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Abstract: Research papers represent an important and rich source of comparative data. The change
is to extract the information of interest. Herein, we look at the possibilities to construct confidence
intervals for sample averages when only ranges are available with maximum likelihood estimation
with order statistics (MLEOS). Using Monte Carlo simulation, we looked at the confidence interval
coverage characteristics for likelihood ratio and Wald-type approximate 95% confidence intervals.
We saw indication that the likelihood ratio interval had better coverage and narrower intervals.
For single parameter distributions, MLEOS is directly applicable. For location-scale distribution is
recommended that the variance (or combination of it) to be estimated using standard formulas and
used as a plug-in.
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1. Introduction

One of the tasks statisticians face is extracting and possibly inferring biologically/clinically
relevant information from published papers. This aspect of applied statistics is well developed,
and one can choose to form many easy to use and performant algorithms that aid problem solving.
Often, these algorithms aim to aid statisticians/practitioners to extract variability of different measures
or biomarkers that is needed for power calculation and research design [1,2].

While these algorithms are efficient and easy to use, they mostly are not probabilistic in nature,
thus they do not offer means for statistical inference. Yet another field of applied statistics that aims
to help practitioners in extracting relevant information when only partial data is available propose a
probabilistic approach with order statistics. This approach has a long history and special focus was/is
paid for samples with censored observations [3] or extremes [4]. Arnold and collaborators [5] offer a
comprehensive overview or order statistics including how and when minimum and maximum of a
sample may become sufficient statistic and some exact formulas and closed solution for the distribution
of some order statistics.

The likelihood, the joint density of the observed data, is at the core of most statistical estimation
and/or inference. Whereas formulation of the likelihood in most cases is based on complete samples
there are situations when we observe only parts of the data. This could be due to censoring of different
kind, or perhaps we do not have access at the full data but only at minimum and maximum values.
Combination of the likelihood theory and order statistics is straightforward [6].

Herein, we aim to investigate the performance of likelihood-based confidence intervals when
only minimum–maximum and sample size is available. Using Monte Carlo simulations, we examine
coverage and interval width for location parameters estimated form ranges. Additionally, we compare
estimation and inference from ranges with estimation and inference based on full samples. Lastly,
we examine if the effect of sample size on estimation and inference on ranges.
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In the following, we give a brief background for likelihood, order statistics and likelihood for order
statistics. Then outline the Monte Carlo simulation. Thereafter we list the results of the simulation,
an illustrative application and conclude with a brief general discussion.

2. Likelihood and Order Statistics

We assume that each of the n iid random observations in the sample Y1, . . . , Yn have probability
mass function f (y; θ). In all cases the likelihood is the joint density of the observed data and

L( θ|Y ) =
n

∏
i=1

f (Yi; θ). (1)

We aim to estimate the parameter θ̂MLE that makes Y1, . . . , Yn most probable, or most likely under the
assumed probability mass function. Based on the likelihood function for the simple null-hypothesis
of H0 : θ = θ0 vs. H1 : θ 6= θ0 three test statistics can be formulated, the Wald (TW), score (Ts),
and likelihood ratio (TLR) statistics. These three test statistics are asymptotically equivalent and as
n→ ∞ , the test statistics converges in distribution to χ2

r . Confidence regions for the parameter(s)
of interest are given by P

{
T(θ) ≤ χ2

r (1− α)
}

, which is a random set that contains the nonrandom
true value with nominal probability of 1− α. Of the three alternative test statistics the Wald- statistics
and the Wald (or approximate) confidence intervals are the most common. The Wald-statistics is
estimated as TW = (θ̂MLE − θ0)

T{IT(θ̂MLE)
}
(θ̂MLE − θ0). The Wald-interval is not invariant to the

parametrization of the estimate of the interest.
The likelihood ratio statistic does not depend on model parametrization and the not necessary

symmetric around the point estimate. The likelihood ratio statistic is given by TLR =

{
supθεH0

L( θ|Y )

supθεΘ L( θ|Y )

}
.

