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Abstract: In reliability, sequential order statistics serve as a model for the component lifetimes of
k-out-of-n systems, which are operating as long as k out of n components are operating. In contrast to
modelling with order statistics, load-sharing effects and other impacts of failures on the performance
of the remaining components may be taken into consideration. Inference for associated load-sharing
parameters, as well as for the underlying baseline distribution, is then of particular interest. In a
setup of multiple samples of sequential order statistics modelling the component lifetimes of possibly
differently structured k-out-of-n systems, we provide exact statistical tests to check for common
load-sharing or common baseline-distribution parameters. In the two-sample case, critical values for
the corresponding test statistics are tabulated for small sample sizes, and the asymptotic distributions
of the test statistics under the null hypotheses are derived. Based on a simulation study, power
comparisons are addressed. The proposed tests may be applied to detect significant differences
between systems or to decide whether a meta-analysis of the data may be conducted to increase the
performance of subsequent inferential procedures.
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1. Introduction

In reliability, the k-out-of-n system forms an important technical structure that comprises series
and parallel systems as special cases. In such a system, n components work simultaneously and may
fail over time. The system, however, is operating as long as at least k of the components are operating,
such that the (n− k+ 1)-th component failure time coincides with the lifetime of the system. In a simple
model, the component lifetimes are described, say, by n non-negative, independent, and identically
distributed (iid) random variables with cumulative distribution function (cdf) F. The (n− k + 1)-th
order statistic based on F then represents the system’s lifetime. To provide a more flexible modelling
of the lifetimes of k-out-of-n systems and their components, sequential order statistics (SOSs) were
introduced in References [1,2], which allow to describe the impacts of failed components on the
residual lifetimes of the remaining components. In particular, so called load-sharing effects can be
modelled arising in systems, where all components (equally) share the total load of the system, and
every component failure is likely to increase the stress put on the surviving ones. Obviously, modelling
with order statistics is not adequate in applications with relevant impacts.

When SOSs are used as a load-sharing model for a k-out-of-n system, statistical inference for
unknown underlying quantities typically has to be performed, aiming at a good model fit. In a
proportional hazard rate setup of SOSs, the uncertainty of the model is captured within some baseline
cdf or within a finite number of positive model parameters, for which a variety of inferential results
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have been derived. Estimators of model parameters or distribution parameters of the baseline cdf
of SOSs are provided in, e.g., References [3–10]. Statistical tests for single or vectors of the model or
baseline-distribution parameters of SOSs are proposed in References [3,6,7,11–13], which, in particular,
allow for model selection in the sense of whether order statistics have to be rejected for modelling in
a given situation. More inferential results, along with the detailed model and structural properties,
can be found in Reference [14]. For nonparametric estimation and testing with SOSs, we refer to
References [15–17]. Bayesian inference for SOSs is discussed, for instance, in References [18–20].

In this paper, continuing existing work on inference with SOSs, we develop statistical tests for the
comparison of multiple k-out-of-n systems in the sense of whether they have model parameters or
baseline-distribution parameters in common. In reliability and the particular context of load-sharing
systems, sample sizes are often small going along with, e.g., low estimator accuracy. The proposed tests
may be applied, for instance, to decide for a meta-analysis, i.e., a joint analysis of the data to improve
the performance of subsequent inferential procedures, such as maximum-likelihood estimation of the
unknown parameters.

The remainder of this article is as follows. First, we introduce the SOS model and review
some basic properties (Section 2). Based on multiple samples of SOSs modelling possibly differently
structured systems, we then derive exact statistical tests to check for common load-sharing parameters
(Section 3.1) and for common baseline-distribution parameters (Section 4.1). In the particular case
of two samples, critical values for test statistics are provided for small sample sizes and, moreover,
asymptotic results are addressed (Sections 3.2 and 4.2). A simulation study is carried out to compare
the proposed tests in terms of power (Section 5), and a concluding section finally highlights the main
findings (Section 6).

2. Model and Basic Properties

SOSs were introduced in References [1,2] by means of a triangular scheme of independent random
variables and certain recursive formulas. Meanwhile, other possible definitions have been proposed in
the literature, for instance, based on independent power-function-distributed random variables (see
Reference [21]) or on counting processes (see Reference [15]; cf. References [22,23]). For our purposes
here, a likelihood approach to the model is sufficient.

Let F1, . . . , Fn be absolutely continuous cdfs with F−1
1 (1) ≤ · · · ≤ F−1

n (1) and corresponding
density functions f1, . . . , fn. Ordered random variables X1, . . . , Xn (defined on a probability space
(Ω,A, P)) are called SOSs based on F1, . . . , Fn if their joint density function with respect to (wrt) the
Lebesgue measure is given by

f X1,...,Xn(x1, . . . , xn) = n!
n

∏
j=1

{
1− Fj(xj)

1− Fj(xj−1)

}n−j
f j(xj)

1− Fj(xj−1)

for all real numbers x1 ≤ · · · ≤ xn, where here and in the following, x0 ≡ −∞ for the sake of a simple
representation. In that case, X1, . . . , Xn form a Markov chain with transition probabilities

P(Xj > t |Xj−1 = xj−1) =

{
1− Fj(t)

1− Fj(xj−1)

}n−j+1

, t > xj−1 ,

for j ∈ {2, . . . , n}; see References [1,24]. In the distribution-theoretical sense, order statistics (based on
F1) are included in the model and result by setting F1 = · · · = Fn.

When choosing
Fj = 1− (1− F)αj , 1 ≤ j ≤ n , (1)
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for some absolutely continuous cdf F, which is referred to as a baseline cdf, and positive numbers
α1, . . . , αn, we arrive at a semiparametric SOS model, in which F1, . . . , Fn have proportional hazard
rates, i.e.,

λFj = αjλF , 1 ≤ j ≤ n .

The conditional hazard rate of Xj, given Xj−1 = xj−1, is then

λXj |Xj−1=xj−1
(t) = (n− j + 1) αj λF(t) , t > xj−1 ,

for j ∈ {2, . . . , n}. In a load-sharing context, model parameters α1, α2, . . . may describe increasing stress
put on surviving components in case of component failures in the following sense. All components
start working at hazard rate α1λF. Then, upon the j-th component failure for j = 1, 2, . . . , the hazard
rate of any still-operating component changes from αjλF to αj+1λF. An extensive account on the SOS
model, including motivational aspects, structural results, and inference, is provided by Reference [14].

When the component lifetimes of a k-out-of-n system are recorded, the data are type-II
right-censored if k > 1, such that marginal densities are naturally of some interest. Here, the marginal
density of the first r (≤ n) SOSs based on F1, . . . , Fn is given by

f X1,...,Xr (x1, . . . , xr) =
n!

(n− r)!

r

∏
j=1

{
1− Fj(xj)

1− Fj(xj−1)

}n−j
f j(xj)

1− Fj(xj−1)
, x1 ≤ · · · ≤ xr ,

which, by assuming Formula (1), simplifies to

f X1,...,Xr (x1, . . . , xr) =
n!

(n− r)!

r

∏
j=1

(
1− F(xj)

1− F(xj−1)

)(n−j+1)αj αj f (xj)

1− F(xj)
, x1 ≤ · · · ≤ xr , (2)

where f denotes the density function of the baseline distribution; see, e.g., Reference [14]. For brevity,
let XF = {(x1, . . . , xr) : F−1(0+) < x1 ≤ · · · ≤ xr < F−1(1)} denote the sample space in what follows.

