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Abstract: In this work, we introduce a new Burr XII power series class of distributions, which is
obtained by compounding exponentiated Burr XII and power series distributions and has a strong
physical motivation. The new distribution contains several important lifetime models. We derive
explicit expressions for the ordinary and incomplete moments and generating functions. We discuss
the maximum likelihood estimation of the model parameters. The maximum likelihood estimation
procedure is presented. We assess the performance of the maximum likelihood estimators in terms
of biases, standard deviations, and mean square of errors by means of two simulation studies.
The usefulness of the new model is illustrated by means of three real data sets. The new proposed
models provide consistently better fits than other competitive models for these data sets.

Keywords: Burr distribution; compounding; hazard rate; lifetime distribution; maximum likelihood
method; power series distribution

1. Introduction and Motivation

Burr XII distribution is the most commonly used distribution for non-monotonic hazard rates.
Burr XII distribution has algebraic tails useful for modeling failures that occur with lesser frequency
than those with corresponding models based on exponential tails. Burr XII distribution finds
its application in flood frequency, software reliability, structural and wind engineering. Burr XII
distribution has two popular distributions as sub models i.e., Lomax distribution and Log logistic
distributions. Weibull distribution is a limiting case of Burr XII distribution. Many extensions of
the Burr XII distribution are found in literature, such as Kumaraswamy Burr XII distribution by [1],
extended Marshall Olkin Burr XII distribution by [2], McDonald Burr XII distribution by [3] and a new
generalized Burr family of distributions is proposed by [4].

The cumulative distribution function (cdf) and probability density function (pdf) of the two
parameter Burr XII (BXII) distribution are given by

Fc,k(x) = 1− (1 + xc)−k, x > 0, c, k > 0, (1)

and
fc,k(x) = c k xc−1 (1 + xc)−k−1. (2)

If c = 1, the scaled BXII distribution reduces to Lomax distribution, if k = 1, then Burr XII
distribution reduces to log logistic distribution (see [5]). Furthermore, Burr XII distribution finds
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its application in various areas such as flood frequency, software reliability, structural engineering,
wind engineering, renewable energy and climatology (see Garcia et al. [6]; Harris [7], Kantar and
Usta [8]; Carta et al. [9]; Panteli and Mancarella [10]; Chiodo and De Falco [11]; Feijóo [12]). On the
other hand, Noack [13] proposed and studied the power series class of distributions; this class of
distribution includes binomial, geometric, logarithmic and Poisson distributions as special cases.
However, these distributions may not be useful when a random variable (rv) takes the value of zero
with high probability i.e., zero inflated. In such situations, it is more appropriate to consider the
distribution which is truncated at zero.

The cdf of the G-power series (G-PS) distributions is

Fλ,ξ(x) = 1− C [λ Ḡ(x; ξ)] /C(λ). (3)

A discrete rv N is a member of power series distributions (truncated at the zero), if the probability
mass function (pmf) is given by

P(N = n|λ) = an λn/C(λ)|(n=1,2,...), (4)

where an ≥ 0, C(λ) =
∞
∑

n=1
an λn and λ ∈ (0, s) is chosen such that C(λ) is finite and its first, second

and third derivative are defined also

C′(λ) =
∞

∑
n=1

n an λn−1.

Some example of C(λ) functions are given by Table 1. The pdf, survival function (sf) and hazard
rate function (hrf) corresponding to Equation (3) are

fλ,ξ(x) = λ g(x)C′ [λ Ḡ(x; ξ)] /C(λ), (5)

F̄λ,ξ(x) = C [λ Ḡ(x; ξ)] /C(λ), (6)

and
hλ,ξ(x) = λ g(x; ξ)C′ [λ Ḡ(x; ξ)] /C [λ Ḡ(x; ξ)] . (7)

The quantile function can be obtained by using Lambert function.

Table 1. Useful quantities for power series distributions.

Distribution C(λ) C−1(λ) an Parameter Space

Poisson eλ − 1 log(1 + λ) (n!)−1 (0, ∞)
Geometric λ(1− λ)−1 λ(1 + λ)−1 1 (0,1)
Binomial (1 + λ)m − 1 (λ + 1)m 1 − 1 (n

m) (0, ∞)
Logarithmic − log(1− λ) 1− e−λ n−1 (0,1)

We provide three motivations of the G-PS class of distribution, which can be applied in some
interesting situation: due to the Stochastic reorientation

Z = min(X1, X2, ..., ZN),

the G-PS class of distributions can arise in many industrial applications and biological organisms.
The G-PS class of distributions can be used to model approximately the time to the first failure
of a system of identical components that are in a series. The G-PS class of distributions exhibit
some interesting behaviors with non-monotonic failure rates such as bathtub, upside bathtub and
increasing-decreasing failure rates which are more likely to be encountered in real life situations.
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The justification for the practicality of the new model is based on the wider use of the BXII model.
In addition, we are motivated to introduce the exponentiated Burr XII power series (EBXIIPS) model
because it exhibits increasing, decreasing, bathtub and reversed J shaped hazard rates as illustrated in
Figures 1–4. It can be viewed as a suitable model for fitting the right skewed and unimodal data.

