only false-positive (over-reported)
errors. In a two-sample case, for example, we may wish to obtain the odds ratio for lung cancer (or
traffic accidents) between males and females. The grouping variables (males/females) can typically
be inerrant while the response variable (cancer/not) can sometime be misclassified (errant). In this
lung cancer (two-sample) case, under-reporting (false-negative) occurs when a person (male/female)
dies due to lung cancer but this fact is not reflected in the death certificate. As another example, in the
traffic accident case, over-reporting (false-positive) occurs when a driver has lied to a police officer
about not wearing a seatbelt, while the hospital record examination showed otherwise, for an example
see the U.S. National Highway Traffic Safety Administration, NHTSA [3].

Among many researchers, Bross [4] reported that classical estimators ignoring misclassification
can be extremely biased for certain applications.

Due to economic viability reasons, in some cases, the binary outcome variable can be obtained
using an errant classifier/device. In such cases, classical inferential methods are testing and estimating
proportion parameters corresponding to the errant classifier/device, but not to an inerrant device
(gold standard). As a consequence, these classical methods are biased and invalid. For example,
Tenenbein [5] derived a formula quantifying the bias of the classical estimator of a single proportion
in misclassified binomial data. Therefore, such misclassified binomial data need to be somehow
augmented to make valid statistical inferences on the proportion parameters corresponding to the
inerrant device.
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The most frequently used data-augmenting method for misclassified binomial data is the
double-sampling scheme, pioneered by Tenenbein [5] for the one-sample problem. Such a scheme
assumes an inerrant device is available only to a small number of experimental units due to economic
viability reasons. The double-sampling scheme works in the following way. First, either a random
subsample from the original misclassified data or another new sample is chosen. In the first case, where
a random subsample from the original data is selected, we use the inerrant device to obtain the inerrant
measurement of the binary outcome variable for the subsample. In the second case, where another
new sample is selected, we use both the errant and the inerrant devices to obtain the binary outcome
variable for this new sample. In both cases, we name the sample classified using only the errant device
for the binary outcome variable as the original study and the sample classified using both the errant
and inerrant devices for the binary outcome variable as the validation sub-study. Statistical inference is
made based on the augmented overall data, combining the original study and the validation sub-study.

The following is the literature regarding several statistical inference methods for one-sample and
two-sample misclassified binomial data. For one-sample data with only one type of misclassification
error (false-positive or false-negative error), Moors et al. [1] derived a one-sided exact confidence
interval (CI) and Boese et al. [6] derived several likelihood-based confidence intervals for the proportion
parameters corresponding to the inerrant device (the true proportion parameter). Raats and Moors [7]
and Lee and Byun [8] reported Bayesian credible intervals for the true proportion parameter with
one type of misclassification only. For one-sample data with both types of misclassification errors,
Raats and Moors [7] derived both an exact confidence interval and a Bayesian credible interval for the
true proportion parameter, and Lee [9] reported a Bayesian interval estimation for the true binomial
proportion parameter. For two-sample data with two types of misclassification errors, Prescott and
Garthwaite [10] proposed a Bayesian credible interval, and Morrissey and Spiegelman [11] derived
likelihood-based confidence intervals for the odds ratio. However, their methods are computationally
burdensome, not guaranteed to converge to the true parameter value, and hard to reproduce by
other practitioners.

In this paper we dealt with two-sample binomial data with one type of misclassification error
obtained using double sampling, via a Bayesian approach. Our research objectives are to conduct
Bayesian inference for the difference of two proportion parameters in over-reported two-sample
binomial data using the doubly sample. The remainder of the paper is organized as follows. In Section 2
we describe the data. In Section 3 we develop a Bayesian point and interval estimation. Next,
we illustrate our Bayesian method using real data, in Section 4. A discussion follows in Section 5.

