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Abstract: We propose a parameter estimation method for non-stationary Poisson time series with the
abnormal fluctuation scaling, known as Taylor’s law. By introducing the effect of Taylor’s fluctuation
scaling into the State Space Model with the Particle Filter, the underlying Poisson parameter’s time
evolution is estimated correctly from given non-stationary time series data with abnormally large
fluctuations. We also developed a discontinuity detection method which enables tracking the Poisson
parameter even for time series including sudden discontinuous jumps. As an example of application
of this new general method, we analyzed Point-of-Sales data in convenience stores to estimate
change of probability of purchase of commodities under fluctuating number of potential customers.
The effectiveness of our method for Poisson time series with non-stationarity, large discontinuities
and Taylor’s fluctuation scaling is verified by artificial and actual time series.
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1. Introduction

The Poisson process is a basic stochastic process for events that occur at random in various natural
and social phenomena, such as the number of decay of radioactive atoms, the occurrence of a failure
of elements in devices, and daily sales amount of commodities [1]. As the Poisson process is fully
described by just one parameter, λ, the mean value of events in a unit time, precise estimation of λ for
a given data set is the key to understand the process.

Estimation of λ is an easy task if the data holds stationarity, as λ is given simply by the average
number in a unit time. However, for any real system, we encounter the following two difficulties.

The first difficulty comes from non-stationarity. A wide variety of natural and social phenomena
exhibit non-stationarity. The fluxes of cosmic radiation, such as active galactic nuclei and X-ray,
are non-stationary on long time scales [2]. Insect population shows non-stationarity by the factors
such as environmental changes and dynamics of the ecological system [3]. As for social phenomena,
web page visitations, highway traffic [4] and the underlying demand for a commodity [1] changes
non-stationarily by various uncontrollable factors like human activity, social trend and environmental
condition. Thus, a time series in real systems generally shows complicated non-stationarity which
is often unpredictable. Especially, in the case that the time scale of change of λ is short including
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discontinuous jumps, it is very difficult to estimate λ by the conventional methods such as the Poisson
regression method [5].

The second difficulty relates to the abnormally large fluctuations whose standard deviation is
proportional to λ, while the width of fluctuation of the Poisson process is known to be given by

√
λ.

Taylor found the power law [6] between the fluctuation and the mean value in observing the number
of individuals in the ecosystem. This fluctuation scaling, known as Taylor’s law, has been confirmed in
a variety of natural and social phenomena [7], such as biology [8], financial market [9], networks [10],
frequencies of word appearances on internet blogs [11] and sales [1]. The mechanism of the fluctuation
scaling is known as follows. The basic process follows a Poisson process with a constant λ, but there
exists fluctuation in the population of the observing objects, that gives the standard deviation of
fluctuation proportional to the mean value, λ [1,10–12]. This fluctuation scaling is unavoidable in
many cases since the total number of the observing objects is practically uncontrollable in the real
system. For precise estimation of λ we have to distinguish the variation of λ by this effect from a
non-stationary temporal change of λ. However, Taylor’s fluctuation scaling has not been attracted
attention in the Poisson parameter estimation.

Non-stationary parameter estimation methods have been widely studied, such as Auto Regressive
Integrated Moving Average (ARIMA) [13], Neural Networks (NN) [14], which are suitable for
non-stationarity with regularity characterized by autocorrelations. Generalized Additive Model
(GAM) [15] can reveal the general trend of a non-stationary time series by fitting a smooth curve which
is differentiable. The State Space Model (SSM) [16] is applicable for unpredictable non-stationarity
with abrupt and indifferentiable changes, therefore in this paper we generalize this method to handle
non-stationary Poisson time series with Taylor’s fluctuation law.

In Section 2, we explain our method with short reviews of the non-stationary time series analyses
to be used in our method. In Section 3, we verify our method by some artificial Poisson time series. In
Section 4, we examine the effectiveness for actual data, namely Point-of-Sales (POS) data which shows
non-stationarity and the fluctuation scaling with unpredictable sudden jumps.

2. Methods

2.1. Non-Stationary Time Series Analysis

A time series analysis method suitable for non-stationary cases, the State Space Model (SSM) [16]
is adopted in our method. In this subsection, we explain the SSM.

