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Abstract: A new one-parameter distribution is presented with similar mathematical characteristics to
the two parameter conventional Weibull. It has an estimator that only depends on the sample mean.
The relative entropy with respect to the Weibull distribution is derived in order to examine the level
of similarity between them. The performance of the new distribution is compared to the Weibull and
in some cases the Gamma distribution using real data. In addition, the Exponential distribution is
modified to include an extra parameter via a simple transformation using fractional mathematics.
It will be shown that the modified version also exhibits Weibull characteristics for particular values
of the second parameter.

Keywords: relative entropy; 1D-Weibull distribution; fractional exponential distribution; Weibull
distribution; gamma distribution

1. Introduction

A one-parameter distribution is presented, hereby referred to as the 1D-Weibull, which has
asymptotic behaviour similar to the conventional Weibull. Unlike the two parameter formulation of
the latter, the 1D-Weibull only has one parameter, w, bounded by the interval 0 ≤ w ≤ 1. The estimator
of this parameter depends only on the sample mean. Distributions like the Weibull generally have
two or more parameters in order to characterise the statistical behaviour of physical phenomena.
This presents a number of issues such as the fact that estimating two or more parameters introduces
greater loss associated with small or poor sampling during the estimation process. The question
arises as to whether it is possible to reduce such losses by using ‘simple’ distributions with less
parameters but with equally good performance. Thus, aside from introducing the 1D-Weibull as
a stand-alone distribution, the paper will also examine whether the 1D-Weibull can be used as a
one-parameter alternative to the Weibull. To answer this question, a metric is required that determines
the degree of separation or relative entropy (divergence) between them. For small relative entropy
the two-parameter Weibull can be replaced by the simpler one-parameter 1D-Weibull distribution.
Under this condition, the 1D-Weibull is expected to perform at least as well as the two-parameter
conventional Weibull distribution.

One reason why there is interest at finding distributions with a smaller number of parameters
is because they don’t have issues of complexity and over-fitting. The simpler distribution with good
performance is better for modelling purposes. This can be deduced from the Akaike information
criterion (AIC) [1,2] and other variants such as the Bayesian information criterion when examining the
performance between two distributions against data. The AIC was obtained by Akaike while seeking
to find a connection between the relative entropy of information theory and the maximum likelihood
method. When comparing a number of models against the same data, the model with the minimum
AIC is the one preferred but the AIC includes a penalty for those models with more parameters in order
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to discourage over-fitting. This means that for two distributions that perform equally well against the
same data the one with the smaller number of parameters will be the best model. The AIC gives an
asymptotic estimate of the performance between distributions and only on the same data. It does not
assume knowledge of the distribution that created the data. The AIC between the 1D-Weibull and
Weibull will be compared in the paper. However, a more powerful analytic approach for comparing
two distributions whose mathematical forms are known, regardless of whether the data is the same or
not, is to calculate the relative entropy between them.

The relative entropy between the 1D-Weibull and Weibull distributions will be derived on the
basis of the Kullback-Leibler (K-L) divergence formulation [3–10]. The Kullback-Leibler approach
has been used previously to examine the separation between probability densities [11–14]. This has
been done with the aim of replacing one standard version with another whenever the relative entropy
between them is small or zero. The conventional relative entropy between two standard distributions,
while of academic interest, serves no practical purpose in the analysis of real physical processes. This is
due to the fact that the solutions which achieve small relative entropy between them are trivial or
unique and might arise from intersections for example. Failure to obtain small or zero relative entropy
between two distributions is mainly due to their different mathematical forms which are used for
modelling specific problems. The requirement is to find distributions that have zero or very close
to zero relative entropy with respect to more complicated distributions while also having a smaller
number of parameters. In addition, a small relative entropy must be valid for a larger solution set
beyond the unique or trivial cases. Only then is it useful to replace a complicated distribution with a
simpler one.

The K-L relative entropy gives solutions which contain the parameters of the two densities.
This allows testing of different estimators for all the parameters since the goal is to find estimators
that minimise or set the relative entropy to zero. This will be seen later in the paper when it is shown
that the estimator ŵ of the 1D-Weibull density is equivalent to wmin, derived from the expression for
the relative entropy, that minimises the divergence between the 1D-Weibull and Weibull densities.
In other words, the estimator ŵ obtained from the maximum likelihood method (MLM) is equivalent
to the ‘theoretical’ expression wmin which minimises the relative entropy between the 1D-Weibull and
standard Weibull densities. Thus the latter approach can be explored as an alternative to the MLM for
obtaining parameter estimators. In addition, the relative entropy allows easy determination of upper
and lower bounds for such estimators. Under certain conditions, the relative entropy can be connected
to the Fisher information matrix directly.

It it worth noting two ‘issues’ with the K-L formulation. The K-L is a pseudo-metric as it is not
symmetric for large separations between the two densities and does not obey the triangle inequality.
It is rather simple to make it symmetric for large separations however. If two probability densities
p(x) and q(x) have relative entropy D(p(x)||q(x)), then their relative entropy can be made symmetric
using the following expression

D(p(x)||q(x)) = D(p(x)||q(x)) + D(q(x)||p(x)) (1)

The relative entropy has a mathematical duality with the Fisher-Rao geodesic which is symmetric
for all separations and obeys the triangle inequality [15]. This is especially true in the limit of small
separation between the two densities. For almost all cases of interest however, the issues of symmetry
and large separation of densities are of no consequence.

