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Abstract: In reliability, sequential order statistics serve as a model for the component lifetimes of
k-out-of-n systems, which are operating as long as k out of n components are operating. In contrast to
modelling with order statistics, load-sharing effects and other impacts of failures on the performance
of the remaining components may be taken into consideration. Inference for associated load-sharing
parameters, as well as for the underlying baseline distribution, is then of particular interest. In a
setup of multiple samples of sequential order statistics modelling the component lifetimes of possibly
differently structured k-out-of-n systems, we provide exact statistical tests to check for common
load-sharing or common baseline-distribution parameters. In the two-sample case, critical values for
the corresponding test statistics are tabulated for small sample sizes, and the asymptotic distributions
of the test statistics under the null hypotheses are derived. Based on a simulation study, power
comparisons are addressed. The proposed tests may be applied to detect significant differences
between systems or to decide whether a meta-analysis of the data may be conducted to increase the
performance of subsequent inferential procedures.
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1. Introduction

In reliability, the k-out-of-n system forms an important technical structure that comprises series
and parallel systems as special cases. In such a system, n components work simultaneously and may
fail over time. The system, however, is operating as long as at least k of the components are operating,
such that the (n — k4 1)-th component failure time coincides with the lifetime of the system. In a simple
model, the component lifetimes are described, say, by n non-negative, independent, and identically
distributed (iid) random variables with cumulative distribution function (cdf) F. The (n — k + 1)-th
order statistic based on F then represents the system’s lifetime. To provide a more flexible modelling
of the lifetimes of k-out-of-n systems and their components, sequential order statistics (SOSs) were
introduced in References [1,2], which allow to describe the impacts of failed components on the
residual lifetimes of the remaining components. In particular, so called load-sharing effects can be
modelled arising in systems, where all components (equally) share the total load of the system, and
every component failure is likely to increase the stress put on the surviving ones. Obviously, modelling
with order statistics is not adequate in applications with relevant impacts.

When SOSs are used as a load-sharing model for a k-out-of-n system, statistical inference for
unknown underlying quantities typically has to be performed, aiming at a good model fit. In a
proportional hazard rate setup of SOSs, the uncertainty of the model is captured within some baseline
cdf or within a finite number of positive model parameters, for which a variety of inferential results
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have been derived. Estimators of model parameters or distribution parameters of the baseline cdf
of SOSs are provided in, e.g., References [3-10]. Statistical tests for single or vectors of the model or
baseline-distribution parameters of SOSs are proposed in References [3,6,7,11-13], which, in particular,
allow for model selection in the sense of whether order statistics have to be rejected for modelling in
a given situation. More inferential results, along with the detailed model and structural properties,
can be found in Reference [14]. For nonparametric estimation and testing with SOSs, we refer to
References [15-17]. Bayesian inference for SOSs is discussed, for instance, in References [18-20].

In this paper, continuing existing work on inference with SOSs, we develop statistical tests for the
comparison of multiple k-out-of-n systems in the sense of whether they have model parameters or
baseline-distribution parameters in common. In reliability and the particular context of load-sharing
systems, sample sizes are often small going along with, e.g., low estimator accuracy. The proposed tests
may be applied, for instance, to decide for a meta-analysis, i.e., a joint analysis of the data to improve
the performance of subsequent inferential procedures, such as maximum-likelihood estimation of the
unknown parameters.

The remainder of this article is as follows. First, we introduce the SOS model and review
some basic properties (Section 2). Based on multiple samples of SOSs modelling possibly differently
structured systems, we then derive exact statistical tests to check for common load-sharing parameters
(Section 3.1) and for common baseline-distribution parameters (Section 4.1). In the particular case
of two samples, critical values for test statistics are provided for small sample sizes and, moreover,
asymptotic results are addressed (Sections 3.2 and 4.2). A simulation study is carried out to compare
the proposed tests in terms of power (Section 5), and a concluding section finally highlights the main
findings (Section 6).

2. Model and Basic Properties

SOSs were introduced in References [1,2] by means of a triangular scheme of independent random
variables and certain recursive formulas. Meanwhile, other possible definitions have been proposed in
the literature, for instance, based on independent power-function-distributed random variables (see
Reference [21]) or on counting processes (see Reference [15]; cf. References [22,23]). For our purposes
here, a likelihood approach to the model is sufficient.

Let Fy, ..., F, be absolutely continuous cdfs with F;~ (1) < --- < F;1(1) and corresponding
density functions fi, ..., fy. Ordered random variables Xj, ..., X, (defined on a probability space
(0,2, P)) are called SOSs based on Fy, . .., F, if their joint density function with respect to (wrt) the
Lebesgue measure is given by

e e 1=EE) T s
X X(xlf""x”)_n'n{1_p.] J } 1_;-“]-(9]6]'_1)

j=1 j(xj-1)

for all real numbers x; < --- < x;,, where here and in the following, xo = —oo for the sake of a simple
representation. In that case, X, ..., X;; form a Markov chain with transition probabilities

n—j+1
P(X X . _ 1—Fj(t)
( j>t| jfl—xjfl) = m , t>xj_1,

]
forj € {2,...,n}; see References [1,24]. In the distribution-theoretical sense, order statistics (based on
Fy) are included in the model and result by setting F; = - - - = F;.
When choosing
P]-:l—(l—F)"‘f, 1<j<mn, 1)
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for some absolutely continuous cdf F, which is referred to as a baseline cdf, and positive numbers
X1,...,0,, We arrive at a semiparametric SOS model, in which Fj, ..., F; have proportional hazard
rates, i.e.,

)\p’.:t)é]'}\p, 1§j§1’1.