The SSM assumes that an observation value yt at time t is generated stochastically by an invisible
state xt, where xt is stochastically determined depending on xt−1.

xt ∼ Φ(xt|xt−1) (1)

yt ∼ Φ(yt|xt) (2)

where Φ(A|B) denotes the Probability Density Function (PDF) of A conditioned by B, and the tilde (∼)
in the formula, C ∼ Φ(A|B) denotes that C is a stochastic variable following the PDF.

Equation (1) is called the system model in the SSM, which describes stochastic time evolution
of the state xt. Equation (2) is called the observation model in the SSM, which defines the stochastic
generation of the observation value from the state.

Non-stationarity of the Poisson mean value λ can be modeled in the system model Equation (1),
regarding λ as the state xt. We define the system model as follows:

xt = δ(xt−1 + νt) (3)

δ(x) =

{
x, if x > 0

0, otherwise
(4)
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νt ∼ (1−m) · N(0, α · xt−1) + m ·U(−β, β) (5)

where m, α, β are hyper parameters. N(0, α · xt−1) is the Normal distribution with the mean value
equals to zero and the standard deviation equals to α · xt−1 (0 < α). U(−β, β) is the truncated Uniform
distribution with the range from -β to β (0 < β). m characterizes the ratio of superposition of two
distributions, the Normal and truncated Uniform distributions (0 ≤ m ≤ 1). Equation (5) means that
the stochastic time evolution of the change of vt generally follows either the Normal distribution with
probability 1−m or the Uniform distribution with range of 2 · β with probability m. The value of β is
determined as the range of the Uniform distribution is much larger than the fluctuation of the Normal
distribution (α · xt−1), that allows a large change of xt. The superposition of two distributions considers
the case where xt generally follows the Normal distribution, but sometimes changes up to β with a
small probability m. This kind of system model with long tail distribution allows better trackability
of a non-stationarity. A system model defined by the superposition of a Normal distribution and a
truncated Uniform distribution is already proposed by Yura et al. [17] for non-stationary time series
analysis of financial market data. Here, in our model the value of xt is limited to be non-negative by
Equation (4) as the Poisson parameter λ (or xt) needs to be positive.

The hyper parameters are to be determined in accordance with non-stationarity of Poisson λ for
each system. We adopted m = 0.05, α = 0.005 and β = 2.5 · σt−1 by examining Root Mean Squared
Error of λ estimation of some artificial time series, such as stationary, step-like and continuous rising.
σt−1 is Taylor’s fluctuation term to be described in the next subsection, Equation (6). The detailed
information on the hyper parameters determination is provided in the Appendix A.

2.2. Taylor’s Fluctuation Scaling Law

The standard deviation of a Poisson process with Taylor’s fluctuation scaling, which is caused by
the fluctuation in the population of the observing objects, is generally given as follows [18]:

σ =
√

λ + (γ · λ)2 (6)

Here, the proportional constant γ characterizes the strength of fluctuation of population and its
value is determined by examining the relationship between the standard deviation and the mean of an
actual data.

As an example, we explain a case of Point-of-Sales (POS) data. The POS data is taken from
243 chain stores of a major convenience store company in Japan during the 153 days from 1 June to
31 October 2010. We obtained daily sales time series of each product in each store from the POS data.

Figure 1 illustrates Taylor’s fluctuation scaling of sales data of a product (a soft drink). The solid
line indicates σ =

√
λ + (γ · λ)2 where γ = 0.12, the dot-dash line is σ =

√
λ and the dashed line

shows σ = γ · λ. Figure 1 is obtained by the following procedures.

1. For small mean values we prepare data sets of daily sales numbers of the product for each
store with specification by the day of the week (For example, sales number in every Monday).
243 (stores) × 7 (days of the week) = 1701 points are plotted.

2. For larger mean values we prepare aggregated data sets by random sampling as follows. For each
given number of stores, k, we choose k stores at random and the sales numbers are summed up
for each day of the week. The value of k is from 2 to 243 and we repeat this procedure 30 times
for each k (48,223 points are plotted.)