3. Testing for Equal Load-Sharing Parameters

For 1 ≤ k ≤ m, we assume to have sk observations of the first r component-failure times in an
(nk − r + 1)-out-of−nk system. In sample k ∈ {1, . . . , m}, failure times are described by iid vectors
X(k)

1 , . . . , X(k)
sk , where X(k)

i = (X(k)
i1 , . . . , X(k)

ir ) is distributed as the first r SOSs based on a known

absolutely continuous cdf F(k) with density function f (k) and unknown model parameters α
(k)
1 , . . . , α

(k)
nk

for 1 ≤ i ≤ sk (see Formula (2) and Table 1).

Table 1. Illustration of the sampling scheme.

sample 1 . . . m

system (n1 − r + 1)-out-of-n1 . . . (nm − r + 1)-out-of-nm

# observed systems s1 . . . sm

iid vectors X(1)
1 , . . . , X(1)

s1
(independent). . . X(m)

1 , . . . , X(m)
sm

of SOSs X(1)
i = (X(1)

i1 , . . . , X(1)
ir ), 1 ≤ i ≤ s1 . . . X(m)

i = (X(m)
i1 , . . . , X(m)

ir ), 1 ≤ i ≤ sm

baseline cdf F(1) . . . F(m)

model parameters α
(1)
1 , . . . , α

(1)
n1 . . . α

(m)
1 , . . . , α

(m)
nm
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As an example, F(k) may be specified as the standard exponential distribution for all k ∈ {1, . . . , m}
to assume exponential component lifetimes in all systems with varying scale parameters upon failures.
Moreover, X(k)

i , 1 ≤ i ≤ sk, 1 ≤ k ≤ m, are supposed to be independent, the joint density function of
which can then be represented as

fα(x) = exp

{
m

∑
k=1

r

∑
j=1

α
(k)
j T(k)

j (x) +
m

∑
k=1

sk

r

∑
j=1

log α
(k)
j

}
h(x) , (3)

where, for 1 ≤ k ≤ m and 1 ≤ j ≤ r,

T(k)
j (x) = (nk − j + 1)

sk

∑
i=1

log

 1− F(k)(x(k)ij )

1− F(k)(x(k)i,j−1)

 ,

and

h(x) =
m

∏
k=1

(
nk!

(nk − r)!

)sk sk

∏
i=1

r

∏
j=1

f (k)(x(k)ij )

1− F(k)(x(k)ij )

for x = (x(1)1 , . . . , x(1)s1 , . . . , x(m)
1 , . . . , x(m)

sm ) with x(k)i = (x(k)i1 , . . . , x(k)ir ) ∈ XF(k) , 1 ≤ i ≤ sk, 1 ≤ k ≤ m.

Here, α denotes the vector of all model parameters α
(k)
j , 1 ≤ j ≤ r, 1 ≤ k ≤ m. It is well known that

the statistics T(k)
j , 1 ≤ j ≤ r, 1 ≤ k ≤ m, are independent with −T(k)

j ∼ Γ(sk, 1/α
(k)
j ), i.e., a gamma

distribution with shape parameter sk and scale parameter 1/α
(k)
j ; see, e.g., Reference [5]. Moreover, for

1 ≤ k ≤ m and 1 ≤ j ≤ r, the maximum-likelihood estimator (MLE) of α
(k)
j is given by

α̂
(k)
j = − sk

T(k)
j

, (4)

which can directly be seen by computing the first two derivatives of the log-likelihood function
corresponding to Formula (3); cf. References [5,7]. As a consequence, α̂

(k)
j , 1 ≤ j ≤ r, 1 ≤ k ≤ m,

are independent and inverse-gamma-distributed. In what follows, the vector of these MLEs is denoted
by α̂.

3.1. Exact Tests

For 1 ≤ j ≤ r, let Ij1, . . . , Ijqj be nonempty index sets forming a partition of {1, . . . , m}, and let
qj < m for at least one index j ∈ {1, . . . , r}. Then, Equation (3) can be rewritten as

fα(x) = exp

 r

∑
j=1

qj

∑
l=1

∑
k∈Ijl

α
(k)
j T(k)

j (x) +
r

∑
j=1

qj

∑
l=1

∑
k∈Ijl

sk log α
(k)
j

 h(x) .

We aim at testing the null hypothesis:

H0 : α
(k)
j = α

(k̃)
j , k, k̃ ∈ Ijl , 1 ≤ l ≤ qj , 1 ≤ j ≤ r , (5)

where, here and in the following, the alternative hypothesis is the negation of the null hypothesis (in
the SOS model). Under null hypothesis (5), the j-th model parameter is assumed to be constant in
blocks, where blocks Ijl , 1 ≤ l ≤ qj, refer to sample numbers, 1 ≤ j ≤ r. Figure 1 illustrates such a
situation. In the particular situation q1 = · · · = qr = 1, the r model parameters are the same in all
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samples. For m = 2 and q1 = · · · = qr = 1, null hypothesis (5) refers to the two-sample case with s1

and s2 observed systems, which then simply reads

H0 : α
(1)
j = α

(2)
j , 1 ≤ j ≤ r .

Note that by setting qj = m for some j ∈ {1, . . . , r}, there is no assumption for model parameters

α
(1)
j , . . . , α

(m)
j under the null hypothesis.

sample
1 2 3 4 5 6 qj

1 α
(1)
1 α

(2)
1 α

(3)
1 α

(4)
1 α

(5)
1 α

(6)
1 1

2 α
(1)
2 α

(2)
2 α

(3)
2 α

(4)
2 α

(5)
2 α

(6)
2 2

j 3 α
(1)
3 α

(2)
3 α

(3)
3 α

(4)
3 α

(5)
3 α

(6)
3 2

4 α
(1)
4 α

(2)
4 α

(3)
4 α

(4)
4 α

(5)
4 α

(6)
4 3

5 α
(1)
5 α

(2)
5 α

(3)
5 α

(4)
5 α

(5)
5 α

(6)
5 6

Figure 1. Illustration of null hypothesis (5) for m = 6 and r = 5.

To derive the MLE of α
(k)
j , 1 ≤ k ≤ m, 1 ≤ j ≤ r, under H0, let τjl be any index in Ijl for 1 ≤ l ≤ qj

and 1 ≤ j ≤ r. Then, we have to maximize expression

exp

 r

∑
j=1

qj

∑
l=1

α
(τjl)

j ∑
k∈Ijl

T(k)
j (x) +

r

∑
j=1

qj

∑
l=1

log α
(τjl)

j ∑
k∈Ijl

sk

 h(x)

wrt α
(τjl)

j , 1 ≤ l ≤ qj, 1 ≤ j ≤ r. Analysis of the first two derivatives yields that the maximum is
attained at

α̃
(τjl)

j = −
∑k∈Ijl

sk

∑k∈Ijl
T(k)

j

for 1 ≤ l ≤ qj and 1 ≤ j ≤ r. Hence, the MLE of α
(k)
j , 1 ≤ k ≤ m, 1 ≤ j ≤ r, under H0 is given by

α̃
(k)
j = α̃

(τjl)

j , k ∈ Ijl ,

and the corresponding vector of estimators is denoted by α̃.
Now, the likelihood-ratio statistic Λ = −2 log( fα̃/ fα̂) for testing null hypothesis (5) is seen to be

Λ = 2
r

∑
j=1

qj

∑
l=1

∑
k∈Ijl

sk log

 α̂
(k)
j

α̃
(k)
j



= 2
r

∑
j=1

qj

∑
l=1

∑
k∈Ijl

sk log

 sk

∑k̃∈Ijl
sk̃

∑k̃∈Ijl
T(k̃)

j

T(k)
j

 . (6)