The conditional hazard rate of Xj, given X]-_l =Xj-1, is then
/\X] I X]'_IZX]‘_1 (t) = (n - ] + 1) “j )\F(t) 4 t > xj—l ’

forj € {2,...,n}. Inaload-sharing context, model parameters ay, ap, . .. may describe increasing stress
put on surviving components in case of component failures in the following sense. All components
start working at hazard rate a1 Ar. Then, upon the j-th component failure for j = 1,2, ..., the hazard
rate of any still-operating component changes from a;Ar to ;1 Ar. An extensive account on the SOS
model, including motivational aspects, structural results, and inference, is provided by Reference [14].

When the component lifetimes of a k-out-of-n system are recorded, the data are type-II
right-censored if k > 1, such that marginal densities are naturally of some interest. Here, the marginal
density of the first r (< n) SOSs based on Fy, ..., F, is given by

S S B U S 5(C7) I A ()
f (1/'--/ r) = (7’1—7’>!]]‘—{{1—Fj(x]‘_1)} 1—1:]‘(36]‘_1), x < < x,

which, by assuming Formula (1), simplifies to

IN

e <x, (2

r o 1-F(x)) )”‘”””‘f & (%))
)

|
XX (1,00, xp) = w —, X
f (n r) (n—r)! Jg (1 — F(xj4 1—F(x)) !

where f denotes the density function of the baseline distribution; see, e.g., Reference [14]. For brevity,
let Xr = {(x1,..., %) : F‘l(O—I—) <x < <x < F‘l(l)} denote the sample space in what follows.

3. Testing for Equal Load-Sharing Parameters

For 1 < k < m, we assume to have s; observations of the first ¥ component-failure times in an
(ny —r + 1)-out-of —ny system. In sample k € {1,...,m}, failure times are described by iid vectors
ng), ... ,ng), where Xl(k) = (Xi(lk), .. .,XZ.(rk)) is distributed as the first ¥ SOSs based on a known
absolutely continuous cdf F (k) with density function f (k) and unknown model parameters agk), e ocg;)
for 1 <i < s (see Formula (2) and Table 1).

Table 1. [llustration of the sampling scheme.

sample 1 ... m
system (ny —r + 1)-out-of-n; . (nm — v+ 1)-out-of-ny,
# observed systems 51 . Sm
iid vectors X§1>, ., X£1” (independent) Xgm), . ngj)
of SOSs xM = (x,.xM)1<i<y xM = (x™, XMy 1 <i<s,
baseline cdf F() ... Fp(m)

model parameters Qe gy ay g,
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As an example, F¥) may be specified as the standard exponential distribution for all k € {1,...,m}
to assume exponential component lifetimes in all systems with varying scale parameters upon failures.

(k)

Moreover, X;7,1 < i < s, 1 < k < m, are supposed to be independent, the joint density function of

which can then be represented as
m T k k m T k
fu(x) = exp {kZ: Za](, )Tj( )(x) + kZ:lsk Zilogtx](. )} h(x), (3)
= j=

=1j=1

where, for1 <k <mand1<j<r,

Sk 1— F(k)(x@)
19(x) = (mc—j+1) }_log ({k@ ,
1-— X )

i=1 FO) (a7
and
i s r f0 ()
h) :kljl((”kf)) HHl_F()(XU )
for x = (xgl), . xg),.. ,xgm),.. ,ng:)) with x(k) = (xz(f), .. (k)) € X, 1 <i<s, 1<k <m

Here, & denotes the vector of all model parameters oc( 1< j <r,1 <k < m. Itis well known that

the statistics T]( ), 1<j<r1<k<m,are 1ndependent with —T].( )~ T (s, 1/ucj ), i.e.,, a gamma
(k)

distribution with shape parameter s; and scale parameter 1/« j isee eg. Reference [5]. Moreover, for

1 <k <mand1 <j<r, the maximum-likelihood estimator (MLE) of a](.k) is given by

al) — _ Sk

YT T 1w (4)
J

which can directly be seen by computing the first two derivatives of the log-likelihood function

corresponding to Formula (3); cf. References [5,7]. As a consequence, &](k), 1<j<r,1<k<m,

are independent and inverse-gamma-distributed. In what follows, the vector of these MLEs is denoted

by &.

3.1. Exact Tests

For1 <j <r,letIy,...,Ij; be nonempty index sets forming a partition of {1,...,m}, and let
gj < m for at least one index j € { 1,...,r}. Then, Equation (3) can be rewritten as

fa(x —exp{iZZa —I—iZZsklogtx } h(x).
j=1i=1kel j=1i=1kely

We aim at testing the null hypothesis:
k k 7 .
Ho: oY =al, kkel, 1<i<q, 1<j<r, ®)

where, here and in the following, the alternative hypothesis is the negation of the null hypothesis (in
the SOS model). Under null hypothesis (5), the j-th model parameter is assumed to be constant in
blocks, where blocks Ijl, 1<I< qj, refer to sample numbers, 1 < j < r. Figure 1 illustrates such a
situation. In the particular situation g1 = --- = g, = 1, the r model parameters are the same in all
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samples. For m =2 and q; = - - - = g» = 1, null hypothesis (5) refers to the two-sample case with s;
and s, observed systems, which then simply reads

Ho: el =af?, 1<j<r.