The γ value can be estimated by non-linear regression analysis [19]. Specifically, γ is determined
by using the least-square method which minimize the difference between the σ obtained by Equation (6)
and the actual σ in Figure 1.
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Figure 1. Example of Taylor’s fluctuation scaling for daily sales number of a soft-drink in convenience
stores. The mean values and the standard deviations are plotted for various data sets with different
number of aggregated stores (49,924 points are plotted). Dot-dash line: σ =

√
λ, Dashed line: σ = γ · λ,

Solid line: σ =
√

λ + (γ · λ)2, where γ = 0.12.

2.3. SSM of Our Method

We incorporate Taylor’s fluctuation scaling term into the SSM. The observation model Equation (2)
for the Poisson process can be written as follows:

yt ∼ Po(xt) (7)

where Po(xt) is the Poisson distribution with the mean value xt. The observation value yt are generated
stochastically by the distribution. Here, xt is stochastically determined by Equations (3)–(5).

In order to incorporate Taylor’s fluctuation scaling term Equation (6) as the standard deviation of
Equation (7), we approximate the Poisson distribution by the Normal distribution in the case that xt is
statistically large (i.e., xt ≥ 20). The Normal distribution for xt = 10 and σ =

√
10 is very similar to the

Poisson distribution for xt = 10, and for xt ≥ 20, the distributions are virtually indistinguishable [20].
We apply the approximation by the normal distribution for xt ≥ 20 since the skewness of the Poisson
distribution of xt = 20 is 30% smaller than that of xt = 10, hence, closer to 0, which is the value of
skewness of the normal distribution, whereas the ratio of change of the standard deviation by Taylor’s
fluctuation scaling at xt < 20 is below 10%, where γ = 0.1.

yt ∼ N(xt,
√

xt + (γ · xt)2) (8)

Thus, the likelihood of xt for Equation (7) and Equation (8) are written as PDF of each distribution,

p(yt|xt) =


1√

2πσ2
t

exp(−(yt−xt)
2

2σ2
t

), if xt ≥ 20

xyt
t ·exp(−xt)

yt !
, otherwise

(9)

where σt =
√

xt + (γ · xt)2.
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2.4. Particle Filter

Our SSM contains non-Gaussian distribution such as the Poisson distribution and the truncated
Uniform distribution. The Particle Filter algorithm [21,22] has the capability to solve such a
non-Gaussian SSM.

The Particle Filter is a kind of Monte Carlo simulation which approximates a PDF of the state xt as
the distribution of Monte Carlo sample values. Owing to the property of the Monte Carlo simulation,
an arbitrary distribution function can be represented. The Monte Carlo samples are referred to as the
particles in the Particle Filter. The distribution of the particles is updated by the observation value
yt for each time t with the likelihood function. The set of the particles at time t conditioned by an
observation value at time k is written in the form of {x(i)t|k}

N
i=1, where N is the Monte Carlo sample size.

The specific procedure of the Particle Filter which corresponds to the simulation code is as follows,

1. Generate initial N particles {x(i)0|0}
N
i=1 and set t = 1.

2. At time t:

(a) Generate prediction distribution of particles {x(i)t|t−1}
N
i=1 by Equations (3)–(5).

(b) Using the observation value yt, estimate likelihood p(yt|x(i)t|t−1) for each particle by Equation (9)

(c) Update particles by resampling with the replacement of {x(i)t|t−1}
N
i=1. The resampling

probabilities ρ
(i)
t for each particle are proportional to the likelihood of each particle.

ρ
(i)
t = p(yt|x(i)t|t−1)/

N

∑
j=1

p(yt|x(j)
t|t−1) (10)

(d) If time t is the last step, stop the procedure. Otherwise, increment t and go to step 2 (a).

In this research, the number of Monte Carlo samples is set to N = 10,000 and the initial particles
are generated by Equations (3)–(5) assuming x−1 = y0 for simplicity. We obtain a λ value for each time
t by calculating the median, instead of mean, of the Monte Carlo samples of xt since its robustness
against variations of particle values.

The Markov Chain Monte Carlo (MCMC) method [23] is another candidate to solve our SSM.
We selected the Particle Filter since it can solve the SSM stably even with a small amount of data.

2.5. Particle Filter with Discontinuity Detection

Our SSM introduce a wide range of Uniform distribution to follow large parameter changes in
time series as shown in Equation (5). Moreover, we consider the cases that include discontinuous jump
points at which time series value changes more than the range of the Uniform distribution.