In addition to deriving distributions with reduced parameters such as the 1D-Weibull, it is possible
to increase the number of parameters too. For instance, a standard distribution such as the Exponential
which has decaying characteristics, can be modified to include an extra parameter. The (fractional)
two-parameter Exponential distribution will also be presented which contains the standard Exponential
decaying characteristics as a special limit of the second parameter. It also has performance that is
analogous to the standard Weibull and extreme-value type distributions. It will be shown that via
the use of fractional mathematics, a simple transformation can be obtained that makes this possible.
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The transformation takes a random variable x and transforms it to a form that is a function of the second
parameter. This parameter α is the fractional order appearing in the transformation. The fractional
order is inherent in the operators which are used in fractional differentiation and integration. Fractional
mathematics has the potential to change the way statistical analysis of problems is made. The reader is
referred to [16–18] for details and the references therein. It is worth noting that the word ‘fractional’
is a historical misnomer. The term ‘fractional’ mathematics should in fact be understood to mean
‘generalised’ mathematics. For example integer order differentiation and integration are special limits
of the fractional (general) versions.

Firstly however, the 1D-Weibull distribution is considered and its performance against the
conventional two-parameter Weibull is investigated theoretically and later in Section 5 on real data.

2. The 1D-Weibull Distribution and Its Statistical Properties

The conventional Weibull distribution is parametrised by a shape parameter k and scale parameter
λ such that the CDF is given by

ρ̃0(x) = 1− e−
xk

λk (2)

and the PDF is given by the derivative of the CDF which becomes

ρ0(x) =
k

λk xk−1e−
xk

λk (3)

It is worth pointing out that when the Weibull shape parameter takes the value k = 1,
the asymptotic performance of the Weibull distribution behaves like the exponential distribution.
The case when k = 2 is a very special limit and the Weibull reduces to the Rayleigh distribution.
Finally when k = 3.5, the asymptotic behaviour of the Weibull distribution resembles a Gaussian or
Normal distribution. Generally, in order to model a physical system, both of the parameters k and λ

are required. These parameters can be estimated by sampling observed data sets. Using the maximum
likelihood approach an estimator for k̂ can be obtained as:

1
k̂
=

∑n
i=1 xk̂

i log(xi)

∑n
i=1 xk̂

i

− 1
n

n

∑
i=1

log(xi) (4)

Given the form of the estimator for k, (4) must be solved numerically. The estimator for λ̂ is
obtained via a simpler expression,

λ̂k =
1
n

n

∑
i=1

xk
i (5)

where the total number of variables sampled is n. In order to obtain λ in (5), the shape parameter k has
to be estimated first using (4).

A one-parameter Weibull distribution which has asymptotic behaviour that is similar to the
two-parameter Weibull distribution is now considered. The one parameter Weibull-type distribution
(1D-Weibull) has parameter w whose estimator is obtained from the sample mean. The CDF is given as

ρ̃(x) = 1 + wx
[

2 + log(w) [x(x + 1) log(w)− 2x− 1]
log(w)− 2

]
(6)

The density (PDF) is given as the derivative of (6) so that:

ρ(x) =
dρ̃(x)

dx
≡ log3(w)

log(w)− 2
x(x + 1)wx (7)
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Both the CDF (6) and PDF (7) depend only on one parameter w whose values are bounded in the
interval 0 ≤ w ≤ 1. The following limits apply to the PDF:

lim
x→0

ρ(x) = 0; lim
x→∞

ρ(x) = 0 (8)

and

lim
x→0

ρ̃(x) = 0; lim
x→∞

ρ̃(x) = 1 (9)

for the CDF. Figure 1 shows plots of the density for varying w values. The behaviour of the 1D-Weibull
distribution is analogous to the two parameter Weibull. How much so will require a separation metric
or divergence that can determine the degree of separation (or similarity) between them. This will be
done in the context of the relative entropy in the next Section but before that, some important statistical
properties of the 1D-Weibull distribution will be derived. An estimator ŵ can be obtained from the
maximum likelihood method. Let the likelihood function be

l(w) =
n

∏
i=1

log3(w)

log(w)− 2
xi(xi + 1)wxi (10)

The log-likelihood of (10) is expanded as follows where the left hand side is written as
L(w) = log(l(w)):

L(w) = log

(
log3n(w)

(log(w)− 2)n

)
+

n

∑
i=1

log(xi) +
n

∑
i=1

log(xi + 1) + log(w)
n

∑
i=1

xi (11)
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Figure 1. Plot of the 1D-Weibull density, (7), for varying values of the parameter w.

The estimator ŵ can be obtained by taking the derivative of (11) and setting it to zero,

∂

∂w
L(w) =

3n
w log(w)

− n
w(log(w)− 2)

+
1
w

n

∑
i=1

xi

≡ 0 (12)
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By simplifying (12), it is shown that the estimator is easily obtained via the quadratic equation:

log2(w) +
2(1− µ)

µ
log(w)− 6

µ
= 0 (13)

where µ is the mean. The solution can be readily obtained via the use of the transformation x = log(w)

so that

x2 +
2(1− µ)

µ
x− 6

µ
= 0 (14)

As expected from a quadratic equation, there are two solutions such that

x± =
1
µ

(
µ− 1±

√
µ2 + 4µ + 1

)
(15)

The negative solution ensures that the estimator lies within the correct bounds 0 ≤ ŵ ≤ 1.
Thus using the definition of x, the following form is obtained for the estimator ŵ:

ŵ = exp
[

1
µ

(
µ− 1−

√
µ2 + 4µ + 1

)]
(16)

where µ can be either the population or sample mean respectively, i.e.,

µ =
1
n

n

∑
i=1

xi (17)

and n is the total number of random variables sampled in the data. In order to test the convergence
of the estimator ŵ, i.e., (16), Monte Carlo simulations were performed using a seed value for w.
The convergence of the estimator to the seed was tested and a typical result is shown in Figure 2.
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Figure 2. Monte Carlo simulations to test the 1D-Weibull estimator ŵ. The horizontal line is equal
to the seed (w = 0.72513) and the mean of the simulated convergences is wmean = 0.72514 after
NM.C. = 1× 104 simulations.