Note that by setting g j=m for some j € {1,...,r}, there is no assumption for model parameters

(M (m)

@, 0 under the null hypothesis.
sample

1 2 3 4 5 6 | g

1 a%l) le) le) le) le) le) 1

2 «le) «xzz) oc23) oc24) ¢x25) 0(26) 2

j 3 ocgl) ocgz) ocgs) vcgl) IX(S) 0(;6) 2

4 afll) af) af) aff) ocf) ocz(f) 3

5 aél) lxéz) ag3) ch4) och) ché) 6

Figure 1. Illustration of null hypothesis (5) for m = 6 and r = 5.

To derive the MLE of zx](k), 1<k <m,1<j<r,under Hy, let Tjj be any index in Ijl for1 <I< q;
and 1 < j <r. Then, we have to maximize expression

r 4

ro 4 ) ’
exp {Z Ea](T”) ) Tj(k)(x) + ) Eloga;T]’) ) sk} h(x)
j:1 =1 kEIj[ j:1 I=1 kEIjI

(Ti1)

wrt L 1<I< 9,1 < j < r. Analysis of the first two derivatives yields that the maximum is
attained at
5{(1'][) _ ZkGIjl Sk
j (k)
ZkEIj[ T/
k)

forl1 <l <gj and1 <j<r. Hence,theMLEofzx]( ,1<k<m,1<j<r under Hy is given by

(k) (T)
Déj = Oé]-j , ke Ijl/

and the corresponding vector of estimators is denoted by &.
Now, the likelihood-ratio statistic A = —21og(fz/ fa) for testing null hypothesis (5) is seen to be

rog &
A = ZEZZSklog —©
]71 =1 kEIjl D‘j
, (k)
r 4 s le T
o k EI/[ ]
= 2; Z Y sglog T 5 ® . (6)
]—1 =1 kEIjI kelﬂ k ]
As a competing test statistic to A, we address the Rao score statistic R = UL[F(&)] Uz

for testing null hypothesis (5), which involves the score statistic U, = d/9dalog f, and the Fisher
information matrix F (&) = E,(U,U}), where superscript t denotes transposition, and integration is
done wrt f,; see, e.g., Reference [25]. In our model, F(«) is a diagonal (mr x mr)-matrix with blocks
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diag(sk/[txgk)]z,...,sk/[zxgk)]z), 1 < k < m, since —Tj(k) ~ F(sk,l/zx](.k)), 1<j<r1<k<m,are
independent. Hence, by using Formula (4),

2 - (k)
roa a2
_ (k) | Sk j
R=2LL|\T+w|
]:1l:lkelﬂ i
ro 4 Ec](k) 2
= Ll Lo !
]:1121](6[]'1 Dé]‘
2
rJ T, 5 T
= Y Y Y5 ! ! =—1] . 7)
j=1i=1kely Sk ledﬂ T].( )

The likelihood-ratio test and the Rao score test then reject the null hypothesis if the corresponding
test statistics exceed certain critical values, which have to be determined from the distributions of A
and R under the null hypothesis and from the significance level of the tests. For this, the following
theorem is useful.

Theorem 1. For testing null hypothesis (5), A and R, given by Formulas (6) and (7), have single null
distributions; i.e., under the null hypothesis, the distributions of both test statistics do not depend on the
specific parameters.

Proof. A and R depend on the data only through the ratios
kel]'l, 1§l§q], 1§]§7’,

with independent statistics fT]-(k) ~ T(s, 1/ tx](.k)), 1<j<r1<k<m Evidently, Vj(k), 1<j<r,
1 <k < m, are, in turn, independent. Moreover, under H, the statistics T].(k), kel il have a common

scale parameter for 1 <] < q; and 1 < j < r, which implies that the distribution of Vj(k) is free of & for
1 <j<rand1 <k < m. This yields the assertion. O

As a consequence of Theorem 1, the exact critical values for A and R subject to a desired
significance level can be obtained via Monte Carlo simulation by independently sampling from gamma
distributions with scale parameters all equal to 1. For m = 2 systems, small sample sizes s; < sy, and
number p = [{j € {1,...,r} : q; = 1}| € {1,...,4} of pairs with matching model parameters under
the null hypothesis, critical values are shown in Tables 2 and 3 for a significance level of 5%. Note
that these values do not depend on #ny, F (k), k =1,2, or on r, and may, in particular, be used for a full
statistical comparison of two arbitrary (n; — r + 1)-out-of-n; systems, i = 1,2, withr € {1,...,4}.
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Table 2. Exact critical values for A when testing for null hypothesis (5) withm =2, p € {1,...,4},
s1 € {1,...,10},s5 € {s1,...,10}, and a significance level of 5% (simulation size per value: 2 x 107).