2. Data

In this section, we consider doubly-sampled data containing two samples in both the original
study and the validation sub-study subject to one type of misclassification error. Without loss of
generality (WLOG), we assume that the data were obtained using an errant classification procedure
that yields false-positive but not false-negative counts. For sample i (i = 1, 2), we let mi and ni be the
number of items in the original and the validation study, respectively. We then defined Ni = mi + ni

as the total sample size for Sample i. For the jth item in the ith sample, where i = 1, 2, and j = 1, . . . ,
Ni, we let Fij and Tij be the binary response variables obtained by the errant and inerrant devices,
respectively. Next, we denote Fij = 1 if the result is positive by the errant device and Fij = 0 otherwise.
The binary variable Tij is similarly defined for the inerrant device. Note that Fij is observed for all items
in both the original study and the validation sub-study, while Tij is observed for items in the validation
sub-study but not for items in the original study. Clearly, misclassification error occurs when Fij differs
from Tij.

In the validation sub-study, for i = 1, 2, j = 0, 1, and k = 0, 1, we use nijk to denote the number of
items in Sample i classified as j and k by the inerrant device and the errant device, respectively. In the
main study, we let xi and yi be the number of positive and negative classifications in Sample i obtained
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by the errant device. The summary frequencies in both the main study and the validation sub-study
for sample i are displayed in Table 1.

Table 1. Sample i (i = 1, 2) binary data subject to false-positive misclassification and obtained using
double sampling.

Errant device

Study Inerrant Device 0 1 Total

Validation 0 ni00 ni01 ni0·
1 NA ni11 ni11

Total ni00 ni·1 ni
Original NA Yi Xi Mi

NA: not available.

Next, we define the parameters for sample i as follows. We let the true proportion parameter of
interest be pi = Pr(Tij = 1), the proportion parameter of the errant device be πi = Pr(Fij = 1), and the
false-positive rate of the errant device be ϕi = Pr(Fij = 1

∣∣Tij = 0) . Note that πi is not an additional
unique parameter because it is obtainable by using all other parameters. In particular, by the law of
total probability, we have

πi = Pr(Tij = 1)Pr(Fij = 1
∣∣Tij = 1) + Pr(Tij = 0)Pr(Fij = 1

∣∣Tij = 0) = pi + qi ϕi , (1)

where qi = 1− pi. For the summary frequencies displayed in Table 1, the corresponding cell probabilities
are shown in Table 2.

Table 2. Cell probabilities for sample i (i = 1, 2).

Errant device

Study Inerrant Device 0 1 Total

Validation 0 qi (1 − ϕi) qi ϕi qi
1 NA pi pi

Original NA 1 − πi πi 1

NA: not available.

Our goal is to conduct Bayesian inference and we are interested in estimating and testing if
a difference exists among the two true proportion parameters p1, p2. In particular, the statistical
hypotheses are

H0 : p1 = p2 versus H1 : p1 6= p2. (2)

We develop Bayesian algorithms to estimate all the parameters in Expression (1) and constructed
a Bayesian credible interval (CI) to see whether the two true proportion parameters p1, p2 are equal
(i.e., if zero is in the CI). We note that the proportion difference, δ can be expressed as follows:

δ = p1 − p2. (3)

Therefore, our objective is ultimately to construct a 100(1 − α)% Bayesian CI for δ and hence,
simultaneously test (2) by checking if zero is in the 100(1 − α)% Bayesian CI for δ, where α is the type-I
error rate.

3. Model

We derive the Bayesian inference for the data described in the previous section. Specifically, we
develop a closed-form algorithm for sampling from the exact joint posterior distribution of all the
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parameters given the data. Once a posterior sample is drawn for p1 and p2 then a posterior sample for
the difference, δ, in Expression (3) can be obtained. Finally, we construct a 100(1–α)% CI for δ.