For the confidence intervals based on the Wald statistics (or Score statistics in most cases) there
are closed form solutions. The intervals derived from TLR require numerical estimation. This is done
on log scale TLR = −2

{
l(θ0)− l(θ̂MLE)

}
, where l is the log likelihood function

l( θ|Y ) =
n

∑
i=1

log f (Yi; θ). (2)

If we do not know the full Y1, . . . , Yn, but we only know Y(1) = min{Y1, . . . , Yn} and Y(n) =

max{Y1, . . . , Yn}, the likelihood function and the test statistics cannot be calculated as described
above. For iid continuous variables the distribution of the range is

G(t) = n
∫ ∞

−∞
f (y){F(y + t)− F(y)}n−1dy (3)

where F(y) is the cdf and f (y) is the pdf of y. For simpler cases it is possible to obtain closed form
solutions [7]. However, this formulation can be rather unpractical with difficult optimization.

Glen [8] offered a simpler solution, MLEOS, maximum likelihood estimation with order statistics
defined as LK( θ|Y ) = ∏iεK gy(y(i), θ), where K is the set of order statistic indices (in or case 1 and n)
and gy(i) is the pdf for the order statistics. The pdf for the rth order statistics is

gr(y) =
n!

(r− 1)!(n− r)!
[F(y)]n−r[1− F(y)]n−r f (y). (4)

We can obtain likelihood ratio statistics and confidence intervals by numerical optimization of
MELOS. When full data is available, we can use closed form solutions for the Wald-statistics and
approximate confidence intervals. It is possible to obtain exact formulas of the Information Matrix
for MLEOS, however with considerable difficulty [9] and this is not always needed as optimization
routines return the value of the Hessian matrix at θ̂MLE.
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3. Simulation Settings

We simulated a random variable y with sample sizes of 25, 50, 100, 500, and 1000. We assumed
that the simulated y is iid following exponential and normal distribution. After simulating yi
with i = 1, . . . , n we used maximum likelihood estimation to obtain likelihood ratio and Wald-type
approximate confidence intervals. Thereafter we extracted y(1) and y(n) and used MELOS to obtain
likelihood ratio and Wald-type approximate confidence intervals. Thereafter, we repeated the
procedure 1000 times. For each iteration, we noted if the confidence interval covers the true parameter
value and the width of the confidence interval. Assuming binomial distribution for the confidence
interval coverage, we expect that the coverage should be within 1.96 standard errors of the nominal
coverage probability. As we run 1000 simulations, we expect that the coverage should be between
tolerance limits of 0.936 and 0.963 [10].

For the normal distribution, we employed two types of estimation. First, we used MLEOS to
estimate both mean and variance from the ranges. Second, we used the Wan-estimator to estimate the
sample standard deviation from the ranges as

sd =
y(n) − y(1)

2Φ−1( n−0.375
n+0.250

) (5)

where Φ−1(z) is the inverse function of standard normal distribution or equivalently, the upper zth

percentile of the standard normal distribution [2]. All analyses were conducted in R 3.5.1 [11].

4. Results

4.1. Exponential Distribution

Table 1 presents the results for the exponential distribution with an intensity of 2. Likelihood ratio
confidence intervals had coverage values within the tolerance limits Wald-type confidence intervals
had coverage values under the lower tolerance limit of 0.936 when estimated either on full samples or
ranges (Table 1).

Table 1. Confidence interval coverage and confidence interval width (in parenthesis) for likelihood
ratio (LR) and Wald-type confidence intervals constructed on the full sample and on ranges.

N = 25 N = 50 N = 100 N = 500 N = 1000

Full Data
LR-interval 0.948(1.62) 0.945 (1.13) 0.947 (0.79) 0.949 (0.35) 0.940 (0.24)

Wald-interval 0.845(1.15) 0.822 (0.798) 0.835 (0.56) 0.852 (0.24) 0.872 (0.17)
Range data

LR-interval 0.945 (2.65) 0.942 (2.22) 0.957 (1.88) 0.945 (1.41) 0.946 (1.28)
Wald-interval 0.938 (2.42) 0.92 (2.02) 0.919 (1.174) 0.900 (1.27) 0.913 (1.15)

This pattern was consistent for different intensities (Figure 1).
Quadratic (Taylor-series) approximation of the order statistics likelihood showed poor normal

approximation, explaining the subpar performance of the Wald-type intervals (Figure 2).
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4.2. Normal Distribution

Table 2 summarizes the coverage probabilities for confidence intervals for the mean of a normally
distributed variable with µ = 0.5 and σ = 2. Apart from n = 25 the coverage of both likelihood ratio
and Wald-type intervals had coverage values within the tolerance limits.