The rest of the paper is outlined as follows. Construction of the new family is given in Section 2.
Four special models of the new family are presented in Section 3. In Section 4, we derive some
mathematical properties of this family. Maximum likelihood estimation of the parameters is addressed
in Section 5. Two simulation studies are given by Section 6 to see performance of the maximum
likelihood estimators for two special members of this family. In Section 7, the potentiality of
the proposed models is illustrated by means of two real data sets. In Section 8, we offer some
concluding remarks.

2. Construction of the New Family

Let X(1) = min(X1, X2, ..., Xn). The conditional cdf of X(1)|N = n is given by

GX(1) |N=n(x) = 1− [Ḡ(x)]n . (8)

If Ḡ(.) is the survival function of exponentiated Burr XII (EBXII) distribution, with cdf and
pdf as under

Gc,k,α(x) =
[
1− (1 + xc)−k

]α
|(x>0, c,k,α>0), (9)

and
gc,k,α(x) = α c k xc−1(1 + xc)−k−1

[
1− (1 + xc)−k

]α−1
. (10)

Then, Equation (8) becomes

GX(1) |N=n(x) = 1−
[
1−

[
1− (1 + xc)−k

]α]n
. (11)

Then, the cdf and pdf of the EBXIIPS distribution are, respectively, given by

FΘ(x) = 1− C
[
λ− λ

[
1− (1 + xc)−k

]α]
/C(λ), (12)

and

fΘ(x) = λ α c k xc−1

[
1− (1 + xc)−k

]α−1

(1 + xc)k+1

C′
[
λ− λ

[
1− (1 + xc)−k

]α]
C(λ)

, (13)

where Θ = (λ, c, k, α)T . For α = 1, the EBXIIPS family is reduced to a Burr XII power series family that
has been introduced by [14]. The hrf of EBXIIPS distribution is obtained with

hΘ(x) = λ α c k xc−1

[
1− (1 + xc)−k

]α−1

(1 + xc)k+1

C′
[
λ− λ

[
1− (1 + xc)−k

]α]
C
[
λ− λ

[
1− (1 + xc)−k

]α
] . (14)

The quantile function of EBXIIPS distribution, Qx(p), can be defined as F(Qx(p)) = p

x = Qx(p) =
{
−1 + [1− Z(λ, p)]−

1
k
} 1

c
, (15)

where

Z(λ, p) =
{

λ− C−1 [(1− p)C(λ)]
λ

} 1
α

,
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and C−1(.) is the inverse function of C(.).

Proposition 1. The exponentiated Burr XII distribution is the limiting case of the EBXIIPS family of
distributions when λ→ 0+.

Proof. For X > 0, we have

lim
λ→0+

F(x) = 1− lim
λ→0+

∞
∑

n=1
an

[
λ
{

1−
[
1− (1 + xc)−k

]α}]n

∞
∑

n=1
an λn

= 1− lim
λ→0+

a1 λ
{

1−
[
1− (1 + xc)−k

]α}
+

∞
∑

n=2
an

[
λ
{

1−
[
1− (1 + xc)−k

]α}]n

a1 λ +
∞
∑

n=2
an λn

= 1− lim
λ→0+

a1 λ

[{
1−

[
1− (1 + xc)−k

]α}
+ a−1

1

∞
∑

n=2
an λn−1

{
1−

[
1− (1 + xc)−k

]α}]n

a1 λ

[
1 + a−1

1

∞
∑

n=2
an λn

] .

Now, applying the limit on the right side, we have

lim
λ→0+

F(x) =
[
1− (1 + xc)−k

]α
. (16)

Proposition 2. The infinite mixture representation of EBXIIPS can be expressed in terms of EBXII distribution
with parameters c, k and n α.