In this example, N = 1000 samples were generated randomly from the 1D-Weibull PDF each
time for NM.C. = 1× 104 simulations. From Figure 2 the estimator for the 1D-Weibull distribution



Stats 2019, 2 39

possesses the correct convergence. This is to be expected as the estimator ŵ depends on the sample
mean. Thus the convergence of the estimator depends on the correct estimation of the mean of the
randomly generated data samples. Next, the moments < xm > of the 1D-Weibull will be presented for
m = 0, 1, 2, .... The moments are obtained from,

< xm >=
∫

Ω
xmρ(x)dx (18)

where the 1D-Weibull density is given by (7) and the integration domain is Ω ∈ [0, ∞]. Specifically,
the moments are calculated as:

< xm >=
log3(w)

log(w)− 2

∫ ∞

0
xm+1(x + 1)wxdx (19)

Expanding the integrand and using integration by parts yields the following result for the
1D-Weibull moments,

< xm >=
Γ(m + 2) (log(w)−m− 2)

logm(w−1) (log(w)− 2)
(20)

Observe that the m = 0 order gives < x0 >= 1 which is also readily seen from (18), that is,
the second axiom of probability is obtained which states that the integral of the density over the entire
domain is unity. The expectation or mean is given by the m = 1 order and from (20) it becomes

< x >=
2(log(w)− 3)

log(w−1) (log(w)− 2)
(21)

The variance for the 1D-Weibull is obtained by using the m = 1, 2 orders so that,

var(w) = < x2 > − < x >2

=
2
(

6− 6 log(w) + log2(w)
)

log2(w) (log(w)− 2)2 (22)

Higher order moments can be computed using (20). In order to generate random variables that
are 1D-Weibull distributed (Yi ∼ W1D(w)) the CDF (6) has to be inverted and must be solved as a
function of the variable q whose value is obtained from a uniform distribution U ∈ [0, 1]. To do this,
consider the fundamental transformation law of probabilities for two densities p(y) and q(x):

|p(y)dy| = |q(x)dx| (23)

Since p(x) ≥ 0 and q(x) ≥ 0,

p(y) = q(x)
∣∣∣∣dx
dy

∣∣∣∣ (24)

Let p(y) be the 1D-Weibull density and q(x) be the uniform density

q(x) =
1

b− a
(25)

valid in the interval a ≤ x ≤ b and a 6= b. Then from (24)

log3(w)

log(w)− 2

∫ y

0
y(y + 1)wydy =

∫ q

0

1
b− a

dx (26)
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where |dx|, |dy| are positive. The integrals on both sides of (26) are nothing more than the CDF of
the 1D-Weibull on the left and the uniform distribution on the right respectively. Let q be a random
number drawn from the uniform distribution in the interval a = 0 and b = 1. Then (26) becomes,

(q− 1) (log(w)− 2) = wy (2 + log(w) [y(y + 1) log(w)− 2y− 1]) (27)

This requires inversion of (27) in order to solve for y. That is, solve for the 1D-Weibull random
number y for a given random number q generated from the uniform distribution for a particular
value of the parameter w. However, solving for y in (27) requires numerical computation given the
form of the 1D-Weibull CDF. A typical numerical solution for randomly generated variables from the
1D-Weibull distribution is shown in Figure 3. The theoretical 1D-Weibull and standard Weibull have
been plotted as a comparison. As expected, the theoretical 1D-Weibull PDF matches the generated data
extremely well. Finally, it is worth highlighting how the PDF and CDF of the 1D-Weibull distribution
were derived. The PDF was obtained by minimising the relative entropy between the standard Weibull
and a density p0(x) whose form includes a polynomial term such that,

p0(x) = Aη1(x)wη2(x) (28)

where η(x) = 1 + x + x2 + ... and A is a normalization constant. The normalization can be performed
using the expression:

p(x) = |p0(x)|
[∫

Ω
|p0(x)|dx

]−1
(29)

Figure 3. Random variables generated from the 1D-Weibull CDF are shown as a PDF histogram.
The theoretical PDF is also shown which indicates that the generated variables are Xi ∼ W1D(w)

distributed. The Weibull is also fitted for comparison. Here west is the value obtained from the
estimator ŵ, i.e., (16).

From (28), it can be seen that the 1D-Weibull is a special case for which A is the coefficient, refer
to (7), with η1(x) = x + x2 and η2(x) = x. Once the PDF is obtained, namely (7), the CDF is easily
determined by integrating the PDF to obtain (6). In the next Section, a comparison of the 1D-Weibull
and Weibull distributions is presented based on the relative entropy or Kullback-Leibler divergence
between them.
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3. The Relative Entropy between the 1D-Weilbull and Weibull Densities

The relative entropy between two probability densities will be obtained using the Kullback-
Leibler formulation:

D(p(x)||q(x)) =
∫

Ω
p(x) log

(
p(x)
q(x)