Concomitant estimation of both means and associated standard deviations leads to a substantial
under-coverage of likelihood ratio intervals based on ranges. The Wald-type confidence interval had
coverage values within the tolerance limits. Using the Wan-estimator (Equation (5)) as a plug-in kept
the coverage properties of the Wald-type confidence interval. The coverage of the likelihood ratio
interval improved and attained coverage value within the tolerance limits and close to the nominal
coverage. Additionally, likelihood ratio intervals were slightly narrower than Wald-type intervals,
suggesting improvement in statistical power.
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Table 2. Confidence interval coverage and confidence interval width (in parenthesis) for likelihood
ratio (LR) and Wald-type confidence intervals constructed on the full sample and on ranges.

N = 25 N = 50 N = 100 N = 500 N = 1000

SD estimated with Maximum Likelihood

Full Data
LR-interval 0.926 (1.51) 0.940 (1.09) 0.956 (0.78) 0.949 (0.35) 0.942 (0.24)
Wald-interval 0.929 (1.55) 0.942 (1.10) 0.957 (0.78) 0.949 (0.35) 0.942 (0.24)
Range data
LR-interval 0.835 (2.00) 0.839 (1.80) 0.831 (1.64) 0.829 (1.37) 0.837 (1.28)
Wald-interval 0.949 (2.95) 0.951 (2.55) 0.951 (2.32) 0.939 (1.94) 0.952 (1.81)

Wan-type plug-in SD estimator

Full Data
LR-interval 0.938 (1.52) 0.938 (1.09) 0.945 (0.77) 0.956 (0.35) 0.947(0.24)
Wald-interval 0.943 (1.55) 0.940 (1.10) 0.946 (0.78) 0.956 (0.35) 0.947 (0.24)
Range data
LR-interval 0.943 (2.74) 0.947 (2.51) 0.956 (2.28) 0.944 (1.96) 0.945 (1.85)
Wald-interval 0.951 (2.80) 0.958 (2.58) 0.962 (2.36) 0.953 (2.07) 0.953 (1.96)

5. Illustrative Application

5.1. Exponential Distribution: Survival Data

In a recent abstract Okiror and collaborators [12] reported survival statistics for patients
undergoing pulmonary metastasectomy for sarcoma. The authors report that for the 66 patients
with metastatic sarcoma that they followed up the median disease-free interval was 25 months,
ranging between 0 and 156. We could assume that the disease-free survival is exponentially distributed
with intensity λ. Of interest is to estimate λ and construct a 95 % confidence interval around it. In this
case we have access to median and range so there are several ways to proceed. The range is the least
robust statistics, as they are maximally sensitive to outliers. Thus, using the median to estimate λ, is the
better option. The median of an exponentially distributed variable is given by λ−1ln(2) which in our
case gives an intensity estimate of 0.0277. Additionally, we could use the ranges. The range reported
can be used in two ways. First, knowing that the variance of an exponentially distributed variable
is λ−2 and using the Wan [2] equation for the standard deviation we can get an intensity estimate of
0.0301. Neither, approach offers straightforward way of inference, however Monte Carlo methods
could be considered. Lastly, we could use MLEOS for point and interval estimation. This resulted
in an intensity estimate of 0.0303 and associated 95 % confidence interval of 0.0192 to 0.0535. It is
worth to note that this intensity underestimates the median, by two months (23 instead of 25). This can
be due to multiple reasons. Partly the sensibility of ranges to outliers and equally importantly the
possible deviation from the assumed distribution. However, a reparameterization to ln(2)/Median
and optimization with MLEOS gave a 95 % confidence interval for the median of 13 to 36 months.
Thus, we cannot conclude without reasonable doubt that the two months’ deviation is a genuine one.