p  s1\s2 1 2 3 4 5 6 7 8 9 10
1 1 466 450 445 444 443 442 442 442 441 441
2 430 423 420 418 417 417 416 416 416
3 415 412 410 408 4.08 4.07 407 4.06
4 408 405 404 403 402 4.02 4.02
5 403 402 401 400 399 399
6 400 399 398 398 397
7 398 397 396 396
8 396 396 3.95
9 395 394
10 3.94
2 1 722 699 692 690 688 688 687 687 686 6.86
2 669 659 655 652 651 649 649 649 648
3 647 642 638 637 636 635 634 634
4 636 632 630 628 628 627 626
5 628 626 624 623 623 622
6 624 622 621 619 6.19
7 620 619 618 617
8 618 616 6.16
9 616  6.15
10 6.14
3 1 941 911 9.02 899 897 896 895 895 894 894
2 872 859 853 850 848 847 846 845 845
3 844 837 833 831 829 828 827 826
4 829 824 822 820 818 818 8.17
5 820 817 815 813 812 811
6 813 811 810 808 8.8
7 809 808 806 805
8 805 804 8.04
9 8.03  8.02
10 8.01
4 11.43 11.07 1096 1092 10.89 10.88 10.87 10.86 10.86 10.86

1059 1043 1036 10.32 1030 10.28 10.27 10.26 10.26
10.25 10.16 10.11 10.08 10.06 10.05 10.04 10.03
10.06 1001 998 996 994 993 9.92

995 991 9.89 9.87  9.86 9.85

9.88  9.85 9.83 9.82 9.80

9.82 981 9.79 9.78

9.78 9.77  9.75

9.75 9.74

9.72

50 N OU W R
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Table 3. Exact critical values for R when testing for null hypothesis (5) withm =2, p € {1,...,4},
s1 € {1,...,10},s5 € {s1,...,10}, and a significance level of 5% (simulation size per value: 2 x 107).

p osi\s2 1 2 3 4 5 6 7 8 9 10
1 1 180 265 311 334 348 358 364 369 373 376
2 263 277 28 301 313 322 328 333 338
3 300 308 312 315 317 319 321 323
4 319 325 328 330 332 333 334
5 332 336 338 340 341 342
6 340 343 345 346 347
7 346 349 350 351
8 351 353 354
9 354 356
10 3.58
2 1 287 417 513 571 609 636 656 670 682 692
2 388 437 479 513 539 559 575 587 598
3 447 468 48 506 521 534 545 555
4 481 493 504 514 522 530 538
5 502 511 518 524 530 535
6 517 524 528 533 537
7 528 533 537 541
8 537 540 543
9 543 547
10 5.49
3 1 38l 536 666 751 808 850 881 9.04 924 940
2 514 573 632 679 716 745 767 787 802
3 582 612 642 669 692 712 728 743
4 624 641 659 676 690 7.04 716
5 652 663 675 686 696 7.05
6 671 680 688 696 7.03
7 686 692 698 7.04
8 697 702 7.06
9 706  7.10
10 7.13
4 1 475 646 801 907 980 1035 1075 11.08 1135 1155
2 632 700 770 828 872 9.09 938 962 983
3 711 747 784 817 846 871 892 9.0
4 760 781 803 825 843 861 875
5 792 806 821 836 849 860
6 815 826 836 846 856
7 832 840 848 856
8 846 852 858
9 856  8.61
10 8.65

3.2. Asymptotic Tests

We address asymptotic results for m = 2 systems and null hypothesis

@

7

JASUP

77

®)
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for some nonempty index set | = {ji,...,jp} € {1,...,7}, in the case of which Formulas (6) and (7)
simplify to

R R s AV A e
= Z s1 log 51+ 5, T.(l) + sy log 51+ 87 T.(z)
] )

_ 22{511055(512 (1+1/Q]-))+szlog(sls+232(1+Q]-)>} )

i€l 52

(1) 2 7 2
d R = ! — ! —
an = Y - (s1+92) | 75|+ 5 (s1+2) 7@ S

j€l f + T]

2 2

x 1( o7V 7 ) +1( 57 o7 )
B o O I R ) =) o\ 70, @ 2
il 41?1V 2\ +1? TV T

) ]

_ Z(+1> 2Q -5\’ (10)
i€l S1 So Qj+1 !

where Q; = Tj(l)/ Tj(z), j € ], are independent statistics. Note that for p = 1 and s; = s, the
likelihood-ratio test and the Rao score test are equivalent, since then

[y

—_

(1) (2)\2
(Tfl +Tj1 )

1+1/Q;))(1+Qj) = —FF—m—
]1)( ]1) T-(l)T-(2)
nn
-1
Q; ~1)’ (1 1)
and = 1-4| ——~— ,
Qj, +1 Tj(1>Tj(2)
1 1

and, hence, A and R are both strictly monotone functions of statistic (T]-(ll) + Tj(lz))z/ (T]-(ll) T]-(lz) ).
As an overall assumption in this section, let s1/(s1 + s2) — a € (0,1) when the total sample size
increases. Then, by the strong law of large numbers,
2)
a
1—a

;
)
%

Qi — —— almostsurely (as.) , j€]. (17)

Moreover, the central limit theorem yields that

Jeeoy 7

(1) (1) 1) 1) —(2) (2) (2) (2)
(Th +s1/ay) Tfp +Sl/afp Ty ts2/wy T]'p +52/‘X]'p

d
— Npp(0,1p,), (12)
g T Tl ) o

where I is the unity (or identity) matrix in R¥*¥, Aj(p,Z) denotes the k-dimensional normal

distribution with mean y € R¥ and positive definite covariance matrix L € R**k, and 5 means
convergence in distribution.