)
dx (30)

where Ω ∈ [0, ∞] is the domain of integration. Here p(x) is the probability density that another
probability density q(x) asymptotically approaches. In other words, p(x) is the theoretical or accepted
model that more ‘accurately’ describes a physical process or system. The density q(x) is a model
(approximation) for which knowledge is required as to how close it is to the density p(x). Whenever
the relative entropy or divergence between the two densities is small it is possible to replace p(x) with
the approximation q(x). In the context of this paper, p(x) is the Weibull density with two parameters
and the requirement is to replace it with the one parameter 1D-Weibull. Thus let p(x) be:

p(x) =
k

λk xk−1e−
xk

λk (31)

and q(x) be:

q(x) =
log3(w)

log(w)− 2
x(x + 1)wx (32)

Substituting (31) and (32) into (30) gives the following expression for the relative entropy:

D(p(x)||q(x)) =
∫ ∞

0
p(x)

[
log

(
k(log(w)− 2)

λk log3(w)

)]
dx +

k(k− 2)
λk

∫ ∞

0
xk−1 log(x)e−

xk

λk dx−

k log(w)

λk

∫ ∞

0
xke−

xk

λk dx− k
λ2k

∫ ∞

0
x2k−1e−

xk

λk dx− k
λk

∫ ∞

0
xk−1 log(1 + x)e−

xk

λk dx (33)

It is now a matter of performing the integrations as given in (33) which require transformations
and integration by parts to obtain the solutions. The first term is straightforward to evaluate since the
log(·) function is independent of the variable x. By the second axiom of probability

∫ ∞
0 p(x)dx = 1

so that:

∫ ∞

0
p(x)

[
log

(
k(log(w)− 2)

λk log3(w)

)]
dx = log

(
k(log(w)− 2)

λk log3(w)

)
(34)

In a similar way the next term can be computed to obtain the following result:

k(k− 2)
λk

∫ ∞

0
xk−1 log(x)e−

xk

λk dx = − (k− 2)
k

[
γ + log(λ−k)

]
(35)

where γ is the Euler-constant. After evaluating the next integral, the result turns out to have the
following form:

k log(w)

λk

∫ ∞

0
xke−

xk

λk dx =
λ

k
log(w)Γ

(
1
k

)
(36)

Performing the next integration results in the solution:

k
λ2k

∫ ∞

0
x2k−1e−

xk

λk dx = 1 (37)
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Unfortunately, unlike the other integral terms appearing in (33), the final integral does not have a
closed form and requires numerical solution. However it can be transformed to two separate integrals
with different terminals which can then be solved analytically as follows:

k
λk

∫ ∞

0
xk−1 log(1 + x)e−

xk

λk dx =
k

λk

∫ 1

0
xk−1(1 + x)e−

xk

λk dx +
k

λk

∫ ∞

2
xk−1

(
1
x
+ log(x)

)
e−

xk

λk dx (38)

In view of (38), the final integral can now be evaluated in terms of transformations and integration
by parts. The solution then becomes:

k
λk

∫ ∞

0
xk−1 log(1 + x)e−

xk

λk dx = 1 +
E1(2kλ−k)

k
−

E− 1
k
(λ−k)

λk − e−
1

λk + λΓ
(

1 +
1
k

)
+

log(2)e−
2k

λk +
1
λ

Γ
(

k− 1
k

, 2kλ−k
)

(39)

where Γ(·, ·) is the incomplete Gamma-function and E·(·) is the exponential-integral function.
Equation (39) is exact for large (realistic) values of λ and an excellent approximation for small λ→ 0.
After substituting (34)–(37) and (39) into (33), the relative entropy between the 1D-Weibull and Weibull
densities is given by the following expression:

D(p(x)||q(x)) =
E− 1

k
(λ−k)

λk − E1(2kλ−k)

k
+ e−

1
λk − log(2)e−

2k

λk − λ (1 + log(w)) Γ
(

1 +
1
k

)
−

1
λ

Γ
(

k− 1
k

, 2kλ−k
)
+ log

(
k(log(w)− 2)

λk log3(w)

)
+

1
k
(k− 2) [k log(λ)− γ]− 2 (40)

The relative entropy or divergence (40) gives the separation between the 1D-Weibull and Weibull
distributions as a function of their parameters, namely w, k and λ respectively. From the relative
entropy (40), it is possible to find an expression for w that minimizes the separation between the
1D-Weibull and Weibull distributions. Taking the derivative gives:

∂

∂w
D(p(x)||q(x)) = − λ

w
Γ
(

1 +
1
k

)
+

1
w(log(w)− 2)

− 3
w log(w)

(41)

Setting (41) equal to zero and simplifying terms gives the following quadratic equation for w:

log2(w) + 2

 1

λΓ
(

1 + 1
k

) − 1

 log(w)− 6

λΓ
(

1 + 1
k

) = 0 (42)

Solving (42) and considering the negative root only, the expression for wmin that minimizes the
relative entropy or divergence is given by:

wmin = exp

 1

λΓ
(

1 + 1
k

) [λΓ
(

1 +
1
k

)
− 1−

√
λ2Γ2

(
1 +

1
k

)
+ 4λΓ

(
1 +

1
k

)
+ 1

] (43)

Equation (43) can be plotted as a surface in terms of the Weibull parameters (k, λ). This means
that for any (k, λ), the corresponding point on the surface is wmin that minimizes the relative entropy
between the 1D-Weibull and Weibull distributions. Using a fixed value for wmin as determined
from (43), plots are shown for the relative entropy as a function of the Weibull parameters (k, λ) in
Figure 4. Figure 4a shows the relative entropy for λ values between approximately zero to just over
λ = 10 where the divergence between the 1D-Weibull and Weibull distributions is zero or very close to
zero. This occurs when wmin = 0.4. In this region, see Figure 4a, and for the Weibull parameter values
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(k, λ) shown, the Weibull distribution can be replaced by the 1D-Weibull. In order to have a relative
entropy or divergence that is close to zero or even zero for values of λ greater than say λ = 10 requires
using (43) to obtain wmin = 0.84. The results are shown in Figure 4b where the relative entropy is
close to zero or zero everywhere for approximately 10 < λ < 30. Finally, small to zero divergence for
higher values of the Weibull scale parameter, 30 < λ ≤ 50, can be achieved when wmin = 0.95 as the
results of Figure 4c show. Note that in all cases, the shape parameter values of interest for the Weibull
distribution are covered, i.e., k ∈ [1.4, 4].