As a competing test statistic to Λ, we address the Rao score statistic R = U t
α̃[F (α̃)]−1U α̃

for testing null hypothesis (5), which involves the score statistic Uα = ∂/∂α log fα and the Fisher
information matrix F (α) = Eα(UαU t

α), where superscript t denotes transposition, and integration is
done wrt fα; see, e.g., Reference [25]. In our model, F (α) is a diagonal (mr×mr)-matrix with blocks
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diag(sk/[α(k)1 ]2, . . . , sk/[α(k)r ]2), 1 ≤ k ≤ m, since −T(k)
j ∼ Γ(sk, 1/α

(k)
j ), 1 ≤ j ≤ r, 1 ≤ k ≤ m, are

independent. Hence, by using Formula (4),

R =
r

∑
j=1

qj

∑
l=1

∑
k∈Ijl

T(k)
j +

sk

α̃
(k)
j

2
[α̃

(k)
j ]2

sk

=
r

∑
j=1

qj

∑
l=1

∑
k∈Ijl

sk

 α̃
(k)
j

α̂
(k)
j

− 1

2

=
r

∑
j=1

qj

∑
l=1

∑
k∈Ijl

sk

∑k̃∈Ijl
sk̃

sk

T(k)
j

∑k̃∈Ijl
T(k̃)

j

− 1


2

. (7)

The likelihood-ratio test and the Rao score test then reject the null hypothesis if the corresponding
test statistics exceed certain critical values, which have to be determined from the distributions of Λ
and R under the null hypothesis and from the significance level of the tests. For this, the following
theorem is useful.

Theorem 1. For testing null hypothesis (5), Λ and R, given by Formulas (6) and (7), have single null
distributions; i.e., under the null hypothesis, the distributions of both test statistics do not depend on the
specific parameters.

Proof. Λ and R depend on the data only through the ratios

V(k)
j =

∑k̃∈Ijl
T(k̃)

j

T(k)
j

, k ∈ Ijl , 1 ≤ l ≤ qj , 1 ≤ j ≤ r ,

with independent statistics −T(k)
j ∼ Γ(sk, 1/α

(k)
j ), 1 ≤ j ≤ r, 1 ≤ k ≤ m. Evidently, V(k)

j , 1 ≤ j ≤ r,

1 ≤ k ≤ m, are, in turn, independent. Moreover, under H0, the statistics T(k̃)
j , k̃ ∈ Ijl , have a common

scale parameter for 1 ≤ l ≤ qj and 1 ≤ j ≤ r, which implies that the distribution of V(k)
j is free of α for

1 ≤ j ≤ r and 1 ≤ k ≤ m. This yields the assertion.

As a consequence of Theorem 1, the exact critical values for Λ and R subject to a desired
significance level can be obtained via Monte Carlo simulation by independently sampling from gamma
distributions with scale parameters all equal to 1. For m = 2 systems, small sample sizes s1 ≤ s2, and
number p = |{j ∈ {1, . . . , r} : qj = 1}| ∈ {1, . . . , 4} of pairs with matching model parameters under
the null hypothesis, critical values are shown in Tables 2 and 3 for a significance level of 5%. Note
that these values do not depend on nk, F(k), k = 1, 2, or on r, and may, in particular, be used for a full
statistical comparison of two arbitrary (ni − r + 1)-out-of-ni systems, i = 1, 2, with r ∈ {1, . . . , 4}.
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Table 2. Exact critical values for Λ when testing for null hypothesis (5) with m = 2, p ∈ {1, . . . , 4},
s1 ∈ {1, . . . , 10}, s2 ∈ {s1, . . . , 10}, and a significance level of 5% (simulation size per value: 2× 107).

p s1\ s2 1 2 3 4 5 6 7 8 9 10

1 1 4.66 4.50 4.45 4.44 4.43 4.42 4.42 4.42 4.41 4.41
2 4.30 4.23 4.20 4.18 4.17 4.17 4.16 4.16 4.16
3 4.15 4.12 4.10 4.08 4.08 4.07 4.07 4.06
4 4.08 4.05 4.04 4.03 4.02 4.02 4.02
5 4.03 4.02 4.01 4.00 3.99 3.99
6 4.00 3.99 3.98 3.98 3.97
7 3.98 3.97 3.96 3.96
8 3.96 3.96 3.95
9 3.95 3.94
10 3.94

2 1 7.22 6.99 6.92 6.90 6.88 6.88 6.87 6.87 6.86 6.86
2 6.69 6.59 6.55 6.52 6.51 6.49 6.49 6.49 6.48
3 6.47 6.42 6.38 6.37 6.36 6.35 6.34 6.34
4 6.36 6.32 6.30 6.28 6.28 6.27 6.26
5 6.28 6.26 6.24 6.23 6.23 6.22
6 6.24 6.22 6.21 6.19 6.19
7 6.20 6.19 6.18 6.17
8 6.18 6.16 6.16
9 6.16 6.15
10 6.14

3 1 9.41 9.11 9.02 8.99 8.97 8.96 8.95 8.95 8.94 8.94
2 8.72 8.59 8.53 8.50 8.48 8.47 8.46 8.45 8.45
3 8.44 8.37 8.33 8.31 8.29 8.28 8.27 8.26
4 8.29 8.24 8.22 8.20 8.18 8.18 8.17
5 8.20 8.17 8.15 8.13 8.12 8.11
6 8.13 8.11 8.10 8.08 8.08
7 8.09 8.08 8.06 8.05
8 8.05 8.04 8.04
9 8.03 8.02
10 8.01

4 1 11.43 11.07 10.96 10.92 10.89 10.88 10.87 10.86 10.86 10.86
2 10.59 10.43 10.36 10.32 10.30 10.28 10.27 10.26 10.26
3 10.25 10.16 10.11 10.08 10.06 10.05 10.04 10.03
4 10.06 10.01 9.98 9.96 9.94 9.93 9.92
5 9.95 9.91 9.89 9.87 9.86 9.85
6 9.88 9.85 9.83 9.82 9.80
7 9.82 9.81 9.79 9.78
8 9.78 9.77 9.75
9 9.75 9.74
10 9.72
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Table 3. Exact critical values for R when testing for null hypothesis (5) with m = 2, p ∈ {1, . . . , 4},
s1 ∈ {1, . . . , 10}, s2 ∈ {s1, . . . , 10}, and a significance level of 5% (simulation size per value: 2× 107).

p s1\ s2 1 2 3 4 5 6 7 8 9 10

1 1 1.80 2.65 3.11 3.34 3.48 3.58 3.64 3.69 3.73 3.76
2 2.63 2.77 2.86 3.01 3.13 3.22 3.28 3.33 3.38
3 3.00 3.08 3.12 3.15 3.17 3.19 3.21 3.23
4 3.19 3.25 3.28 3.30 3.32 3.33 3.34
5 3.32 3.36 3.38 3.40 3.41 3.42
6 3.40 3.43 3.45 3.46 3.47
7 3.46 3.49 3.50 3.51
8 3.51 3.53 3.54
9 3.54 3.56
10 3.58

2 1 2.87 4.17 5.13 5.71 6.09 6.36 6.56 6.70 6.82 6.92
2 3.88 4.37 4.79 5.13 5.39 5.59 5.75 5.87 5.98
3 4.47 4.68 4.88 5.06 5.21 5.34 5.45 5.55
4 4.81 4.93 5.04 5.14 5.22 5.30 5.38
5 5.02 5.11 5.18 5.24 5.30 5.35
6 5.17 5.24 5.28 5.33 5.37
7 5.28 5.33 5.37 5.41
8 5.37 5.40 5.43
9 5.43 5.47
10 5.49