WLOG, for Sample i in Table 1, the observed counts (ni00, ni01, ni11) of the validation sub-study
have a trinomial distribution with total size ni and probabilities displayed in an upper right 2 × 2
submatrix in Table 2, i.e.,

(ni00, ni01, ni11)|pi, ϕi ∼ Trinomial[ni, (qi(1− ϕi), qi ϕi, pi)]. (4)

In addition, the observed counts (Xi, Yi) in the main study have the following binomial
distribution:

(Xi, Yi)|pi, ϕi, θi ∼ Bin(M, πi). (5)

Since (ni00, ni01, ni11) and (Xi, Yi) are independent for group i and these cell counts are
independent across groups, the sampling distribution of the vector of all data

d = (n100, n101, n111, X1, Y1, n200, n201, n211, X2, Y2) (6)

given the vector of all parameters
η = (p1, ϕ1, p2, ϕ2)

is

f (d|η) ∝
2

∏
i=1

{
[qi(1− ϕi)

ni00 (qi ϕi)
ni01 pi

ni11 πi
Xi (1− πi)

Yi}. (7)

To put it into a Bayesian framework, a non-informative proper prior for η is chosen. In particular,
a uniform prior for each component of η is chosen, where each parameter (i.e., component of η) is
constrained to lay in an interval of (0, 1), and we assume that these priors are independent, i.e., the joint
prior distribution is

p(η) = 1. (8)

The following reasons explain why the uniform priors are chosen. First, typically in most
applications, the prior information is unknown (non-informative); therefore, a uniform prior which
is a special case of Beta distribution, i.e., Beta (1, 1) equivalence, would be appropriate since
the distribution is flat or constant (non-informative) for all possible values within (0, 1) interval
constraints. Second, the availability of the validation sub-study provides information about all model
parameters and therefore an informative prior is not needed any more. Third, as Yang and Berger [12]
mentioned, Bayesian analysis with non-informative priors is increasingly recognized as a method
for classical statisticians to obtain good classical procedures. In this paper, it is also desirable to aim
for such a frequentist matching approach to develop non-informative (flat or constant) priors (i.e.,
most suitably, uniform priors) to ensure that we have Bayesian credible sets with good/matching
frequentist properties for our forthcoming future research so as to find good/matching frequentist
confidence intervals.

Combining Equations (7) and (8), we obtain the following joint posterior distribution:

f (η|d) ∝
2

∏
i=1

{
[qi(1− ϕi)

ni00 (qi ϕi)
ni01 pi

ni11 πi
Xi (1− πi)

Yi}, (9)

which has the same functional form as the sampling distribution in Equation (7).
In general, it is nontrivial to sample from the posterior distribution (9). Therefore, we derive a

closed-form algorithm for sampling from Equation (9) via the reparameterization of η. Note that the
term reparameterization is different than transformation. For transformation a Jacobian is needed,
while in reparameterization we simply reparametrize the original parameters for algebraic convenience
and hence, no Jacobian is needed. Note also that other non-informative priors than the uniform



Stats 2019, 2, 9 115 of 120

prior, such as Beta ( 1
2 , 1

2 ) which is the Jeffreys prior, could also be considered plausible or sensible
(depending on the specific aim of the problem statement), as long as they produce proper posteriors
and as long as they are in alignment with desirable good/matching frequentist properties, resulting
in a good/matching frequentist likelihood function for its corresponding/counterpart frequentist
confidence intervals. Also note that proper means it is a probability density and hence does integrate to
1, while improper means it is not a probability density and hence does not integrate to 1. In particular,
we define

λi =
pi
πi

. (10)

Using Equation (10), the posterior density in Equation (9) become

f (η∗|d) ∝
2

∏
i=1

λ
ni11
i (1− λi)

ni01 π
Xi+ni.1
i (1− πi)

Yi+ni00}, (11)

where d is defined in Equation (6) and

η∗ = (λ1, π1, λ2π2) (12)

is the re-parameterized parameter vector. Because the re-parameterized parameter vector of
Equation (12) is now separable, we can straightforwardly draw λi and πi from the posterior
Equation (11) by using the following closed-form algorithm:

λi ∼ Beta(ni11 + 1, ni01 + 1), (13)

πi ∼ Beta(Xi + ni.1 + 1, Yi + ni00 + 1), (14)

with i = 1, 2. Next, when λi and πi are available, we can obtain pi and ϕi by solving Equations (1) and
(10) so that

pi = πiλi, (15)

ϕi =
(1− λi)πi

qi
. (16)

In summary, the following is the closed-form algorithm to sample from the posterior density of
Equation (11).