Proof. The pdf of EBXIIPS distribution can be expressed as an infinite mixture representation of order
distribution i.e.,

f (x) =
∞

∑
n=1

P(N = n) g(1)(x; n), (17)

where P(N = n) is defined in (4). Now, (17) becomes

f (x) =
∞

∑
n=1

an λn

C(λ)
g(1)(x; n), (18)

where g(1)(x; n) is the pdf of Y(i) = min(Y1, ..., Yn), is given by

g(1)(x; n) = n g(x) [1− G(x)]n . (19)

Using (9) and (10), we have

g(1)(x; n) = n αc k
xc−1

(1 + xc)k+1 [1− G(x)]n
[
1− (1 + xc)−k

]n α−1
. (20)

Now, (21) becomes

f (x) = n αc k
∞

∑
n=1

an λn

C(λ)
xc−1

(1 + xc)k+1 [1− G(x)]n
[
1− (1 + xc)−k

]n α−1
=

∞

∑
n=1

wn g(x; c, k, n α),

where wn = n α c k an λn

C(λ) and g(x; c, k, n α) = xc−1

(1+xc)k+1 [1− G(x)]n
[
1− (1 + xc)−k

]n α−1
is the EBXII

density function with parameters c, k and n α.
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3. Special Sub Models

In this section, we will discuss some special models of the power series distributions such as
logarithmic, binomial, Poisson and geometric distributions.

3.1. EBXII Logarithmic Distribution

Consider the logarithmic distribution to be the zero truncated power series distribution with
an = 1

n and C(θ) = − log(1 − θ). Then, the cdf and pdf and hrf of EBXII logarithmic (EBXII-L)
distribution are respectively given by

Fθ,c,k,α(x) = 1−
log
[
1− θ + θ

{
1− (1 + xc)−k

}α]
log(1− θ)

, (21)

fθ,c,k,α(x) =
θ α c k xc−1 (1 + xc)−k−1

[
1− (1 + xc)−k

]α−1

log(1− θ)
{

θ − θ
[
1− (1 + xc)−k

]α − 1
} ,

and

hθ,c,k,α(x) =
θ α c k xc−1 (1 + xc)−k−1

[
1− (1 + xc)−k

]α−1{
θ − θ

[
1− (1 + xc)−k

]α − 1
}

log
{

1− θ + θ
[
1− (1 + xc)−k

]α
} . (22)

For the EBXII-L model, we can say that θ parameter is also valid on (−∞, 1). In Figure 1, the plots
of density and hazard rate functions are displayed. The density is right skewed, reversed J and
symmetrical, while hrf is decreasing and upside-down bathtub.
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Figure 1. Plots of pdf and hrf for EBXII-L distribution with different parameter values.

3.2. EBXII Binomial Distribution

Consider the binomial distribution to be the zero truncated power series distribution with an = (m
n)

and C(θ) = (θ + 1)m − 1, where m(n ≤ m) is the number of replicas. Then, the cdf and pdf and hrf of
EBXII binomial (EBXII-B) distribution are respectively given by

Fθ,c,k,α(x) = 1−
−1 +

{
1 + θ − θ

[
1− (1 + xc)−k

]α}m

−1 + (θ + 1)m , (23)
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fθ,c,k,α(x) = m θ α c k xc−1 (1 + xc)−k−1
[
1− (1 + xc)−k

]α−1

×

{
1 + θ − θ

[
1− (1 + xc)−k

]α}m−1

−1 + (θ + 1)m ,

and

hθ,c,k,α(x) = m θ α c k xc−1 (1 + xc)−k−1
{

1− (1 + xc)−k
}α−1

×

{
1 + θ − θ

[
1− (1 + xc)−k

]α}m−1

{
1 + θ − θ

[
1− (1 + xc)−k

]α
}m
− 1

.

In Figure 2, the plots of density and hazard rate functions are displayed. The density is right
skewed and reversed J, while hrf is decreasing and upside-down bathtub.
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Figure 2. Plots of pdf and hrf for EBXII-B distribution with different parameter values.

3.3. EBXII Poisson Distribution

Consider the Poisson distribution to be the zero truncated power series distribution with an = 1
n!

and C(θ) = eθ − 1. Then, the cdf and pdf and hrf of EBXII Poisson (EBXII-P) distribution are
respectively given by

Fθ,c,k,α(x) =
eθ − eθ−θ [1−(1+xc)−k]

α

eθ − 1
, (24)

fθ,c,k,α(x) =
θ α c k xc−1

[
1− (1 + xc)−k

]α−1
eθ−θ[ 1−(1+xc)−k]

α

(1 + xc)k+1
(
eθ − 1

) ,

and

hθ,c,k,α(x) = θ α c k xc−1
[
1− (1 + xc)−k

]α−1 eθ−θ [1−(1+xc)−k]
α

eθ−θ [1−(1+xc)−k]
α

− 1
.