3 1 3.81 5.36 6.66 7.51 8.08 8.50 8.81 9.04 9.24 9.40
2 5.14 5.73 6.32 6.79 7.16 7.45 7.67 7.87 8.02
3 5.82 6.12 6.42 6.69 6.92 7.12 7.28 7.43
4 6.24 6.41 6.59 6.76 6.90 7.04 7.16
5 6.52 6.63 6.75 6.86 6.96 7.05
6 6.71 6.80 6.88 6.96 7.03
7 6.86 6.92 6.98 7.04
8 6.97 7.02 7.06
9 7.06 7.10
10 7.13

4 1 4.75 6.46 8.01 9.07 9.80 10.35 10.75 11.08 11.35 11.55
2 6.32 7.00 7.70 8.28 8.72 9.09 9.38 9.62 9.83
3 7.11 7.47 7.84 8.17 8.46 8.71 8.92 9.10
4 7.60 7.81 8.03 8.25 8.43 8.61 8.75
5 7.92 8.06 8.21 8.36 8.49 8.60
6 8.15 8.26 8.36 8.46 8.56
7 8.32 8.40 8.48 8.56
8 8.46 8.52 8.58
9 8.56 8.61
10 8.65

3.2. Asymptotic Tests

We address asymptotic results for m = 2 systems and null hypothesis

H0 : α
(1)
j = α

(2)
j , j ∈ J , (8)
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for some nonempty index set J = {j1, . . . , jp} ⊆ {1, . . . , r}, in the case of which Formulas (6) and (7)
simplify to

Λ = 2 ∑
j∈J

s1 log

 s1

s1 + s2

T(1)
j + T(2)

j

T(1)
j

+ s2 log

 s2

s1 + s2

T(1)
j + T(2)

j

T(2)
j


= 2 ∑

j∈J

[
s1 log

(
s1

s1 + s2
(1 + 1/Qj)

)
+ s2 log

(
s2

s1 + s2
(1 + Qj)

)]
(9)

and R = ∑
j∈J

 1
s1

(s1 + s2)
T(1)

j

T(1)
j + T(2)

j

− s1

2

+
1
s2

(s1 + s2)
T(2)

j

T(1)
j + T(2)

j

− s2

2


= ∑
j∈J

 1
s1

 s2T(1)
j

T(1)
j + T(2)

j

−
s1T(2)

j

T(1)
j + T(2)

j

2

+
1
s2

 s1T(2)
j

T(1)
j + T(2)

j

−
s2T(1)

j

T(1)
j + T(2)

j

2


= ∑
j∈J

(
1
s1

+
1
s2

)( s2Qj − s1

Qj + 1

)2

, (10)

where Qj = T(1)
j /T(2)

j , j ∈ J, are independent statistics. Note that for p = 1 and s1 = s2, the
likelihood-ratio test and the Rao score test are equivalent, since then

(1 + 1/Qj1)(1 + Qj1) =
(T(1)

j1
+ T(2)

j1
)2

T(1)
j1

T(2)
j1

and

(
Qj1 − 1
Qj1 + 1

)2

= 1− 4

 (T(1)
j1

+ T(2)
j1

)2

T(1)
j1

T(2)
j1

−1

,

and, hence, Λ and R are both strictly monotone functions of statistic (T(1)
j1

+ T(2)
j1

)2/(T(1)
j1

T(2)
j1

).
As an overall assumption in this section, let s1/(s1 + s2)→ a ∈ (0, 1) when the total sample size

increases. Then, by the strong law of large numbers,

Qj →
a

1− a

α
(2)
j

α
(1)
j

almost surely (a.s.) , j ∈ J . (11)

Moreover, the central limit theorem yields thatT(1)
j1

+ s1/α
(1)
j1

√
s1/α

(1)
j1

, . . . ,
T(1)

jp
+ s1/α

(1)
jp

√
s1/α

(1)
jp

,
T(2)

j1
+ s2/α

(2)
j1

√
s2/α

(2)
j1

, . . . ,
T(2)

jp
+ s2/α

(2)
jp

√
s2/α

(2)
jp

 d−→ N2p(0, I2p) , (12)

where Ik is the unity (or identity) matrix in Rk×k, Nk(µ, Σ) denotes the k-dimensional normal

distribution with mean µ ∈ Rk and positive definite covariance matrix Σ ∈ Rk×k, and d→ means
convergence in distribution.

Lemma 1. Under null hypothesis (8),

1√
s1

(
s2Qj1 − s1, . . . , s2Qjp − s1

)
d−→ Np(0, Ip/(1− a)) .
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Proof. Since Qj1 , . . . , Qjp are independent, it is sufficient to show that, under H0, (s2Qj − s1)/
√

s1
d→

N1(0, 1/(1− a)) for j ∈ J. Let j ∈ J and α
(1)
j = α

(2)
j = αj, say. Then, we have

s2Qj − s1√
s1

=
T(1)

j /
√

s1 −
√

s1T(2)
j /s2

T(2)
j /s2

=
(T(1)

j + s1/αj)/(
√

s1/αj)−
√

s1/s2(T
(2)
j + s2/αj)/(

√
s2/αj)

αjT
(2)
j /s2

.

Since s1/s2 → a/(1− a) and αjT
(2)
j /s2 → 1 a.s. by the strong law of large numbers, Formula (12)

along with the multivariate Slutsky theorem (see, e.g., Reference [25], Theorem 3.4.3) then yield
the assertion.

Theorem 2. Under null hypothesis (8), Λ and R, given by Formulas (9) and (10), are asymptotically
χ2(p)-distributed, i.e., chi-square-distributed with p degrees of freedom.

Proof. Since Qj1 , . . . , Qjp are independent, it is sufficient to show that, under H0, any term of the sum
in Formulas (9) and (10), respectively, is asymptotically chi-square-distributed with one degree of
freedom. The assertion then follows by application of the continuous mapping theorem (see, e.g.,
Reference [26], Theorem 1.10). To this end, let H0 be true and j ∈ J. Moreover, let A = s2Qj − s1 to
simplify notation. From Taylor’s theorem, we have for every x > 0 the identity

2 log(x) = (x− 1)[2− (x− 1)] +
2
3

(
x− 1

ζ

)3
,

where ζ lies in the interval with boundary points 1 and x. Application to both logarithmic arguments
in Formula (9) yields

2s1 log
(

s1

s1 + s2
(1 + 1/Qj)

)
+ 2s2 log

(
s2

s1 + s2
(1 + Qj)

)

=
s2 A

s1 + s2

(
2− A

s1 + s2

)
−

s1 A/Qj

s1 + s2

(
2 +

A/Qj

s1 + s2

)
+ B

=
A/Qj

s1 + s2

(
2s2Qj −

s2 AQj

s1 + s2
− 2s1 −

s1 A/Qj

s1 + s2

)
+ B

=
A2/Qj

s1 + s2

(
2−

s2Qj

s1 + s2
−

s1/Qj

s1 + s2

)
+ B (13)

with

B =
2
3

(
A

s1 + s2

)3
(

1
ζ3

2
− 1

ζ3
1Q3

j

)
,

where ζ1 and ζ2 lie in the interval with boundary points 1 and s1(1 + 1/Qj)/(s1 + s2), respectively

s2(1 + Qj)/(s1 + s2). By Formula (11) with α
(1)
j = α

(2)
j , the term in brackets in Formula (13) as well as

ζ1 and ζ2 converge to 1 a.s.. Since

A
s1 + s2

=

(
A√
s1

)
1√
s1

s1

s1 + s2
,
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Lemma 1 and Formula (11), together with Slutsky’s theorem, then yield that B converges to 0 in
distribution, which implies this convergence in probability, and, moreover,

A2/Qj

s1 + s2
=

(
A√
s1

)2 s1/Qj

s1 + s2

d−→ χ2(1) .