(a) (b)

(c)

Figure 4. Divergence of Weibull and 1D-Weibull densities for (a) wmin = 0.4, (b) wmin = 0.84 and
(c) wmin = 0.95.

As further examination of the performance of the 1D-Weibull density, the Akaike information
criterion A will be considered. The Akaike information criterion (AIC) has the following definition:

A = 2p− 2 log(L(θ̂i)) +
2p2 + 2p
n− p− 1

(44)

where the idea is to use estimators for the parameters θi that maximise the log-likelihood function L(θ̂i).
Here p represents the total number of parameters for each model being compared using certain data.
The AIC penalises a model that has too many parameters because of over-fitting. This is especially true
for small sample sizes n for which (44) is valid. When the sample size increases n → ∞, the second
term goes to zero and the AIC takes the form:

A = 2p− 2 log(L(θ̂)) (45)
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Another formulation of the AIC involves the residual sum of squares R, assuming that the
residuals are distributed according to independent and identical normal distributions with zero mean,

A = 2p + n log(R/n) (46)

In the case of the AIC involving the residual sum of squares, the idea is to have R→ 0. When this
happens two models fit data equally well except that, according to the AIC, any discrepancy that might
be present relies on the number of parameters p they each have. The same condition holds for the
AIC formulated on the basis of the log-likelihood function, (45), however the log-likelihood function
must be as large as possible before the first term dominates. Preference is for simpler models with
fewer parameters that avoid the issues of over-fitting and complexity. On that basis, it appears that the
1D-Weibull with one less parameter compared to the Weibull has the advantage. The AIC value of the
model that is generally smallest indicates the model that best fits the data. In order to compare the
1D-Weibull and Weibull using the AIC approach, care must be taken with the data being modelled.
If the data is 1D-Weibull distributed it will fit better than the Weibull, see for example Figure 3. This is
also because it has one parameter p less which means that the AIC values will be smaller. If the data is
Weibull distributed, for cases where the 1D-Weibull has small or zero relative entropy with respect to
the Weibull, both will fit the data equally well but with the better model being the 1D-Weibull since
smaller AIC values will also be due to its one parameter compared to the two-parameter Weibull.

To better examine whether the 1D-Weibull has good performance relative to Weibull, random
data was generated using the Frechet distribution as an alternative:

ρF(x) =
a
s

(
x−m

s

)−(a+1)
e−(

x−m
s )

−a
(47)

where the Frechet distribution has three parameters, a-shape, s-scale and m-location. Using seed
values for the Frechet distribution, Frechet random variables were generated and 103 Monte Carlo
simulations were run with different random numbers generated each time. The 1D-Weibull and
Weibull parameters were estimated each time and fitted to the Frechet density. The corresponding AIC
values were calculated for each case. Figure 5a shows the Monte Carlo simulations and the AIC values.
In all cases the 1D-Weibull has smaller values and hence it is the best model compared to Weibull
for fitting the Frechet data. Figure 5b shows a typical fit to random Frechet data plotted as a density
histogram together with fits from the 1D-Weibull, Weibull and the theoretical Frechet density.
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Figure 5. Plot (a) shows Monte Carlo simulations to obtain the AIC for the 1D-Weibull and Weibull
distributions on random data generated from the three parameter Frechet distribution. Plot (b) shows a
typical density histogram obtained from randomly generated Frechet data and fits to it by the densities.
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So far, consideration has been given to finding a distribution, namely the 1D-Weibull, that has
only one parameter and can fit data as well as the two-parameter Weibull when the relative entropy is
small between them. It will be shown to fit data from different areas of research in Section 5. What will
be considered next is a way of adding an extra parameter to standard one-parameter distributions.
This modification not only allows the performance of the modified distribution to widen but it also
maintains its previous one-parameter characteristics as a special limit of the second parameter. This will
be done on the basis of transforms obtained from fractional mathematics that have been used to derive
fractional distributions such as the Pareto [16,17]. The latter has been shown to model radar clutter
extremely well. This idea is considered next and demonstrated by deriving a (fractional) two parameter
version for the Exponential distribution.