1. Choose a large number J, say, 10,000, as a large sample size for the posterior draw.
2. Obtain J samples of λi and πi, each for i = 1, 2, using (13) and (14), respectively.
3. Obtain J samples of pi and ϕi, each for i = 1, 2, using (15) and (16), respectively.
4. Compute J samples of each difference, δ, from Equation (3).
5. Use the median of the posterior sample of δ as a point estimator of δ. The median was chosen

because the distribution of the posterior sample of δ is skewed.
6. Obtain a 100(1–α)% CI for δ by using the lower and upper (α/2)th percentile of the sample of δ,

where α is the type I error rate.
7. Finally, the statistical hypothesis testing in (2) can be rejected if this CI does not contain the

number zero.

4. Example

As an illustration of our proposed procedure, we utilize over-a-decade old retrospective data
collected from a large introductory statistics class (1148 students) at a university in the United States
of America. This is not a prospective study with randomized trials. Several teaching assistants (TA)
were hired to grade the homework, quizzes, extra credits, etc. from the laboratory (lab) component of
that course. Note that to alleviate extremely high volumes for homework grading, only two selected
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problems were chosen to be graded, but these were not pre-announced to the students. Hence,
the students were still required to do all assigned homework problems. Grades in this lab portion of
the course constituted only 20% of the course grade. Due to the large class size, weekly time constraints,
and the need for speed grading so that assignments could be returned in a timely manner, the TA
(errant device) tended to grade assignments on a pass/fail scale very leniently to avoid students
coming back to bargain for better scores. This resulted in an overly high pass rate, i.e., a false-positive
rate for the lab portion of the course grade. In that lab portion of the course grade, “pass” was defined
as 60% or above, and was coded as 1 (Tables 1–3). Likewise, “fail” was defined as below 60% and
was coded as 0. The professor (inerrant device) was interested in auditing those TAs’ grading for the
quality of graded (pass/fail) lab scores. He randomly selected a smaller sample of size 434 (144 + 23
+ 47 + 169 + 13 + 38) as a validation sub-study. This total validation sub-study size, 434 out of 1148
(37.8%), is not small. As the professor’s original intention was to draw validation samples until a
sufficient number of false-positive errors were caught, he convinced himself that this kind of grading
system is sustainable in the long run for many large classes. It turns out that he caught 13 out of 582
(about 2%) of false-positive errors in the female group and 23 out of 656 (about 4%) in the male groups.
Both group’s error rates were satisfactory for the professor’s original intention.

Table 3. The audited pass/fail data using double sampling with false-positive misclassification.

Errant Device

Sample Study Inerrant Device 0 1

Male Validation 0 144 23
1 NA 47

Original NA 443 123
Female Validation 0 169 13

1 NA 38
Original NA 480 102

NA: not available; 1 = pass; 0 = fail.

In this study, the interest is to estimate the overall score/performance of male and female students,
in terms of their proportion difference. Summary statistics of data are provided in Table 3.

Note that, since there is no personally identifiable information (PII) of any human subject
(such as the person’s name, university name, date of birth or DOB, social security number or SSN,
numeric grades, etc.) involved, and only summary statistics (such as counts and proportions of
pass/fail lab portion, in Table 3) are displayed, an International Review Board (IRB) approval or an
exemption to collect such data and publish results based on Table 3 is not required. Moreover,
this was a student class assignment which was a sole exception for classroom activities, and
hence did not fall under the jurisdiction of the IRB and did not require IRB application, approval,
or oversight (http://research-compliance.umich.edu/human-subjects/human-research-protection-
program-hrpp/hrpp-policies/class-assignments-irb-approval).