Application of Slutsky’s theorem to Formula (13), twice, then yields the assertion for the
likelihood-ratio statistic.

To show the assertion for the Rao score statistic, we rewrite the terms in Formula (10) as

(
1
s1

+
1
s2

)(
A

Qj + 1

)2

=

(
A√
s1

)2
 s1 + s2

s2

(
1

Qj + 1

)2
 .

By Formula (11), the term in square brackets converges to 1− a a.s.. Application of Lemma 1 and
Slutsky’s theorem, again, then completes the proof.

4. Testing for Equal Baseline-Distribution Parameters

We assume to have the sample situation as introduced at the beginning of Section 3 with the
difference that model parameters α

(k)
j , 1 ≤ j ≤ r, and 1 ≤ k ≤ m are known, and parameters of the

baseline cdfs F(1), . . . , F(m) are unknown. More precisely, for k ∈ {1, . . . , m}, let baseline cdf in sample
k be of the form

F(k)(x) = 1− exp{−σk gk(x)} , x ≥ 0 , (14)

for some unknown positive scale parameter σk and a known increasing function gk : [0, ∞)→ [0, ∞)

with gk(0) = 0 and limx→∞ gk(x) = ∞, which is differentiable on (0, ∞); cf. References [7,14,27].
As two examples, choices gk(x) = x and gk(x) = log(x + 1) for x ≥ 0 correspond to an exponential
and a Pareto baseline distribution, respectively. Hence, the uncertainty of the model is totally captured
within the vector σ = (σ1, . . . , σm) of baseline-distribution parameters. Here, the joint density function
of X(k)

i , 1 ≤ i ≤ sk, 1 ≤ k ≤ m, can be written as

fσ(x) = exp

{
m

∑
k=1

σk T̃(k)(x) + r
m

∑
k=1

sk log σk

}
h̃(x) ,

where, for 1 ≤ k ≤ m,

T̃(k)(x) = −
r

∑
j=1

(nk − j + 1) α
(k)
j

sk

∑
i=1

(gk(x(k)ij )− gk(x(k)i,j−1)) ,

and

h̃(x) =
m

∏
k=1

(
nk!

(nk − r)!

)sk r

∏
j=1

(
α
(k)
j

)sk
sk

∏
i=1

g′k(x(k)ij )

for x = (x(1)1 , . . . , x(1)s1 , . . . , x(m)
1 , . . . , x(m)

sm ) with x(k)i = (x(k)i1 , . . . , x(k)ir ) ∈ XF(k) , 1 ≤ i ≤ sk, 1 ≤ k ≤ m
(cf. Formula (3)). Statistics T̃(k), 1 ≤ k ≤ m, are independent, with −T̃(k) ∼ Γ(rsk, 1/σk) for 1 ≤ k ≤ m.
Moreover, for 1 ≤ k ≤ m, the MLE of σk is given by

σ̂k = − rsk

T̃(k)
,

as analysis of the first two derivatives of the corresponding log-likelihood function shows. In the
following, let σ̂ = (σ̂1, . . . , σ̂m).
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4.1. Exact Tests

Let I1, . . . , Iq with q < m be nonempty index sets forming a partition of {1, . . . , m}. Equation (4)
can be rewritten as

fσ(x) = exp

{
q

∑
l=1

∑
k∈Il

σk T̃(k)(x) + r
q

∑
l=1

∑
k∈Il

sk log σk

}
h̃(x) .

We consider the test problem with null hypothesis

H0 : σk = σk̃ , k, k̃ ∈ Il , 1 ≤ l ≤ q , (15)

and develop the corresponding likelihood-ratio test and Rao score test as in Section 3.1. To derive the
MLE of σk, 1 ≤ k ≤ m, under H0, let τl be any index in Il for 1 ≤ l ≤ q. Then, the aim is to maximize
the term

exp

{
q

∑
l=1

στl ∑
k∈Il

T̃(k)(x) + r
q

∑
l=1

log στl ∑
k∈Il

sk

}
h̃(x)

wrt στ1 , . . . , στq , the maximum of which is attained at

σ̃τl = −
r ∑k∈Il

sk

∑k∈Il
T̃(k)

, 1 ≤ l ≤ q .

Hence, the MLE of σk, 1 ≤ k ≤ m, under H0 is given by

σ̃k = σ̃τl , k ∈ Il .

Proceeding along the lines in Section 3.1, the likelihood-ratio statistic and Rao score statistic for
testing null hypothesis (15) turn out to be

Λ̃ = 2r
q

∑
l=1

∑
k∈Il

sk log

 sk

∑k̃∈Il
sk̃

∑k̃∈Il
T̃(k̃)

T̃(k)

 (16)

R̃ = r
q

∑
l=1

∑
k∈Il

sk

(
∑k̃∈Il

sk̃

sk

T̃(k)

∑k̃∈Il
T̃(k̃)
− 1

)2

, (17)

Theorem 3. For testing null hypothesis (15), Λ̃ and R̃, given by Formulas (16) and (17), have single null
distributions (cf. Theorem 1).

Proof. The assertion can be shown by using similar arguments as in the proof of Theorem 1.

Theorem 3 allows for computing exact critical values for Λ̃ and R̃, subject to a desired significance
level, by using Monte Carlo simulations and independently sampling from gamma distributions with
scale parameters all equal to 1. For m = 2 systems, small sample sizes s1 ≤ s2, and r ∈ {1, . . . , 4},
Tables 4 and 5 show such critical values for a significance level of 5%. Note that these values depend
neither on nk or gk, k = 1, 2, nor on prespecified model parameters α

(k)
j , 1 ≤ j ≤ r, 1 ≤ k ≤ m.
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Table 4. Exact critical values for Λ̃ when testing for null hypothesis (15) with m = 2, r ∈ {1, . . . , 4},
s1 ∈ {1, . . . , 10}, s2 ∈ {s1, . . . , 10}, and a significance level of 5% (simulation size per value: 2× 107).

r s1\ s2 1 2 3 4 5 6 7 8 9 10

1 1 4.66 4.50 4.45 4.44 4.43 4.42 4.42 4.42 4.42 4.41
2 4.30 4.23 4.20 4.18 4.17 4.17 4.17 4.16 4.16
3 4.16 4.11 4.10 4.09 4.08 4.07 4.07 4.07
4 4.08 4.06 4.04 4.03 4.03 4.02 4.02
5 4.03 4.02 4.00 4.00 3.99 3.99
6 4.00 3.99 3.98 3.97 3.97
7 3.98 3.97 3.96 3.96
8 3.96 3.95 3.95
9 3.95 3.94

10 3.94

2 1 4.30 4.20 4.18 4.16 4.16 4.16 4.16 4.16 4.15 4.15
2 4.08 4.04 4.03 4.02 4.01 4.01 4.01 4.01 4.01
3 4.00 3.98 3.97 3.96 3.96 3.96 3.96 3.95
4 3.96 3.95 3.95 3.94 3.94 3.93 3.93
5 3.94 3.93 3.93 3.92 3.92 3.92
6 3.92 3.91 3.91 3.91 3.91
7 3.91 3.91 3.90 3.90
8 3.90 3.90 3.89
9 3.89 3.89