Simply widening the range of the Uniform distribution results in reducing the density of the
particles and increasing Monte Carlo error. We propose the following discontinuity detection and
estimation correction method.

1. Detect a discontinuous point by checking whether the observation value is out of the bound of
the particle distribution.

2. If a discontinuous point is detected, initialize the particle distribution with the observation value
at the discontinuous point.

Using the observation value yt itself at the discontinuous point as the median of the particle
distribution leads to overfit the data. We adopt yt − σt or yt + σt at the upward or downward
discontinuous point respectively. Accordingly, the threshold of discontinuous point detection is
set to be the upper bound +σt or lower bound −σt of the particle distribution.

We modify the algorithm of the Particle Filter shown in Section 2.4, step 2 (b) as follows,

1. Generate initial N particles {x(i)0|0}
N
i=1, set t = 1.
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2. At time t:

(a) Generate prediction distribution of particles {x(i)t|t−1}
N
i=1 by Equations (3)–(5).

(b) If the observation value yt is above the upper bound +σt or below the lower bound −σt

of the prediction distribution, go to step 1 and set x0 to yt − σt or yt + σt at the upward or
downward discontinuous point respectively. Otherwise, using the observation value yt,
estimate likelihood p(yt|x(i)t|t−1) for each particle by Equation (9) and go to next step .

(c) Update particles by resampling with the replacement of {x(i)t|t−1}
N
i=1. The resampling

probabilities ρ
(i)
t for each particle are proportional to the likelihood of each particle.

ρ
(i)
t = p(yt|x(i)t|t−1)/

N

∑
j=1

p(yt|x(i)t|t−1) (11)

(d) If time t is the last step, stop the procedure. Otherwise, increment t and go to step 2 (a).

2.6. Summary of the Parameter Estimation Procedure

We summarize the parameter estimation procedure. Steps 1 and 2 are preparations, and step 3 is
the actual parameter estimation step.

1. Estimate the proportional constant γ of Taylor’s fluctuation scaling by some previous data, as
explained in Section 2.2.

2. Determine the hyper parameters in the system model Equation (5) in SSM, by using some artificial
time series as shown in Appendix.

3. Apply the Particle filter described in Sections 2.4–2.5 to solve the SSM, and estimate Poisson λ

parameter of a time series. Poisson λ parameter is estimated basically based on the likelihood for
an observation data at each time t. When the discontinuous trend jump is detected as explained
in Section 2.5, the value of λ is estimated based on the observation data. No extrapolation is done,
namely, we do not estimate the parameter where there is no data.

3. Simulation Tests

In this section, we verify the validity of our method with artificial time series generated by
random number simulation. The distribution of random numbers is the Poisson distribution for small λ,
i.e., λ < 20, otherwise the Normal distribution with Taylor’s fluctuation scaling term Equation (6) where
γ = 0.1. The γ value 0.1 is typical for the Point-of-Sales data used in this research [1]. Random numbers
with a specific distribution can be obtained by the inversion method [24].

3.1. Validity for Non-Stationarity

First, we demonstrate our method without discontinuity point detection, which is described in
Section 2.5. Figure 2a shows a continuous rising time series from λ = 20 to λ = 200 in gray line. In this
figure, the assumed values of λ and the estimated values of λ are shown in dotted line and black line
respectively. We can confirm that the estimated values of λ follows the non-stationary continuous
rising trend of the assumed values of λ. The Root Mean Squared Error (RMSE) between the assumed
values of λ (λA) and the estimated values of λ (λE), standardized by λA at each time t (1 ≤ t ≤ N) as
shown in Equation (12), is 7.74%.

RMSEλ =

√√√√ 1
N

N

∑
t=1

(1− λEt

λAt

)2 (12)

Figure 2b indicates a step-like time series which increases from λ = 20 to 200 in gray line.
The estimated values of λ in black line generally follows the abrupt step-like change of the assumed
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values of λ, but there exists some delay. The assumed values of λ changes 20 to 200 at time 50, but the
estimated values of λ reaches to 200 at about time 80. The RMSEλ by Equation (12) is 14.59%.