4. A (Fractional) Two Parameter Exponential Distribution

The standard Exponential distribution has one parameter λ ≡ 1/µ where µ is the sample mean.
In order to introduce another parameter to it that acts like the shape parameter of many two-parameter
distributions it will be necessary to manipulate the variable x in the Exponential distribution,

ρ(x) = λe−λx (48)

The variable can be either continuous x or discrete xi. The requirement is to find a simple
transformation that relates x or xi to a modified version of themselves as a function of the second
parameter α. Once this new x(α) is obtained it is substituted into the CDF version of (48) to derive
a two parameter form for the Exponential distribution. This will be done by using an operator that
maps a function to a fractional or generalised version whose extra parameter α will act as the shape
parameter. Let f (y) = y be a i.i.d. random variable which will be transformed to the variable x(α)
as follows:

f (x) 7→
∫ x

0
Λ̂(x 7→ y) f (y)dy (49)

where Λ̂(x 7→ y) is an operator that has the following form [18]:

Λ̂(x 7→ y) =
1

Γ(1− α)

d
dx

∫ x

0
dy(x− y)−α (50)

The argument appearing in the operator (x 7→ y) means that the variable x maps on to the variable
y as shown below. Let f (x) = x be a variable that is to be modified by f (y) = y to x(α). The integrand
of (49) becomes:

Λ̂(x 7→ y) f (y) =
1

Γ(1− α)

d
dx

∫ x

0
y(x− y)−αdy (51)

The integral can be carried out if a linear transformation u = x− y is used. Then dy = −du and
substituting the transformation into the integrand gives

Λ̂(x 7→ y) f (y) =
1

Γ(1− α)

d
dx

∫ x

0

(
xu−α − u1−α

)
du

=
1

Γ(1− α)

d
dx

[
xu1−α

1− α

∣∣∣∣∣
x

0

− u2−α

2− α

∣∣∣∣∣
x

0

]

=
x1−α

Γ(2− α)
(52)

where the relation Γ(2− α) = (1− α)Γ(1− α) has been used. The final step is to map the variable x to
y such that Λ̂(x 7→ y) f (y) becomes Λ̂(y) f (y), that is,
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Λ̂(y) f (y) =
y1−α

Γ(2− α)
(53)

Substituting into (49) and noting that f (x) = x on the left means that this function (variable) is
mapped as follows,

x 7→ 1
Γ(2− α)

∫ x

0
y1−αdy (54)

The integral is easy to calculate and using the fact that Γ(3− α) = (2− α)Γ(2− α), the final
transformation for a variable x to its fractional analogue is,

x 7→ x2−α

Γ(3− α)
(55)

for the continuous case and

n

∑
i

xi 7→
1

Γ(3− α)

n

∑
i

x2−α
i (56)

for the discrete case. It is now possible to use the continuous transformation to construct a fractional or
two-parameter Exponential distribution. Replacing x in the standard CDF gives the following form

ρ̃(x) =
∣∣∣∣1− exp

(
− λ

Γ(3− α)
x2−α

)∣∣∣∣ (57)

The PDF is easily obtained using the derivative of the CDF:

ρ(x) ≡
∣∣∣∣ d
dx

ρ̃(x)
∣∣∣∣ = ∣∣∣∣ λ

Γ(2− α)
x1−αe−

λ
Γ(3−α)

x2−α
∣∣∣∣ (58)

Notice that when α = 1 both the CDF and PDF collapse to the standard versions. Hence the
fractional two-parameter Exponential also has the same performance characteristics as the standard
Exponential in addition to its wider applicability due to the second parameter α. The reason why the
modulus is required is because the parameter α can also take any value that is real (α ∈ R) or complex
(α ∈ C). This ensures that ρ(x) ≥ 0 and avoids complex values. An important property that (58) must
have if it is indeed a density is that it’s integral must be unity, otherwise it is not a probability density.
It is easy to establish this since

λ

Γ(2− α)

∫ ∞

0
x1−αe−

λ
Γ(3−α)

x2−α

dx = −e−
λ

Γ(3−α)
x2−α

∣∣∣∣∣
∞

0
= 1 (59)

and so the fractional or two-parameter Exponential distribution is a density. This means that the
following properties hold:

lim
x→0

ρexp(x) = 0; lim
x→∞

ρexp(x) = 0 (60)

and

lim
x→0

ρ̃exp(x) = 0; lim
x→∞

ρ̃exp(x) = 1 (61)
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The moments can be obtained via the usual process,

< xm >=
λ

Γ(2− α)

∫ ∞

0
xm+1−αe−

λ
Γ(3−α)

x2−α

dx (62)

Using linear transformations and integration by parts it can be shown that the moments have the
following closed form,

< xm >= Γ
(

1− m
α− 2

) [
λ

Γ(3− α)

] m
α−2

(63)

Setting m = 0 in (63) gives the second axiom of probability which means the the moment is equal
to unity over the entire integration domain. The expectation or mean is given by m = 1:

< x >= Γ
(

1− 1
α− 2

) [
λ

Γ(3− α)

] 1
α−2

(64)

When the parameter α takes on the value α = 1, the (fractional) two-parameter Exponential distribution
collapses to the standard Exponential. Thus setting α = 1 into (64) gives the standard expectation:

< x > = Γ (2)
[

λ

Γ(2)

]−1

=
1
λ

= µ (65)

where 1/λ = µ and µ is the standard expectation. Using m = 1 and m = 2, the variance var(α, λ) =<

x2 > − < x >2 becomes,

var(α, λ) =

[
Γ
(

α− 4
α− 2

)
− Γ2

(
α− 3
α− 2

)] [
λ

Γ (3− α)

] 2
α−2

(66)

The standard Exponential variance is obtained when α = 1 so that,

var(λ) =
[
Γ (3)− Γ2 (2)

] [ λ

Γ (2)

]−2

=
1

λ2 (67)

as expected. Finally, to obtain the estimators for the two parameters (α, λ) use of the maximum
likelihood method is made where the likelihood function is:

l(α, λ) =
λn

Γn(2− α)

n

∏
i=1

x1−α
i e−

λx2−α
i

Γ(3−α) (68)

From this, the log-likelihood function is derived in the following form,

L(α, λ) = n log(λ)− n log(Γ(2− α)) + (1− α)
n

∑
i=1

log(xi)−
λ

Γ(3− α)

n

∑
i=1

x2−α
i (69)
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Before deriving the estimator for λ̂ from (69), consider the alternative approach first. From (56)
for a discrete variable, the fractional transform implies that the standard estimator λ̂ can be replaced
as follows:

λ̂ =

[
1
n

n

∑
i=1

xi

]−1

7→ λ̂α =

[
1

nΓ(3− α)

n

∑
i=1

x2−α
i

]−1

⇐⇒
n

∑
i=1

xi 7→
1

Γ(3− α)

n

∑
i=1

x2−α
i (70)

When α = 1, λ̂α = λ̂. Returning to (69), the estimator for λα is given by,

∂L(α, λ)

∂λ
= 0 then λ̂α =

[
1

nΓ(3− α)

n

∑
i=1

x2−α
i

]−1

(71)

which means that the fractional transform method for obtaining the estimator agrees with the maximum
likelihood approach. If α is chosen to be any value α ∈ R or α ∈ C then the modulus is considered,
i.e., |λ̂α|. The right-hand side of the λ’s is of course the sample (or population) mean µ. Unfortunately,
the estimator for the second (fractional) parameter α does not have a closed form and must be solved
numerically similarly to how the shape parameter for the standard Weibull k is obtained. From (69),
the requirement is to solve for

∂L(α, λ)

∂α
= 0 (72)

Then the estimator α̂ is obtained numerically from:

ψ(1)(2− α̂)

ψ(0)(2− α̂)
=

1
n

n

∑
i=1

log (xi) +
λ

Γ(3− α̂)

[
1
n

ψ(0)(3− α̂)
n

∑
i=1

x2−α̂
i − 1

n

n

∑
i=1

log (xi)x2−α̂
i

]
(73)

where ψ(0)(·) and ψ(1)(·) are the poly-gamma functions of order zero and one respectively. Using (71),
λ can be eliminated in (73).

Figure 6 shows plots for different values of α including negative ones. Again this is possible since
α ∈ C and α ∈ R. The conventional Exponential density is a special case when α = 1, see (58) in the limit
α = 1. Furthermore, the fractional exponential displays mathematical characteristics that are Weibull
in nature as well as those of extreme value-type distributions. The standard Exponential and the
two-parameter Exponential distributions were tested against random data generated by the non-local
F-distribution which has three parameters: two that are the degree of freedom ν1 and ν2 respectively
and the locality parameter δ. When δ = 0, the non-local F-distribution reduces to the F-distribution.
The reason why data was chosen from this distribution is because the Exponential with only one
parameter λ is not expected to fit the three parameter F-data well as Figure 7 shows. Nevertheless by
modifying the Exponential distribution to a two parameter form, it is possible to achieve better fits to
the data by varying α while keeping λ fixed. As a further comparison, Figure 8 shows the 1D-Weibull
and (fractional) two-parameter Exponential densities using non-optimised parameters. What is
interesting is that in essence both of these distributions should not have Weibull-type characteristics.
This is because the 1D-Weibull has only one parameter while the Exponential has a decaying trend.
By modifying the Exponential to two parameters, it not only has the standard Exponential decay
characteristics but it also exhibits Weibull and extreme value behaviour too.
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Figure 6. The density is plotted for the fractional or two-parameter Exponential for a fixed λ. When
α = 1 the standard Exponential is recovered. Figure (a) shows the behaviour of the two-parameter
exponential for α values going from 0 to −5 while the plot on the right, Figure (b), shows the behaviour
for α values going from 0.4 to 1.8. The standard Exponential density (α = 1) is restricted to a decaying
form only.
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Figure 7. Data was generated using the non-local F-distribution with degree of freedom parameters
ν1 = 5, ν2 = 10 and locality parameter δ = 5. Figure (a) shows the density of F-data and fits to it using
the Exponential distribution (α = 1) and the (fractional) two parameter Exponential distribution with
α = 0.88. In all cases the Exponential parameter λ = 0.4036. Figure (b) shows the CDF of the distributions.
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Figure 8. The 1D-Weibull and (fractional) two-parameter Exponential densities are plotted for comparison
using non-optimal parameters.

It should be clear from previously that the divergence between the 1D-Weibull and conventional
Weibull indicates for what Weibull parameters (k, λ) the 1D-Weibull matches the performance of the
Weibull. In other words, regardless of the data being investigated, if the Weibull fits such data then it is
also possible to ascertain whether the 1D-Weibull does too. Whenever the divergence is zero or small
enough, it is then possible to replace the two-parameter Weibull with the one-parameter 1D-Weibull
which only requires the sample mean to fit such data. In order to examine the performance of the
1D-Weibull, real data will be tested in this Section taken from different fields of research.

5. Application of the 1D-Weibull to Real Data

5.1. Meteorological Data

The study of the speed profile of wind is very important for energy conversion using
wind-turbines for example. In such studies it is necessary to characterise the wind speed distribution
at a particular site and typically this is accomplished using the Weibull distribution. The performance
of the 1D-Weibull and conventional Weibull is compared on wind energy data as discussed in [19].
The authors show that the best distribution for modelling wind speed data is in fact the Weibull
distribution and proceed to estimate the parameters, namely the shape k and scale λ, that best fit the
data using a number of methods. The part density energy method (PDEM) is shown to estimate the
Weibull parameters more accurately than the other methods. For this reason the PDEM results are
used to compare the performance of the 1D-Weibull and Weibull. Figure 9a shows results for wind
data obtained from location 17 out of the entire 29 locations studied in the paper [19]. The parameter
wmin is obtained from (43) for the Weibull parameters given, i.e., (k = 1.7, λ = 4.6). Later when results
are compared with the empirical CDF of other data, it will be shown that in all cases wmin ≈ ŵ, where
ŵ ≡ west is given by the estimator (16). In other words, the maximum likelihood estimator for the
1D-Weibull (which depends only on the mean) is essentially equal to the value of w that minimizes the
divergence between the 1D-Weibull and Weibull distributions as discussed previously.