10 3.89

3 1 4.15 4.08 4.07 4.06 4.06 4.06 4.05 4.05 4.05 4.05
2 4.00 3.97 3.96 3.96 3.96 3.95 3.95 3.95 3.96
3 3.95 3.94 3.93 3.92 3.92 3.92 3.92 3.92
4 3.92 3.91 3.91 3.91 3.90 3.90 3.90
5 3.91 3.90 3.90 3.90 3.89 3.89
6 3.89 3.89 3.89 3.88 3.89
7 3.89 3.89 3.88 3.88
8 3.88 3.88 3.88
9 3.88 3.88

10 3.88

4 1 4.08 4.03 4.01 4.01 4.00 4.00 4.00 4.00 4.00 4.00
2 3.96 3.94 3.94 3.93 3.93 3.92 3.93 3.93 3.92
3 3.92 3.91 3.91 3.90 3.90 3.90 3.90 3.90
4 3.90 3.90 3.89 3.89 3.89 3.89 3.89
5 3.89 3.89 3.89 3.88 3.88 3.88
6 3.88 3.88 3.88 3.88 3.87
7 3.88 3.87 3.87 3.87
8 3.87 3.87 3.87
9 3.87 3.87

10 3.87
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Table 5. Exact critical values for R̃ when testing for null hypothesis (15) with m = 2, r ∈ {1, . . . , 4},
s1 ∈ {1, . . . , 10}, s2 ∈ {s1, . . . , 10}, and a significance level of 5% (simulation size per value: 2× 107).

r s1\ s2 1 2 3 4 5 6 7 8 9 10

1 1 1.81 2.65 3.11 3.34 3.48 3.58 3.64 3.68 3.73 3.75
2 2.63 2.77 2.86 3.00 3.13 3.22 3.28 3.34 3.38
3 3.00 3.08 3.12 3.15 3.17 3.19 3.21 3.23
4 3.20 3.25 3.28 3.30 3.32 3.32 3.34
5 3.32 3.35 3.38 3.40 3.41 3.42
6 3.40 3.43 3.45 3.46 3.47
7 3.46 3.49 3.50 3.51
8 3.51 3.53 3.54
9 3.55 3.56

10 3.57

2 1 2.63 2.86 3.13 3.28 3.37 3.44 3.49 3.52 3.55 3.58
2 3.20 3.28 3.32 3.33 3.35 3.36 3.37 3.38 3.39
3 3.40 3.45 3.47 3.49 3.49 3.50 3.51 3.51
4 3.51 3.54 3.55 3.57 3.57 3.58 3.58
5 3.57 3.60 3.61 3.62 3.62 3.63
6 3.62 3.63 3.64 3.65 3.65
7 3.65 3.66 3.67 3.67
8 3.67 3.68 3.69
9 3.69 3.70

10 3.71

3 1 3.00 3.15 3.21 3.26 3.31 3.34 3.39 3.42 3.44 3.46
2 3.40 3.47 3.49 3.50 3.51 3.51 3.52 3.51 3.52
3 3.54 3.58 3.59 3.61 3.61 3.61 3.61 3.62
4 3.62 3.64 3.65 3.66 3.66 3.66 3.67
5 3.66 3.68 3.68 3.69 3.69 3.70
6 3.69 3.70 3.71 3.71 3.72
7 3.71 3.72 3.72 3.73
8 3.73 3.74 3.74
9 3.74 3.75

10 3.75

4 1 3.19 3.32 3.35 3.37 3.39 3.40 3.41 3.42 3.43 3.44
2 3.51 3.56 3.58 3.59 3.59 3.59 3.60 3.59 3.60
3 3.62 3.65 3.66 3.67 3.66 3.67 3.67 3.67
4 3.67 3.69 3.70 3.70 3.71 3.71 3.71
5 3.71 3.72 3.72 3.73 3.73 3.73
6 3.73 3.73 3.74 3.75 3.75
7 3.74 3.75 3.76 3.76
8 3.76 3.76 3.76
9 3.76 3.77

10 3.78

4.2. Asymptotic Tests

Finally, we provide asymptotic results for m = 2 systems and null hypothesis

H0 : σ1 = σ2 . (18)

From Formulas (16) and (17), the corresponding test statistics are seen to be

Λ̃ = 2r
[

s1 log
(

s1

s1 + s2
(1 + 1/Q̃)

)
+ s2 log

(
s2

s1 + s2
(1 + Q̃)

)]
(19)

and R̃ = r
(

1
s1

+
1
s2

)(
s2Q̃− s1

Q̃ + 1

)2

(20)
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with statistic Q̃ = T̃(1)/T̃(2); cf. Formulas (9) and (10). Note that for s1 = s2, the likelihood-ratio test
and the Rao score test are equivalent, since Λ̃ and R̃ are both strictly monotone functions of statistic
(T̃(1) + T̃(2))2/(T̃(1)T̃(2)); see also Section 3.2.

Again, we assume that s1/(s1 + s2) → a ∈ (0, 1) when the total sample size tends to infinity.
Then, by the strong law of large numbers and the central limit theorem,

Q̃→ a
1− a

σ2

σ1
a.s. , and

(
T̃(1) + rs1/σ1√

rs1/σ1
,

T̃(2) + rs2/σ2√
rs2/σ2

)
d−→ N2(0, I2) ,

which implies that, under null hypothesis (18),√
r
s1
(s2Q̃− s1)

d−→ N1(0, 1/(1− a))

(cf. Lemma 1 and its proof). From this, the following theorem can be shown in analogy to the
proof of Theorem 2.

Theorem 4. Under null hypothesis (18), Λ̃ and R̃, given by Formulas (19) and (20), are asymptotically
χ2(1)-distributed.

5. Power Study

We perform a simulation study to investigate and compare the power of the tests derived in
Sections 3 and 4, respectively.

For k = 1, 2, let sk vectors of r component failure times of some (nk − r + 1)-out-of-nk system be
observed, where n1, n2 ≥ r are arbitrary integers. In sample k ∈ {1, 2}, any vector of component failure
times is described by the first r (≤ nk) SOSs based on the cdf F(k) and model parameters α

(k)
1 , . . . , α

(k)
nk .

Moreover, all s1 + s2 vectors are assumed to be independent.
First, let F(1) and F(2) be known (but arbitrary), such that the uncertainty of the model is captured

within α
(k)
1 , . . . , α

(k)
r , k = 1, 2, and let r = 4. To decide whether both systems are subject to the same

load-sharing effects, we consider null hypothesis

H0 : α
(1)
j = α

(2)
j , 1 ≤ j ≤ 4 , (21)

and apply the exact and asymptotic likelihood-ratio test and Rao score test of Section 3. For a
significance level of 5%, different samples sizes s1 < s2, and three vectors of model parameters
describing either no, a linear, or an even faster increase in stress upon failures, Table 6 shows numerical
power values at the corresponding pairs.