Figure 2. Estimation results of two types of artificial non-stationary time series using the particle filter
without discontinuous detection shown in Section 2.4. (a) Continuous rise time series from λ = 20
to 200. (b) Step-like time series from λ = 20 to 200. Gray line: artificial time series, Black dotted line:
assumed values of λ, Black solid line: estimated values of λ.

This delay is caused by the large discontinuity of the time series which is not covered by the range
of the prediction distribution, that is, the range of the truncated uniform distribution in Equation (5).
By introducing the discontinuous point detection as mentioned in Section 2.5, the delay is corrected as
shown in Figure 3. The RMSEλ is improved to be 6.55%.

Figure 3. Correction of estimated values of λ at the discontinuous point using the particle filter with
discontinuous detection shown in Section 2.5. Gray line: artificial time series, Black dotted line:
assumed values of λ, Black solid line: estimated values of λ.

3.2. Validity for Taylor’s Fluctuation Scaling

Figure 4a shows a step-like time series from λ = 10 to 640 increased by two times every 30 data
points which is shown in gray line, and the estimated values of λ in black line. The RMSEλ is 8.66%.
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To verify the validity of the estimated values of λ, we examined the deviation of time series
values from the estimated values of λ. If the estimated values are reasonable, the relationship between
the standard deviation calculated with time series and λ should follow Equation (6). The specific
procedure for calculating the standard deviation and the mean is as follows,

1. Make pairs of estimated values of λ and time series value for each time t.
2. Divide the pairs into groups by exponential bins such as [1, 2], [2, 22], [22, 23], ... for estimated

values of λ values.
3. Calculate the standard deviation with the time series value and estimated values of λ for each

group. Obtain the mean with the estimated values of λ for each group.

Figure 4. Verification for Taylor’s fluctuation scaling with step-like time series from λ = 10 to 640.
(a) Black solid line: estimated values of λ with our model, Gray line: artificial time series, Black dotted
line: assumed values of λ (b) The mean and the standard deviation plots of (a). (c) Black solid line:
estimated values of λ with conventional Poisson model, Gray line: artificial time series, Black dotted
line: assumed values of λ. (d) The mean and the standard deviation plots of (c). In (b,d), Dot-dash line:
σ =
√

λ, Dashed line: σ = γ · λ, Solid line: σ =
√

λ + (γ · λ)2, where γ = 0.1.

The result is shown in Figure 4b. The plots are along the relationship of Taylor’s fluctuation
scaling illustrated in black solid line. This ensures the validity of our model for Taylor’s fluctuation
scaling. The RMSE between the theoretical standard deviation (σT) by Equation (6) and the estimated
standard deviation (σE), standardized by σT at each time t(1 ≤ t ≤ N) as shown in Equation (13),
is 8.71%.

RMSEσ =

√√√√ 1
N

N

∑
t=1

(1− σEt

σTt

)2 (13)
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To clarify the advantage of our model to the conventional Poisson model, we performed an λ

estimation of the same time series as in Figure 4a with the conventional Poisson model, that is, with
Equation (7) instead of Equation (8). The results are shown in Figure 4c,d. One can see that the
estimated values of λ time series in Figure 4c follows the fluctuation of the time series excessively.
The conventional Poisson model regards large fluctuation caused by Taylor’s fluctuation scaling as
variation of λ. Figure 4d illustrates that the Poisson model estimates the fluctuation as

√
λ in dot-dash

line, while the true fluctuation is Equation (6) in solid line. The RMSEσ is 33.73%.
Along with the step-like time series, we examined the case of a continuous rising time series.

Figure 5a,b are the estimated results by our method with Taylor’s fluctuation scaling term. The RMSEσ

is 8.65%. Figure 5c,d are the results by the conventional Poisson model. The RMSEσ is 31.71%. These
results also demonstrate the effectiveness of our method for estimating the Poisson λ with Taylor’s
fluctuation scaling.

Figure 5. Verification for Taylor’s fluctuation scaling with continuous rising time series from λ = 10 to
600. (a) Black solid line: estimated values of λ with our model, Gray line: artificial time series,
Black dotted line: assumed values of λ. (b) The mean and the standard deviation plots of (a).
(c) Black solid line: estimated values of λ with conventional Poisson model, Gray line: artificial
time series, Black dotted line: assumed values of λ. (d) The mean and the standard deviation plots
of (c). In (b,d), dot-dash line: σ =

√
λ, dashed line: σ = γ · λ, solid line: σ =

√
λ + (γ · λ)2, where

γ = 0.1.