From Expression (2), the null hypothesis in this context is to test if the proportions of failing the
lab portion of the course between male and female students are the same, i.e., the δ in Expression (3)
is equal to zero; with the alternative hypothesis that the two proportions are not the same, i.e., δ is
not equal to zero. Following the algorithm from the previous section, the median of the posterior
sampling distribution of the proportion difference δ is 0.024, i.e., the proportion difference of failing
the course for male students is about 0.024 points more than female students, i.e., we see that the male
students had about a 2.4% higher chance of failing the lab portion of the course than female students.
The resulting 90% Bayesian CI for the difference δ is (−0.014, 0.063). Because this CI contains zero,
we conclude that the study did not provide enough statistical evidence in support of the outcome
(pass/fail) difference between the two genders (male/female students). Table 4 displays the parameter
estimates and 90% CI for the audited pass/fail data.

http://research-compliance.umich.edu/human-subjects/human-research-protection-program-hrpp/hrpp-policies/class-assignments-irb-approval
http://research-compliance.umich.edu/human-subjects/human-research-protection-program-hrpp/hrpp-policies/class-assignments-irb-approval
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Table 4. Parameter estimates and 90% Credible Interval (CI) for the audited pass/fail data.

Parameters Estimates 90% CI

p1 0.165 (0.137, 0.193)
p2 0.141 (0.116, 0.166)
δ 0.024 (−0.014, 0.063)

5. Simulation

We conduct simulation studies to evaluate and compare the performance of our algorithms under
various scenarios, such as evaluating the impact on the CIs of δ by varying sample sizes, the ratio of
validation and original study, and the false-positive rate. We considered a two-sided nominal type-I
error level of α = 0.1. Although not required by our algorithm, in order to simplify the conduct of
the simulation studies and the presentation of the simulation results, we let the total sample sizes be
N1 = N2 = N, sub-study sample sizes be n1 = n2 = n, and false-positive rates be ϕ1 = ϕ2 = ϕ. For each
simulation scenario a total of K = 10,000 datasets is generated.

We consider 32 simulation scenarios resulting from combinations of the following values:

1. True proportion parameters of interest (p1, p2) = (0.1, 0.2), (0.4 , 0.6).
2. False-positive rate ϕ = 0.1, 0.2.
3. Ratio of sub-study sample size versus the total sample size r = n/N = 0.2, 0.4.
4. Total sample size N = 100, 200, 300, 400.

For each simulation scenario, we simulate K = 10,000 datasets. Within each dataset, we draw a
size of J = 10,000 posterior samples of δ, according to the algorithm in Section 3. We then compute
the posterior median (point estimator) and a 90% CI. Finally, we generate boxplots of the K posterior
medians of δ to examine their behavior around the true δ. In addition, we calculate the coverage
probability (CP) and the average length (AL) of the K CIs.

In Figures 1 and 2, we present the boxplots of K posterior medians of δ against the total sample
size N. The true proportion parameters of (p1, p2) are (0.1, 0.2) and (0.4, 0.6) for Figures 1 and 2,
respectively. In each figure, the top two panels have ϕ = 0.2 and the bottom two panels have ϕ = 0.1.
In addition, the left two panels have n/N = 0.2 and the right two panels have n/N = 0.4.Stats 2019, 2, x FOR PEER REVIEW  8 of 10 
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Figure 1. Boxplots of posterior medians versus total sample sizes N where (p1, p2) = (0.1, 0.2). The top
two panels have ϕ = 0.2 and the bottom two panels have ϕ = 0.1; the left two panels have n/N = 0.2
and the right two panels have n/N = 0.4.
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Figure 2. Boxplots of posterior medians versus total sample sizes N where (p1, p2) = (0.4, 0.6). The top
two panels have ϕ = 0.2 and the bottom two panels have ϕ = 0.1; the left two panels have n/N = 0.2
and the right two panels have n/N = 0.4.