It is seen from Table 6 that the power of all tests increases when sample sizes increase or the
vectors of the model parameters differ more. For small sample sizes, the exact Rao score test turns out
to be biased, whereas the exact likelihood-ratio test seems to be unbiased (at least over the alternatives
considered). Here, a test is said to be unbiased if its power function, defined on the set of all alternatives,
is bounded from below by the significance level of the test; otherwise, the test is called biased. None
of the exact tests dominates the other in terms of power. While the power of the likelihood-ratio
tests seems to be almost unaffected when sample sizes are interchanged, the Rao score tests have
greater power when more observations are recorded from the system with larger load-sharing effects.
Moreover, the table indicates that the asymptotic Rao score test is conservative, i.e., its actual level
is smaller than the nominal one (of 5%), which implies that the test is biased; on the other hand, the
asymptotic likelihood-ratio test seems to be nonconservative and unbiased. Somewhat surprisingly, the
actual levels of both asymptotic tests are already close to the nominal one for moderate sample sizes.
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Table 6. Power in % at alternatives α(1) = (α
(1)
1 , . . . , α

(1)
4 ) and α(2) = (α

(2)
1 , . . . , α

(2)
4 ) of the exact

and asymptotic likelihood-ratio test and Rao score test when testing for null hypothesis (21) with
samples sizes s1, s2 and a significance level of 5% (simulation size per value: 106). The last two columns
correspond to the asymptotic tests, where numbers in brackets additionally show the actual levels.

α(1) α(2) s1 s2 Λ R Λas Ras

(1.0, 1.0, 1.0, 1.0) (1.1, 1.2, 1.3, 1.4) 3 5 6.7 10.0 8.4 (6.4) 4.6 (1.9)
13 15 13.5 14.9 14.3 (5.4) 12.1 (3.7)
21 23 19.8 20.7 20.3 (5.2) 18.5 (4.2)

(1.1, 1.2, 1.3, 1.4) (1.0, 1.0, 1.0, 1.0) 3 5 6.6 3.5 8.3 1.1
13 15 13.2 12.0 14.0 9.6
21 23 19.6 18.8 20.2 16.7

(1.0, 1.0, 1.0, 1.0) (1.1, 1.3, 1.6, 2.0) 3 5 12.0 18.8 14.4 10.1
13 15 41.1 43.6 42.3 38.8
21 23 62.5 63.7 63.2 60.8

(1.1, 1.3, 1.6, 2.0) (1.0, 1.0, 1.0, 1.0) 3 5 10.9 4.4 13.3 1.3
13 15 40.3 37.7 41.4 32.7
21 23 62.0 60.7 62.7 57.6

(1.1, 1.2, 1.3, 1.4) (1.1, 1.3, 1.6, 2.0) 3 5 6.3 8.8 7.9 3.9
13 15 11.5 12.5 12.2 10.0
21 23 16.2 16.8 16.7 14.9

(1.1, 1.3, 1.6, 2.0) (1.1, 1.2, 1.3, 1.4) 3 5 6.3 4.0 7.8 1.4
13 15 11.4 10.4 12.0 8.1
21 23 16.1 15.4 16.6 13.6

Now, suppose that model parameters α
(k)
1 , . . . , α

(k)
r , k = 1, 2, are known (but arbitrary), and let

baseline cdfs F(1) and F(2) be as stated in Formula (14) with unknown parameters σ1, σ2, and known
(but arbitrary) functions g1, g2. To check for common baseline-distribution parameters, we consider
null hypothesis

H0 : σ1 = σ2 , (22)

and apply the exact and asymptotic likelihood-ratio test and Rao score test of Section 4. For a
significance level of 5% and different values of s1 < s2 and r, Table 7 shows numerical power values at
several alternatives.

From Table 7, it is found that the power of all tests increases with increasing sample sizes, with
increasing r, or with growing distance |σ2− σ1| of the baseline-distribution parameters. Again, the exact
and asymptotic Rao score tests turn out to be biased for small sample sizes, and the likelihood-ratio
tests seem to be unbiased (over the considered alternatives). None of the exact tests uniformly has
greater power than the other. Interchanging sample sizes has an impact on the power of the Rao score
tests at a given alternative, whereas the power of the likelihood-ratio tests seems to be nearly invariant.
The actual levels of the asymptotic tests are all close to the nominal one (of 5%), where those of the
likelihood-ratio test slightly exceed 5% while the Rao score test is conservative.
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Table 7. Power in % at alternatives σ = (σ1, σ2) of the exact and asymptotic likelihood-ratio test and
Rao score test when testing for null hypothesis (22) with samples sizes s1, s2 and a significance level of
5% (simulation size per value: 106). The last two columns correspond to the asymptotic tests, where
the numbers in brackets additionally show the actual levels.

r σ s1 s2 Λ̃ R̃ Λ̃as R̃as

2 (0.9, 1.1) 3 5 6.6 8.2 7.0 (5.4) 6.7 (3.8)
13 15 11.4 11.9 11.7 (5.1) 11.4 (4.7)
21 23 15.4 15.7 15.5 (5.1) 15.3 (4.8)

(0.8, 1.2) 3 5 11.9 15.3 12.6 13.1
13 15 32.2 33.1 32.6 32.3
21 23 47.2 47.7 47.4 47.1

(1.1, 0.9) 3 5 6.5 4.9 7.0 3.5
13 15 11.3 10.8 11.5 10.4
21 23 15.4 15.1 15.5 14.7

(1.2, 0.8) 3 5 11.2 7.7 11.9 5.6
13 15 31.8 30.8 32.2 30.0
21 23 46.9 46.4 47.1 45.7

3 (0.9, 1.1) 3 5 7.5 9.1 7.8 (5.3) 8.0 (4.2)
13 15 14.9 15.4 15.0 (5.1) 14.9 (4.8)
21 23 21.0 21.3 21.0 (5.1) 20.9 (4.9)

(0.8, 1.2) 3 5 15.8 19.1 16.3 17.4
13 15 45.5 46.3 45.7 45.6
21 23 64.1 64.5 64.2 64.0

(1.1, 0.9) 3 5 7.4 5.8 7.7 4.8
13 15 14.9 14.4 15.0 14.0
21 23 20.9 20.6 21.0 20.2

(1.2, 0.8) 3 5 15.0 11.5 15.4 9.7
13 15 45.1 44.3 45.3 43.5
21 23 63.9 63.5 63.9 63.0

4 (0.9, 1.1) 3 5 8.4 10.0 8.7 (5.2) 9.2 (4.4)
13 15 18.2 18.7 18.5 (5.1) 18.5 (4.9)
21 23 26.4 26.7 26.5 (5.0) 26.4 (4.9)

(0.8, 1.2) 3 5 19.6 22.9 20.1 21.6
13 15 56.6 57.3 57.0 57.1
21 23 76.5 76.7 76.5 76.5

(1.1, 0.9) 3 5 8.2 6.6 8.5 5.9
13 15 18.1 17.6 18.4 17.4
21 23 26.3 25.9 26.3 25.6

(1.2, 0.8) 3 5 18.6 15.1 19.1 13.7
13 15 56.3 55.5 56.7 55.3
21 23 76.3 76.0 76.4 75.7

6. Conclusions

In a setup of multiple samples of sequential order statistics modelling the component lifetimes
of possibly differently structured k-out-of-n systems, we provided exact and asymptotic statistical
tests with flexible hypotheses to check for common load-sharing parameters as well as for common
baseline-distribution parameters. The corresponding test statistics are shown to have single null
distributions, i.e., they each have only one distribution under all parameters specified by the null
hypothesis, such that exact critical values subject to a desired significance level are readily obtained by
using Monte Carlo simulations. The proposed tests can also be used to decide whether a meta-analysis
of the underlying data is reasonable. If, based on some dataset, the null hypothesis of common
load-sharing parameters (or common baseline-distribution parameters) is not rejected, the performance
of statistical procedures as, for instance, the accuracy of estimators, may be increased when applied to
the whole dataset; this is, in particular, relevant for small sample sizes that are prevalent in reliability.
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Finally, the derived results might also be useful in other reliability applications. On the one hand,
by appropriately setting the model parameters, the presented tests may be applied to check for identical
scale parameters of underlying lifetime distributions in differently designed progressively type-II
censored lifetime experiments ( see, e.g., Reference [28]). On the other hand, by choosing a standard
exponential baseline distribution, we may test for equality of parameters associated with stress levels
in multiple repeated type-II censored exponential step-stress experiments (see Reference [29]).
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Abbreviations

a.s. almost surely
cdf cumulative distribution function
iid independent and identically distributed
MLE maximum-likelihood estimator
SOS sequential order statistic
wrt with respect to

References

1. Kamps, U. A concept of generalized order statistics. J. Stat. Plan. Infer. 1995, 48, 1–23. [CrossRef]
2. Kamps, U. A Concept of Generalized Order Statistics; Teubner: Stuttgart, Germany, 1995;

ISBN 978-3-519-02736-2.
3. Balakrishnan, N.; Beutner, E.; Kamps, U. Order restricted inference for sequential k-out-of-n systems.