4. Point-of-Sales (POS) Data Tests

We verified our method by actual data, namely, the POS data described in Section 2.2. The POS
data is a typical example of the non-stationary Poisson time series with Taylor’s fluctuation scaling [1].
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Figure 6a shows a daily sales number series of a product (an ice cream) at a store. One can see
the arch-shaped trend in the sales time series in gray line, and the estimated values of λ in black line
follows the trend. Figure 6b clarifies that the relationship between the mean and the standard deviation
of the estimated values of λ values are along the relationship derived from Taylor’s fluctuation scaling
Equation (6). The RMSEσ is 16.56%.

Figure 6. Estimation results of an arch-shaped sales time series. (a) Gray line: sales time series, Black
line: estimated values of λ with our model. (b) The mean and the standard deviation plots of (a).
(c) Gray line: sales time series, Black line: estimated values of λ with conventional Poisson model.
(d) The mean and the standard deviation plots of (c). In (b,d), dot-dash line: σ =

√
λ, dashed line:

σ = γ · λ, solid line: σ =
√

λ + (γ · λ)2, where γ = 0.291 (an ice cream) [1].

Figure 6c,d show the estimation results of the same time series in Figure 6a, with the conventional
Poisson model. The Poisson model results in overfitting of the λ to the time series as shown in
Section 3.2. The RMSEσ is 35.40%. The advantage of incorporating the term of Taylor’s fluctuation
scaling in precise estimation of the Poisson parameter is confirmed with this actual data.

Figure 7a indicates a sales time series of a product (a meat bun) of a store which shows sudden
rises at around time 10 and 52. The estimated values of λ in black line well follows the sudden rises.
Figure 7b shows the estimated values of λ are along the relationship of Taylor’s fluctuation scaling.
The RMSEσ is 18.74%.
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Figure 7. Estimation results of a sales time series with discontinuity. (a) Gray line: sales time series,
Black line: estimated values of λ with our model. (b) The mean and the standard deviation plots
of (a). (c) Gray line: sales time series, Black line: estimated values of λ with our model without the
correction method at discontinuous points. (d) The mean and the standard deviation plots of (c).
In (b,d), dot-dash line: σ =

√
λ, dashed line: σ = γ · λ, solid line: σ =

√
λ + (γ · λ)2, where γ = 0.12

(a fried item) [1].

Figure 7c,d show the estimation results of the same time series in Figure 7a, without using the
correction method at discontinuous points. We can find that the estimated values of λ in black line are
underfitted to the time series in gray line at the large discontinuous points. The RMSEσ is 337.62%.
Thus, the merit of the correction method at discontinuous points is verified with the actual time series.

5. Conclusions

The effectiveness of our method of tracking the Poisson parameter for abnormally large fluctuation
time series with non-stationarity is verified one by one with artificial time series. We revealed the
advantage of our method considering the term of Taylor’s fluctuation scaling to the conventional
Poisson model, namely, our model distinguishes non-stationarity of the parameter from the large
fluctuation caused by this fluctuation scaling. We also presented the method of detecting discontinuity
of the time series. By correcting estimation values at the discontinuous point in time series, we realized
precise parameter estimation with non-stationary time series with large discontinuity. Along with
some artificial time series, we verified the effectiveness of our method by some actual Point-of-Sales
data which shows non-stationarity, large discontinuities and Taylor’s fluctuation scaling.
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We assume the case that Taylor’s fluctuation scaling is generally caused by the fluctuation in the
population of the observing objects, which leads the standard deviation to be proportional to Poisson
mean value λ, namely, the scaling exponent becomes 1. The scaling exponent 1 is observed in many
natural and social phenomena, such as cell numbers of species [25], fluxes of cosmic radiation [2], daily
water-level of a river [26], web page visitations [4], highway traffic [4] and sales [1].

Considering effects other than fluctuation in the population, there are cases that the Taylor’s
scaling exponent takes a value between 0.5 and 1.0 as we can find examples in POS data on stamps
and magazines [1]. Stamps are often purchased in bulk, and magazines are specifically bought on the
launch day. The purchase processes of these items are not regarded as a simple Poisson process, that
leads to the scaling exponent under 1. The extension of the proposed model for more general Taylor’s
fluctuation scaling is a potential future research task.