Lemma 1. Under null hypothesis (8),

1
NG (S2Qj1 —51,..,5Qj, —sl> i>/\/p(0,lp/(l —a)).
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Proof. Since Qjireves ij are independent, it is sufficient to show that, under Hy, (ssz —51)/+/51 i

N1(0,1/(1 —a)) forj € J. Letj € ] and zx](-l) = 0(](-2) = aj, say. Then, we have

2Qj—s1 _ Tj(l)/\/gf \/QT]-(z)/Sz

(T +s1/a))/ (VE1/05) = Vo1 752(T1) + 52/ )/ (v/52/ )
zx-T(2)/s .
jtj 2

Since $1/s; — a/(1 —a) and tijj(z) /s» — 1 a.s. by the strong law of large numbers, Formula (12)
along with the multivariate Slutsky theorem (see, e.g., Reference [25], Theorem 3.4.3) then yield
the assertion. [

Theorem 2. Under null hypothesis (8), A and R, given by Formulas (9) and (10), are asymptotically
X2 (p)-distributed, i.e., chi-square-distributed with p degrees of freedom.

Proof. Since Qj] ,.o.,0 j, are independent, it is sufficient to show that, under Hy, any term of the sum
in Formulas (9) and (10), respectively, is asymptotically chi-square-distributed with one degree of
freedom. The assertion then follows by application of the continuous mapping theorem (see, e.g.,
Reference [26], Theorem 1.10). To this end, let Hy be true and j € ]. Moreover, let A = $;Q; — 51 to
simplify notation. From Taylor’s theorem, we have for every x > 0 the identity

N3
2log(x) = (x—1)[2—(x—1)]+§ (xg 1) ,

where ( lies in the interval with boundary points 1 and x. Application to both logarithmic arguments
in Formula (9) yields

251 log (51 il 5 (1+ 1/Qj)> + 25 log (Sls+2522(1 + Qj)>

s1A/Q; A/Q;
= ( )— 1470 <2+/Q’>+B
S1 +52 S1+ 82 S1+ 82 S1+ 82
A/ s s1A/Q;
_ Q] < 2 Q] — 25y — 1 QJ)—!—B
S1 4+ Sy S + 59 S1+ 5
A? 5 s i
_ /Q] ( ZQ] . 1/Q] ) +B (13)
S1+ 82 S1+5sy s1+5s

with
B_Z(A>3 11
3 \s1+s2 gg g%Q;’ !

where {1 and {; lie in the interval with boundary points 1 and s1(1+1/Qj)/(s1 + s2), respectively

so(1+ Qj) /(s1 + s2). By Formula (11) with oc](.l) = 0(](-2), the term in brackets in Formula (13) as well as
{1 and {p converge to 1 a.s.. Since

A (A>1 i
s1+s  \s1/) Vs sits
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Lemma 1 and Formula (11), together with Slutsky’s theorem, then yield that B converges to 0 in
distribution, which implies this convergence in probability, and, moreover,

NE

Application of Slutsky’s theorem to Formula (13), twice, then yields the assertion for the
likelihood-ratio statistic.

A%/Q; < A )2 51/Qj 4

2
— 1).
1+ 52 S1+ 82 X()

To show the assertion for the Rao score statistic, we rewrite the terms in Formula (10) as

2 5 2
<1+1) A _<A> sitsp (1
51 S2 Q] +1 \/ﬁ 52 Q] +1
By Formula (11), the term in square brackets converges to 1 — a a.s.. Application of Lemma 1 and
Slutsky’s theorem, again, then completes the proof. [

4. Testing for Equal Baseline-Distribution Parameters

We assume to have the sample situation as introduced at the beginning of Section 3 with the

difference that model parameters a]{k), 1 <j<rand 1 <k < m are known, and parameters of the

baseline cdfs F(1), ..., F(") are unknown. More precisely, for k € {1,...,m}, let baseline cdf in sample
k be of the form
FO(x) = 1—exp{-aig(x)}, x>0, (14)

for some unknown positive scale parameter 0 and a known increasing function gj : [0,00) — [0, 0)
with ¢¢(0) = 0 and limy_;e gx(x) = oo, which is differentiable on (0, c0); cf. References [7,14,27].
As two examples, choices gx(x) = x and gi(x) = log(x + 1) for x > 0 correspond to an exponential
and a Pareto baseline distribution, respectively. Hence, the uncertainty of the model is totally captured
within the vector o = (07, ..., 0y) of baseline-distribution parameters. Here, the joint density function
of ka), 1 <i<sg, 1 <k<m,canbe written as

fe(x) = exp { i o, TR (x) +r i S logak} h(x),
k=1 k=1

where, for 1 < k < m,

r Sk

00 = = Ve —j+ D Llgl) - gl 1),

]:] i=1

and

0 = 1T (5%5) T1(") Tlsice)

i1 \ (1 =1 i=

for x = (xgl),...,xgll),...,%gm),...,xgz)) with xl(k) = (xl(f),...,xg{)le Xpw, 1 <i < 5,1 <k <m
(cf. Formula (3)). Statistics T), 1 < k < m, are independent, with —T*) ~ T'(rs;, 1/0y) for 1 < k < m.