J. Multivar. Anal. 2008, 99, 1489–1502. [CrossRef]
4. Balakrishnan, N.; Beutner, E.; Kamps, U. Modeling parameters of a load-sharing system through link

functions in sequential order statistics models and associated inference. IEEE Trans. Rel. 2011, 60, 605–611.
[CrossRef]

5. Bedbur, S.; Beutner, E.; Kamps, U. Generalized order statistics: an exponential family in model parameters.
Statistics 2012, 46, 159–166. [CrossRef]

6. Beutner, E.; Kamps, U. Order restricted statistical inference for scale parameters based on sequential order
statistics. J. Stat. Plan. Infer. 2009, 139, 2963–2969. [CrossRef]

7. Cramer, E.; Kamps, U. Sequential order statistics and k-out-of-n systems with sequentially adjusted failure
rates. Ann. Inst. Stat. Math. 1996, 48, 535–549. [CrossRef]

8. Cramer, E.; Kamps, U. Estimation with sequential order statistics from exponential distributions. Ann. Inst.
Stat. Math. 2001, 53, 307–324. [CrossRef]

9. Deshpande, J.V.; Dewan, I.; Naik-Nimbalkar, U.V. A family of distributions to model load sharing systems.
J. Stat. Plan. Infer. 2010, 140, 1441–1451. [CrossRef]

10. Sutar, S.S.; Naik-Nimbalkar, U.V. Accelerated failure time models for load sharing systems. IEEE Trans. Rel.
2014, 63, 706–714. [CrossRef]

11. Bedbur, S.; Beutner, E.; Kamps, U. Multivariate testing and model-checking for generalized order statistics
with applications. Statistics 2014, 48, 1297–1310. [CrossRef]

12. Bedbur, S.; Müller, N.; Kamps, U. Hypotheses testing for generalized order statistics with simple order
restrictions on model parameters under the alternative. Statistics 2016, 50, 775–790. [CrossRef]

13. Bedbur, S. UMPU tests based on sequential order statistics. J. Stat. Plan. Inference 2010, 140, 2520–2530.
[CrossRef]

14. Cramer, E.; Kamps, U. Sequential k-out-of-n systems. In Advances in Reliabilty; Balakrishnan, N.,
Rao, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 301–372.

15. Beutner, E. Nonparametric inference for sequential k-out-of-n systems. Ann. Inst. Stat. Math. 2008, 60,
605–626. [CrossRef]

http://dx.doi.org/10.1016/0378-3758(94)00147-N
http://dx.doi.org/10.1016/j.jmva.2008.04.014
http://dx.doi.org/10.1109/TR.2011.2161152
http://dx.doi.org/10.1080/02331888.2010.498046
http://dx.doi.org/10.1016/j.jspi.2009.01.017
http://dx.doi.org/10.1007/BF00050853
http://dx.doi.org/10.1023/A:1012470706224
http://dx.doi.org/10.1016/j.jspi.2009.12.005
http://dx.doi.org/10.1109/TR.2014.2313793
http://dx.doi.org/10.1080/02331888.2013.841696
http://dx.doi.org/10.1080/02331888.2015.1094070
http://dx.doi.org/10.1016/j.jspi.2010.03.021
http://dx.doi.org/10.1007/s10463-007-0115-7


Stats 2019, 2 88

16. Beutner, E. Nonparametric comparison of several k-out-of-n systems. In Advances in Data Analysis,
Statistics for Industry and Technology; Skiadas, C., Ed.; Birkhäuser: Boston, MA, USA, 2010; pp. 291–304;
doi:10.1007/978-0-8176-4799-5_24.

17. Beutner, E. Nonparametric model checking for k-out-of-n systems. J. Stat. Plan. Inference 2010, 140, 626–639.
[CrossRef]

18. Ahmad, A.A. On Bayesian interval prediction of future generalized order statistics using doubly censoring.
Statistics 2011, 45, 413–425. [CrossRef]

19. Al-Hussaini, E.K.; Ahmad, A.A. On Bayesian predictive distributions of generalized order statistics. Metrika
2003, 57, 165–176. [CrossRef]

20. Burkschat, M.; Kamps, U.; Kateri, M. Sequential order statistics with an order statistics prior. J. Multivar. Anal.
2010, 101, 1826–1836. [CrossRef]

21. Cramer, E.; Kamps, U. Marginal distributions of sequential and generalized order statistics. Metrika 2003, 58,
293–310. [CrossRef]

22. Hollander, M.; Peña, E.A. Dynamic reliability models with conditional proportional hazards.
Lifetime Data Anal. 1995, 1, 377–401. [CrossRef]

23. Kvam, P.H.; Peña, E.A. Estimating load-sharing properties in a dynamic reliability system. J. Am. Stat. Assoc.
2005, 100, 262–272. [CrossRef]

24. Kamps, U. Generalized Order Statistics. In Wiley StatsRef: Statistics Reference Online; Wiley: Chichester, UK,
2016; pp. 1001–1013; doi:10.1002/9781118445112.stat00832.pub2.

25. Sen, P.K.; Singer, J.M. Large Sample Methods in Statistics: An Introduction with Applications; Chapmann &
Hall/CRC: Boca Raton, FL, USA, 1993.

26. Shao, J. Mathematical Statistics; Springer: New York, NY, USA, 2003; ISBN 978-0-387-95382-3.
27. Bedbur, S.; Burkschat, M.; Kamps, U. Inference in a model of successive failures with shape-adjusted hazard

rates. Ann. Inst. Stat. Math. 2016, 68, 639–657. [CrossRef]
28. Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring: Applications to Reliability and Quality; Birkhäuser:

New York, NY, USA, 2014; ISBN 978-0-8176-4807-7.
29. Balakrishnan, N.; Kamps, U.; Kateri, M. A sequential order statistics approach to step-stress testing. Ann. Inst.

Stat. Math. 2012, 64, 303–318. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jspi.2009.08.005
http://dx.doi.org/10.1080/02331881003650123
http://dx.doi.org/10.1007/s001840200207
http://dx.doi.org/10.1016/j.jmva.2010.03.017
http://dx.doi.org/10.1007/s001840300268
http://dx.doi.org/10.1007/BF00985451
http://dx.doi.org/10.1198/016214504000000863
http://dx.doi.org/10.1007/s10463-015-0508-y
http://dx.doi.org/10.1007/s10463-010-0309-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model and Basic Properties
	Testing for Equal Load-Sharing Parameters
	Exact Tests
	Asymptotic Tests

	Testing for Equal Baseline-Distribution Parameters
	Exact Tests
	Asymptotic Tests

	Power Study
	Conclusions
	References