From the 32 simulation scenarios for both figures, the posterior medians are centered around the
true δ and hence is a good point estimator. Additionally we made the following observations:

1. For each panel of four boxplots, the variation of the posterior medians decreases as N increases.
2. For each figure, the variation of the posterior medians of the top two panels with a larger ϕ is

slightly greater than that of the bottom two panels with a smaller ϕ.
3. For each figure, the variation of the posterior medians of the left two panels with a smaller n/N

is slightly greater than that of the right two panels with a larger n/N.

In Table 5, we show the CPs and ALs of the K CIs of δ for each simulation scenario. Since the CPs
are all close to the nominal 90% level, this is an indication that our CI estimator is a good estimator.
Similar to the observations made for the figures, we made the following observations in Table 5:

1. For fixed (p1, p2), ϕ, n/N, the AL of the CIs decreases as N increases.
2. For fixed (p1, p2), n/N, N, the AL of the CIs decreases as ϕ decreases.
3. For fixed (p1, p2), ϕ, N, the AL of the CIs decreases as n/N increases.

Table 5. Coverage probabilities (CPs) and average lengths (ALs) of 90% CIs for risk difference δ.

Delta (p1, p2) ϕ n/N N

100 200 300 400
−0.1 (0.1,0.2) 0.2 0.2 CP 91.61 90.74 90.46 90.19

AL 0.26 0.20 0.17 0.15
0.4 CP 90.81 90.52 90.32 90.67

AL 0.21 0.15 0.13 0.11
0.1 0.2 CP 91.58 90.82 90.70 90.48

AL 0.23 0.17 0.14 0.13
0.4 CP 90.50 90.39 90.18 89.96

AL 0.19 0.14 0.12 0.10
−0.2 (0.4,0.6) 0.2 0.2 CP 91.62 91.07 90.24 90.58

AL 0.33 0.24 0.20 0.17
0.4 CP 90.28 90.49 89.85 90.04

AL 0.27 0.20 0.16 0.14
0.1 0.2 CP 93.31 91.49 90.96 90.75

AL 0.31 0.22 0.18 0.15
0.4 CP 90.81 90.48 90.61 90.08

AL 0.26 0.18 0.15 0.13
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6. Discussion

In this article we derived a Bayesian algorithm to conduct statistical inference on the difference of
two proportion parameters for binary data subject to one type of misclassification. Our closed-form
algorithm to draw from the full posterior distributions has many advantages, including the following:

• Since we draw directly from the posterior distributions, there is no need to specify initial values
and there is no burn-in period or convergence problem.

• Our algorithm can handle zero counts as shown in Equations (13) and (14).
• No asymptotic (large sample) theory is involved and hence it is easy to implement, in the sense

that our algorithm does not require a large sample size for the complex asymptotic (large sample)
theory, such as the regularity conditions, to work out—rather, it simply draws from the joint
posterior distribution.

The uniform (0, 1) prior distribution in Equation (8) is identical to a Beta (1, 1) distribution;
however, to generalize this prior distribution in Expression (8) to be Beta (α, β) would complicate
Equations (8) and (9). This would affect the generalized sensibility of the results in relation to the
choice of the hyper-parameter values. Still, doing so can be considered so long as the hyper-parameter
choices produce sensible proper (i.e., a probability density that integrates to 1) posteriors and produce
the corresponding good/matching frequentist’s counterpart of confidence intervals. For example, the
Uniform (0, 1) priors which are Beta (1, 1) and the Jeffreys priors which are Beta ( 1

2 , 1
2 ) satisfy the above

two aforementioned criteria.
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