Moreover, for 1 < k < m, the MLE of 0} is given by

5 _ ISk
%= T Fw

as analysis of the first two derivatives of the corresponding log-likelihood function shows. In the
following, let & = (61,...,0m).
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4.1. Exact Tests

Let I, ..., I, with ¢ < m be nonempty index sets forming a partition of {1,...,m}. Equation (4)
can be rewritten as

fo (%) —exp{ZZUkT —i—rZZsklogUk} x).
1k€1[ 1k€1[

We consider the test problem with null hypothesis
Hy: ox=0;, kkel, 1<I1<q, (15)

and develop the corresponding likelihood-ratio test and Rao score test as in Section 3.1. To derive the
MLE of 0y, 1 < k < m, under Hy, let 7; be any index in I; for 1 <[ < g. Then, the aim is to maximize
the term

9
exp {ZUT, Y. T (x) + 7Y logoy, Zsk} h(x)

1=1 kEIl 1=1 kEIl

wrtog, ..., 0, the maximum of which is attained at

r s
(TT:—ELU 1<1<g.

: Yer, TR -

Hence, the MLE of 03, 1 < k < m, under Hy is given by
O = 0y, kel.

Proceeding along the lines in Section 3.1, the likelihood-ratio statistic and Rao score statistic for
testing null hypothesis (15) turn out to be

A

- Tl
Sk Ekell T
2r sk log = (16)
Zl kgl:[ leell SIE T(k)

o se TR 2
Liey % T —1>, (17)

Sk ZI}EIZ T(k)

R = fi25k<

1=1 kGIl

Theorem 3. For testing null hypothesis (15), A and R, given by Formulas (16) and (17), have single null
distributions (cf. Theorem 1).

Proof. The assertion can be shown by using similar arguments as in the proof of Theorem 1. []

Theorem 3 allows for computing exact critical values for A and R, subject to a desired significance
level, by using Monte Carlo simulations and independently sampling from gamma distributions with
scale parameters all equal to 1. For m = 2 systems, small sample sizes s; < sy, and r € {1,...,4},
Tables 4 and 5 show such critical values for a significance level of 5%. Note that these values depend

neither on 1 or gx, k = 1,2, nor on prespecified model parameters zx( ) ,1<7<r1<k<m.
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Table 4. Exact critical values for A when testing for null hypothesis (15) withm = 2,r € {1,...,4},
s1 € {1,...,10},s5 € {s1,...,10}, and a significance level of 5% (simulation size per value: 2 x 107).

r  s1\s2 1 2 3 4 5 6 7 8 9 10

1 466 450 445 444 443 442 442 442 442 441
430 423 420 418 417 417 417 416 4.16
416 411 410 4.09 408 4.07 4.07 407
4.08 4.06 4.04 4.03 403 4.02 4.02

403 4.02 4.00 400 399 399

400 399 398 397 397

398 397 396 3.96

396 395 3.95

395 394

3.94

430 420 418 416 416 416 416 416 415 415
408 4.04 403 4.02 401 401 401 401 4.01
400 398 397 396 396 396 396 395

396 395 395 394 394 393 393

394 393 393 392 392 392

392 391 391 391 391

391 391 390 3.90

390 390 3.89

3.89 3.89

3.89

415 4.08 407 406 406 406 405 405 4.05 4.05
4.00 397 396 396 396 395 395 395 3.96
395 394 393 392 392 392 392 392

392 391 391 391 390 390 3.90

391 390 390 390 389 3.89

3.89 389 389 3.88 3.89

389 389 388 3.88

3.88 3.88 3.88

3.88 3.88

3.88

408 4.03 401 4.01 400 400 4.00 400 4.00 4.00
396 394 394 393 393 392 393 393 392
392 391 391 390 390 390 390 390

390 390 389 389 389 389 3.89

3.89 389 389 388 3.83 3.88

3.88 3.88 388 388 387

388 387 387 387

387 387 3.87

3.87 3.87

3.87

S0 0N U e WN e

O O N ONUTWN -

—_
=)

S0 0N Ul e WN e

50 ®N oUW N
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Table 5. Exact critical values for R when testing for null hypothesis (15) withm = 2,r € {1,...,4},
s1 € {1,...,10},s5 € {s1,...,10}, and a significance level of 5% (simulation size per value: 2 x 107).

r

s1\ s2

1 2 3

4

5

6

7

8

9

10

1

S0 0N U e WN e

1.81 265 3.11
263 277
3.00

3.34
2.86
3.08
3.20

3.48
3.00
3.12
3.25
3.32

3.58
3.13
3.15
3.28
3.35
3.40

3.64
3.22
3.17
3.30
3.38
3.43
3.46

3.68
3.28
3.19
3.32
3.40
3.45
3.49
3.51

3.73
3.34
3.21
3.32
341
3.46
3.50
3.53
3.55

3.75
3.38
3.23
3.34
3.42
3.47
3.51
3.54
3.56
3.57

O O N ONUTWN -

—_
=)