In the paper by Lorenz [20], data collected on Martian wind speeds was analysed from the Viking
1 and 2 landers. It was shown that the Weibull distribution is very accurate in describing the variation
of wind on the surface of Mars. Figure 9b shows the performance of the 1D-Weibull and Weibull for
data collected by the Viking 1 lander during the first 0–100 sols. Similar analysis has also been done
to other data collected at different sol periods to confirm typical performance as shown in Figure 9b
but have been excluded for brevity reasons. The results of Figure 9a,b confirm the divergence relation
between the 1D-Weibull and Weibull because for the (k, λ) parameters in the figures that describe real
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wind speed data, the convergence between the 1D-Weibull and Weibull is zero or very close to zero as
Figure 4a shows. Using data obtained from the Australian Bureau of Meteorology (BoM) [21], Figure 9c
shows fits to the mean daily wind speed in km/h by the 1D-Weibull and Weibull distributions. As a
comparison, the Gamma-distribution is also shown with corresponding estimated parameters from
the data set. Given that the data is the mean daily wind speed, the fitted data is susceptible to outliers
which have a dramatic effect on the fits of all the distributions.

5.2. Hydrological Data

In [22], data was analysed which was concerned with the rate of water consumption during
summer. For further details, the reader can refer to the paper [22]. Figure 10 shows the fit to the
summer data by the 1D-Weibull and Weibull distributions. Even though the 1D-Weibull is a one
parameter distribution, it performs really well compared to the two-parameter Weibull. Observe that
for the 1D-Weibull, both the estimated w from the data and the predicted version from the Weibull
parameters (43), are approximately equal as discussed previously.
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Figure 9. CDFs of the 1D-Weibull and Weibull for (a) wind data on earth, (b) wind data on mars and
(c) wind data on earth.
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Figure 10. The CDF of the 1D-Weibull and Weibull fits to water consumption data during Summer.

5.3. Medical and Viral Data

Data taken from [23] consists of experiments done to study memory retention as a function of time
in seconds. The data has also been analysed and discussed in [24]. Figure 11a shows a fit to this data set
by the 1D-Weibull and Weibull distributions. In addition, the Gamma-distribution, with corresponding
parameters, is also included as a comparison. The 1D-Weibull fits this data better than both the
standard Weibull and Gamma distributions respectively. In [25,26], data has been presented that
concerns the survival time in days of 72 guinea pigs that have been infected by the tubercle bacilli
virus. The 1D-Weibull and Weibull have been fitted to this data as Figure 11b shows. Notice once again
that the maximum likelihood estimator ŵ ≡ west is approximately equal to the theoretically predicted
version wminwhich utilises the Weibull shape and scale parameters.
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Figure 11. CDFs of the 1D-Weibull and Weibull for (a) neurological data pertaining to memory retention
as a function of time (dimensionless) and (b) the survival duration data of guinea pigs infected with
the tubercle bacilli virus.

5.4. Industrial Data

Modelling processes that have a given lifetime is a subject area of great interest in many areas
of science and engineering. This is especially true in the manufacturing industry where products
are tested rigorously to ascertain how many cycles or time is required before they fail. Two such
data sets are fitted here using the 1D-Weibull and Weibull distributions [26,27]. In the first data
set, twenty five 100 cm specimens of yarn are tested at a given strain level. The data considers the
number of cycles before failure (breakage). Figure 12a shows the empirical CDF against the 1D-Weibull
and Weibull distributions. The other data set [26,27] investigates the endurance of deep groove ball
bearings. Lifetime tests are conducted for twenty three ball bearings and the number of revolutions
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(in millions) before failure is represented in the data set. This data is fitted by the 1D-Weibull and
Weibull distributions and is shown in Figure 12b. Once again, in both Figure 12a,b, the predicted and
estimated values of the parameter w are approximately equal in each case.
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Figure 12. CDFs of the 1D-Weibull and Weibull for (a) data representing the number of cycles to failure
for specimens of yarn under strain and (b) data concerning the failure rate of deep groove ball bearings.

6. Conclusions

A new one-parameter 1D-Weibull distribution was presented that can replace the two-parameter
conventional Weibull for a large set of values of the latter’s parameters, i.e., it is a very good
approximation to the Weibull distribution with validity beyond certain unique or trivial cases. This was
verified by examining the relative entropy between them. The 1D-Weibull has excellent performance
on real data from various areas when compared to the Weibull and gamma distributions and only
requires the estimation of one parameter that only depends on the sample mean as opposed to
the Weibull and Gamma that require the estimation of two parameters. It also avoids the need to
compute parameters using transcendental numerical means as is required for the Weibull shape
parameter k. An alternative approach was also considered by using fractional mathematics to derive
a (fractional) two-parameter Exponential distribution that collapses to the standard version as a
limit. This distribution approximates Weibull too but also exhibits its own interesting characteristics
including those of extreme value distributions. The 1D-Weibull was a reduction in the number of
parameters to one while the two-parameter Exponential was an increase of parameters from one
to two.

This opens up the possibility of creating new or ‘approximate’ distributions to other established
versions that have a smaller (or larger) number of parameters but with comparable performance in the
solution of many scientific, mathematical and engineering problems.
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