5.2. (Log) Normal Distribution: Exhaled Nitric Oxide Test

Early phase clinical trials for new asthma medicines often take advantage of allergen challenges.
In these challenges healthy volunteers are subjected to allergens that cause adverse airway responses
and different biomarkers are measured and compared between the placebo and active arms. Research
planning often extracts data from published articles either for setting reasonable target values or for
variance estimation that needed for power calculations. Barchuk and collaborators [13] present such
an allergen challenge study where among others they show data for FENO. FENO test (exhaled nitric
oxide test) is a way to determine how much lung inflammation is present and how well inhaled
steroids are suppressing this inflammation in allergic or eosinophilic asthma patients. Barchuk and
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collaborators [13] present the geometric mean and range for FENO readings during a bronchial allergen
challenge (BAC) (Table 3).

Table 3. MELOS estimates for the geometric mean (GM) and standard deviation for FENO test data for
in allergen challenge setting.

Period GM Range GMMELOS 95 % ci σWan σMLEOS 95 % ci

Pre BAC 44 12; 177 46 27; 77 0.73 0.72 0.50; 1.09
11 h post BAC 45 13; 156 45 27; 73 0.67 0.67 0.47; 1.01
24 h post BAC 65 17; 192 58 35; 92 0.65 0.65 0.45; 0.99
Predose 42 13; 151 44 27; 71 0.66 0.66 0.46; 1.00
24 h pre BAC 41 11; 178 44 25; 76 0.75 0.75 0.52; 1.14

We applied MLEOS in two different setting to this data. First, we used the range data to estimate
standard deviations using the Wan-estimator and then assuming log-normally distributed data we
estimated the geometric means and associated 95% confidence intervals. With one notable exception
the estimation was acceptable. Second, using log-scale (normal distribution) we estimated standard
deviations both with the Wan-estimator and MLEOS. FENO is modeled on log scale, thus we modeled
σ, the standard deviation for the normal distribution and not the standard deviation of the log-normal
distribution. Here, MLEOS provided standard deviation estimates that deviated only on third or
fourth decimal from the Wan-estimator. As the later estimator is validated it can be used as a golden
standard. Thus, we concluded that MLEOS is a feasible and easy way to obtain standard deviation
estimates from ranges. In addition to the Wan-estimator MLEOS provides future inference that can be
extremely valuable for a research planning.

6. Discussion

In this note, we showed that it is possible to construct likelihood-based confidence intervals for
means when the only available data is the minimum and maximum value of a sample. The range
caries more information than the values of the two measurements, it also indicates that the rest of the
values are within these values. This combined with an assumed distribution allowed construction of
the confidence intervals. Of course, confidence intervals have meaning only if the parameter estimates
are unbiased or if the bias it relatively low compared to the variance of the estimate. MLEOS had been
proved to provide unbiased point estimates [8], and this was confirmed by or simulation (data not
presented). Glen [8] focused to show the value of MLEOS for various censorship scenarios. Building on
his work, we took a step forward and assessed the feasibility of MLEOS not only for point estimates but
for inference. For the one parameter distribution, like the exponential distribution where the intensity
characterizes both the expected value and variance estimation is straightforward. Order statistics
likelihood estimation for the normal distribution assumes estimation of two model parameters the
mean and variance. If full data are available, this estimation is straightforward; however, if only
minimum and maximum values are available, then the number of parameters to be estimated matches
the number of data points. Additionally, the maximum likelihood estimate of the standard deviation is
biased. Here it is recommended to use plug-in estimator for the variance, such as the Wan-estimator [2].
Glen [8] observed that the censoring pattern greatly influences the recorded bias. Unfortunately, he did
not considered ranges. We expected that the standard deviation estimated by MLEOS would be higher
than for the Wan-estimator, however this was not the case. While both estimators explicitly consider
the sample sizes, their aim is somewhat differ. The Wan-estimator aims to give an estimate the sample
standard deviation, MLEOS aims to estimate parameters that makes toe observed ranges most likely.

Here, we assumed that we know the distribution of the observations. However, this is not always
the case. Confidence interval construction for ranked set samples [14–16] including non-parametric
interval received considerable attention. Confidence intervals for medians can be constructed based on
adjacent order statistics with nonlinear interpolation [17,18]. Moreover, there are available routines for
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likelihood estimation for miss-specified or partially miss-specified models [19]. Thus, it is of interest to
assess in a future work the effect of model miss-specification and possible remedies.
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