263 286 3.13
320 3.28
3.40

3.28
3.32
3.45
3.51

3.37
3.33
347
3.54
3.57

3.44
3.35
3.49
3.55
3.60
3.62

3.49
3.36
3.49
3.57
3.61
3.63
3.65

3.52
3.37
3.50
3.57
3.62
3.64
3.66
3.67

3.55
3.38
3.51
3.58
3.62
3.65
3.67
3.68
3.69

3.58
3.39
3.51
3.58
3.63
3.65
3.67
3.69
3.70
3.71

S0 0N Ul e WN e

3.00 315 3.21
340 347
3.54

3.26
3.49
3.58
3.62

3.31
3.50
3.59
3.64
3.66

3.34
3.51
3.61
3.65
3.68
3.69

3.39
3.51
3.61
3.66
3.68
3.70
3.71

3.42
3.52
3.61
3.66
3.69
3.71
3.72
3.73

3.44
3.51
3.61
3.66
3.69
3.71
3.72
3.74
3.74

3.46
3.52
3.62
3.67
3.70
3.72
3.73
3.74
3.75
3.75

50 ®N oUW N

319 332 335
351 3.56
3.62

3.37
3.58
3.65
3.67

3.39
3.59
3.66
3.69
3.71

3.40
3.59
3.67
3.70
3.72
3.73

3.41
3.59
3.66
3.70
3.72
3.73
3.74

3.42
3.60
3.67
3.71
3.73
3.74
3.75
3.76

3.43
3.59
3.67
3.71
3.73
3.75
3.76
3.76
3.76

3.44
3.60
3.67
3.71
3.73
3.75
3.76
3.76
3.77
3.78

4.2. Asymptotic Tests

Finally, we provide asymptotic results for m = 2 systems and null hypothesis

H(]:

o = 0p.

From Formulas (16) and (17), the corresponding test statistics are seen to be

00

and

A

(Gl

52

52Q51>2
Q+1

2r [sllog (Sli (1 —|—1/Q)) +szlog(

81+ 52

83

(18)

(19)

(20)
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with statistic Q = T /T@); of. Formulas (9) and (10). Note that for s; = s, the likelihood-ratio test
and the Rao score test are equivalent, since A and R are both strictly monotone functions of statistic
(T 4 T7(@)2 /(T T?2)); see also Section 3.2.

Again, we assume that s1/(s1 +s2) — a € (0,1) when the total sample size tends to infinity.
Then, by the strong law of large numbers and the central limit theorem,

. a o < TO +rs1/07 T® +rs5/0
= as., and

d
Qg}l—ll(fl \/E/Ul ’ \/@/0_2 )HNZ(()/IZ)/

which implies that, under null hypothesis (18),

\/Z(S2Q —s1) 5 M1 (0,1/(1—a))

(cf. Lemma 1 and its proof). From this, the following theorem can be shown in analogy to the
proof of Theorem 2.

Theorem 4. Under null hypothesis (18), A and R, given by Formulas (19) and (20), are asymptotically
X2 (1)-distributed.

5. Power Study

We perform a simulation study to investigate and compare the power of the tests derived in
Sections 3 and 4, respectively.

For k = 1,2, let s; vectors of r component failure times of some (1 — r + 1)-out-of-n; system be
observed, where 11,1, > r are arbitrary integers. In sample k € {1,2}, any vector of component failure
times is described by the first 7 (< 1) SOSs based on the cdf F (%) and model parameters zxgk), e, oc,(j;).
Moreover, all s1 + s, vectors are assumed to be independent.

First, let F(1) and F(?) be known (but arbitrary), such that the uncertainty of the model is captured
within txgk), e, aﬁ"’, = 1,2, and let r = 4. To decide whether both systems are subject to the same
load-sharing effects, we consider null hypothesis

Ho:af) =a?, 1<j<4, (21)

and apply the exact and asymptotic likelihood-ratio test and Rao score test of Section 3. For a
significance level of 5%, different samples sizes s; < s, and three vectors of model parameters
describing either no, a linear, or an even faster increase in stress upon failures, Table 6 shows numerical
power values at the corresponding pairs.

It is seen from Table 6 that the power of all tests increases when sample sizes increase or the
vectors of the model parameters differ more. For small sample sizes, the exact Rao score test turns out
to be biased, whereas the exact likelihood-ratio test seems to be unbiased (at least over the alternatives
considered). Here, a test is said to be unbiased if its power function, defined on the set of all alternatives,
is bounded from below by the significance level of the test; otherwise, the test is called biased. None
of the exact tests dominates the other in terms of power. While the power of the likelihood-ratio
tests seems to be almost unaffected when sample sizes are interchanged, the Rao score tests have
greater power when more observations are recorded from the system with larger load-sharing effects.
Moreover, the table indicates that the asymptotic Rao score test is conservative, i.e., its actual level
is smaller than the nominal one (of 5%), which implies that the test is biased; on the other hand, the
asymptotic likelihood-ratio test seems to be nonconservative and unbiased. Somewhat surprisingly, the
actual levels of both asymptotic tests are already close to the nominal one for moderate sample sizes.
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Table 6. Power in % at alternatives a(l) = (zx%n, . ..,zxil)) and ¢ = (uc§2>, . ..,m£2>) of the exact
and asymptotic likelihood-ratio test and Rao score test when testing for null hypothesis (21) with
samples sizes s1,sp and a significance level of 5% (simulation size per value: 10°). The last two columns
correspond to the asymptotic tests, where numbers in brackets additionally show the actual levels.

a(l) a(z) S1 S22 A R Aas Rus

(1.0,1.0,1.0,1.0) (1.1,12,13,14) 3 5 67 100 84(64) 46(1.9)
13 15 135 149 143(4) 12.137)
21 23 198 207 203(52) 18.5(4.2)