Periodicity in the time series, such as seasonality and circadian variation behind the daily data,
are not considered in the present model. In practical applications in the future, applying the method to
some cases such as trend forecast, an extension of our method taking into account such periodicity
may yield better accuracy of the parameter estimation.

Our method deals with parameter estimation of a non-stationary Poisson time series of number
of events observing with regular intervals in the case that the population is also changing randomly.
Meanwhile, there exist methods based on Poisson point process suitable for describing events in
discrete points in time. The Spatial Mixed Poisson Process(SMPP) [27–31] is such an example, which
can handle the case that the underlying random event is correlated to the observing event that is
stochastically determined. The SMPP can model the delay of the impact from the underlying event
to the observing event since both events are described separately in discrete points in time, which
is suitable for application to rare but correlated events such as occurrence of cascading crashes in
financial markets. There are wide variety of phenomena both in nature and in our society, which are
considered to be described basically by a variant of Poisson process. More different approaches will
appear in the near future to cope with the increasing big data in the society.
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Appendix A. Estimation of the Hyper Parameters

Equation (5) contains three hyper parameters, m, α and β. We determined the value of each
parameter by the following procedure. We assumed three types of time series, stationary as shown
in Figure A1a, discontinuous step-like change as illustrated in Figure A2a and continuous rise as
indicated in Figure A3a. We generated 100 sets of random number time series for each three types
by random number simulation mentioned in Section 3. We estimate λ time series for each time series
and examined Root Mean Squared Error (RMSE) of estimated and assumed values of λ by changing
m, α, β. The proportional constant of the fluctuation scaling γ is assumed 0.1, which is typical for the
Point-of-Sales data used in this research [1]. The β is assumed in the form of n · σt−1, where σt−1 is
Taylor’s fluctuation scaling term Equation (6), meaning that the range of the Uniform distribution in
Equation (5) is determined based on the variance by Equation (6) at each λ.

The results for stationary time series is shown in Figure A1b–d. One can see that small RMSE
for stationary time series is obtained when the value of each parameter, m, α and β are small. It is
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reasonable because small m, α and β lead to a narrow prediction distribution and less sensitivity to
variations in a stationary time series.

The results for step-like change shown in Figure A2 are almost opposite parameter dependencies
to Figure A1 since a wide prediction distribution contributes to sensitiveness to the change. One should
note that a prediction distribution wider than necessary results in large RMSE because of the
Monte Carlo error. The results for continuous rise in Figure A3 shows generally similar parameters
dependence as Figure A2, in the cases of too small or too large m, α and β result in large RMSE.

We adopted m = 0.05, α = 0.005 and β = 2.5 · σt−1, marked with yellow rectangles in
Figures A1–A3 , since these are one of the balanced condition giving small RMSE for three types
of time series examined.

Figure A1. RMSE result of stationary time series. (a) An example of the stationary time series.
Gray line: artificial time series, Black dotted line: assumed values of λ. (b) m = 0.05, where m is the
ratio of the Uniform distribution to the Normal distribution, (c) m = 0.10, (d) m = 0.15. The yellow
square shows the parameter sets we adopted in our simulation and real data analysis.

Figure A2. RMSE result of non-stationary, step-like time series. (a) An example of the step-like time
series. Gray line: artificial time series, Black dotted line: assumed values of λ. (b) m = 0.05, (c) m = 0.10,
(d) m = 0.15. The yellow square shows the parameter sets we adopted in our simulation and real
data analysis.

Figure A3. RMSE result of non-stationary, continuous rising time series. (a) An example of the
continuous rising time series. Gray line: artificial time series, Black dotted line: assumed values of λ.
(b) m = 0.05, (c) m = 0.10, (d) m = 0.15. The yellow square shows the parameter sets we adopted in our
simulation and real data analysis.
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The hyper parameters in the SSM can be adjusted by using self-organizing state space model [32].
The proposed method is for tracking a non-stationary change even at the initial stage of a time series
(i.e., t < 10) where sample size for the adjustment is not enough. For the stability of the estimation, the
value of each hyper parameters is determined as described above.
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