(11,12,13,14) (1.0,10,1.0,1.0) 3 5 66 35 8.3 11
13 15 132 120 140 9.6
21 23 196 188 202 16.7
(1.0,1.0,1.0,1.0) (1.1,13,1.6,20) 3 5 120 188 144 10.1
13 15 411 436 423 38.8
21 23 625 637 632 60.8
(11,13,16,20) (1.0,1.0,1.0,1.0) 3 5 109 44 13.3 1.3
13 15 403 377 414 32.7
21 23 620 607 627 57.6
(11,12,13,14) (1.1,13,1620) 3 5 63 88 7.9 39
13 15 115 125 122 10.0
21 23 162 168 167 14.9
(11,13,16,20) (1.1,12,13,14) 3 5 63 40 7.8 1.4
13 15 114 104 120 8.1
21 23 161 154 166 13.6

(k) (k)

Now, suppose that model parameters a;’,...,a; ', k = 1,2, are known (but arbitrary), and let
baseline cdfs F(1) and F(?) be as stated in Formula (14) with unknown parameters oy, 02, and known
(but arbitrary) functions g1, g2. To check for common baseline-distribution parameters, we consider
null hypothesis

HO 01 =0y, (22)

and apply the exact and asymptotic likelihood-ratio test and Rao score test of Section 4. For a
significance level of 5% and different values of s; < sp and r, Table 7 shows numerical power values at
several alternatives.

From Table 7, it is found that the power of all tests increases with increasing sample sizes, with
increasing r, or with growing distance |02 — o7 | of the baseline-distribution parameters. Again, the exact
and asymptotic Rao score tests turn out to be biased for small sample sizes, and the likelihood-ratio
tests seem to be unbiased (over the considered alternatives). None of the exact tests uniformly has
greater power than the other. Interchanging sample sizes has an impact on the power of the Rao score
tests at a given alternative, whereas the power of the likelihood-ratio tests seems to be nearly invariant.
The actual levels of the asymptotic tests are all close to the nominal one (of 5%), where those of the
likelihood-ratio test slightly exceed 5% while the Rao score test is conservative.
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Table 7. Power in % at alternatives o = (07, 07) of the exact and asymptotic likelihood-ratio test and
Rao score test when testing for null hypothesis (22) with samples sizes s1, s, and a significance level of
5% (simulation size per value: 10°). The last two columns correspond to the asymptotic tests, where
the numbers in brackets additionally show the actual levels.

r o s1 S A R Ags Ras

2 (09,1.1) 3 5 66 82 70(4) 6738
13 15 114 119 11.7(.1) 11447
21 23 154 157 155(5.1) 153 (4.8)

(08,1.2) 3 5 119 153 12.6 13.1
13 15 322 331 32.6 323
21 23 472 477 474 471
(1.1,09) 3 5 65 49 7.0 3.5
13 15 11.3 10.8 11.5 10.4
21 23 154 151 15.5 14.7
(1.2,08) 3 5 112 77 11.9 5.6
13 15 31.8 308 322 30.0
21 23 469 464 47.1 45.7

3 (09,11) 3 5 75 91 78(3) 80(42)
13 15 149 154 150(5.1) 14.9(4.8)
21 23 210 213 21.0(5.1) 209 (4.9)

(08,12) 3 5 158 191 163 174
13 15 455 463 457 456
21 23 641 645 642 64.0
(11,09) 3 5 74 58 7.7 48
13 15 149 144 150 14.0
21 23 209 206 210 202
(12,08) 3 5 150 115 154 9.7
13 15 451 443 453 435
21 23 639 635 639 63.0

4 (09,11) 3 5 84 100 87(2) 92(44)
13 15 182 187 185(5.1) 18.5(4.9)
21 23 264 267 265(5.0) 264 (4.9)

(08,12) 3 5 196 229 201 21.6
13 15 566 573  57.0 57.1
21 23 765 767 765 76.5
(11,09) 3 5 82 66 85 5.9
13 15 181 176 184 174
21 23 263 259 263 25.6
(12,08) 3 5 186 151 191 137
13 15 563 555 567 55.3
21 23 763 760 764 75.7

6. Conclusions

In a setup of multiple samples of sequential order statistics modelling the component lifetimes
of possibly differently structured k-out-of-n systems, we provided exact and asymptotic statistical
tests with flexible hypotheses to check for common load-sharing parameters as well as for common
baseline-distribution parameters. The corresponding test statistics are shown to have single null
distributions, i.e., they each have only one distribution under all parameters specified by the null
hypothesis, such that exact critical values subject to a desired significance level are readily obtained by
using Monte Carlo simulations. The proposed tests can also be used to decide whether a meta-analysis
of the underlying data is reasonable. If, based on some dataset, the null hypothesis of common
load-sharing parameters (or common baseline-distribution parameters) is not rejected, the performance
of statistical procedures as, for instance, the accuracy of estimators, may be increased when applied to
the whole dataset; this is, in particular, relevant for small sample sizes that are prevalent in reliability.
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Finally, the derived results might also be useful in other reliability applications. On the one hand,
by appropriately setting the model parameters, the presented tests may be applied to check for identical
scale parameters of underlying lifetime distributions in differently designed progressively type-II
censored lifetime experiments ( see, e.g., Reference [28]). On the other hand, by choosing a standard
exponential baseline distribution, we may test for equality of parameters associated with stress levels

in multiple repeated type-II censored exponential step-stress experiments (see Reference [29]).

Author Contributions: Conceptualization and methodology, S.B. and U.K,; software, S.B.; writing—original draft
preparation, S.B.; writing—review and editing, S.B. and U.K.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

a.s.

almost surely

cdf cumulative distribution function

iid independent and identically distributed

MLE maximum-likelihood estimator

SOS  sequential order statistic

wrt  with respect to
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