We note that EBXII-P distribution has been introduced by [15]. In Figure 3, the plots of density
and hazard rate functions are displayed. The density is reversed J, symmetrical and left skewed, while
hrf is decreasing, increasing and bathtub shaped.
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Figure 3. Plots of pdf and hrf for EBXII-P distribution with different parameter values.

3.4. EBXII Geometric Distribution

Consider the geometric distribution to be the zero truncated power series distribution with
an = 1 and C(θ) = θ

1−θ . Then, the cdf and pdf and hrf of EBXII geometric (EBXII-G) distribution are
respectively given by

Fθ,c,k,α(x) =

[
1− (1 + xc)−k

]α

1− θ + θ
[
1− (1 + xc)−k

]α , (25)

fθ,c,k,α(x) =
αc k (1− θ)xc−1

[
1− (1 + xc)−k

]α−1

{
1− θ + θ

[
1− (1 + xc)−k

]α
}2 ,

and

hθ,c,k,α(x) =
αc k xc−1

[
1− (1 + xc)−k

]α−1{
1−

[
1− (1 + xc)−k

]α
}{

1− θ + θ
[
1− (1 + xc)−k

]α
} .

For the EBXII-G model, we can say that θ parameter is also valid on (−∞, 1). In Figure 4, the plots
of density and hrfs are displayed. The density is reversed J, symmetrical and right skewed, while hrf is
decreasing, bathtub and upside-down bathtub.
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Figure 4. Plots of pdf and hrf for EBXII-G distribution with different parameter values.
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4. Mathematical Properties

Moments

The rth moments of EBPS distribution can be obtained by using the following expressions:

µ′r =

∞∫
0

xr f (x) dx.

Using the infinite mixture representation in (21), we have

µ′r =
∞

∑
n=1

wn

∞∫
0

xr g(x; c, k, n α) dx =
∞

∑
n=1

wn (τr|∞0 ) ,

where τr|∞0 =
∞∫
0

xr g(x; c, k, n α) dx. Consider

τr|∞0 =

∞∫
0

xr+c−1

[
(1 + xc)k

]n α−1

(1 + xc)k+1 dx.

Using the generalized binomial theorem and, after some algebra, we have

τr|∞0 =
∞

∑
j=0

(
n α− 1

j

)
(−1)j B

(
1 +

r
c

, (1 + j)k− r
c

)
,

where B (·, ·) is the ordinary beta function. Similarly, the rth incomplete moment is

T′r(x) =
∞

∑
n=1

wn

∞∫
0

xr g(x; c, k, n α) dx =
∞

∑
n=1

wn ∆′r(X),

where

∆′r(X) =
∞

∑
j=0

(
n α− 1

j

)
(−1)j Bxc

(
1 +

r
c

, (1 + j)k− r
c

)
and Bz (·, ·) is the incomplete beta function. The moment generating function of EBPS distribution can
be obtained as

M0(t) =
∞

∑
n=1

wn

∞∫
0

et x g(x; c, k, n α) dx =
∞

∑
n=1

wn MEB(t),

where

MEB(t) =
∞∫

0

et x xc−1

(1 + xc)k+1

[
(1 + xc)k

]n α−1
dx.

Using generalize binomial theorem and after some algebra, we have

MEB(t) =
∞

∑
j=0

∞

∑
i=0

(
n α− 1

j

) (
(1 + j)k + i

i

)
(−1)i+j Γ ((1 + i)c)

(
−1
t

)(1+i)c

The mean deviations about mean and median of EBPS distribution can be obtained as

Dµ = 2 µ F(µ)− 2 T′1(µ),
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and
DM = µ− 2 T′1(M),

where µ = E(x) = µ′1 can be obtained from (12), F(.) can be obtained from (15) and T′1(z) is the first
incomplete moment.

5. Estimation

The maximum likelihood estimators (MLEs) has a desirable properties and can be used for
constructing confidence intervals and regions and also in test statistics. The normal approximation
for these estimators in large samples can be easily handled either analytically or numerically. Thus,
we consider the estimation of the unknown parameters of this family from complete samples only by
maximum likelihood. Let x1, ..., xn be a random sample from the EBXIIPS distribution with parameters
λ, α, k and c. Let Θ = (λ, α, k, c)T be the 4× 1 parameter vector. For determining the MLE of parameters,
we have the log-likelihood function

` = `(Θ) = n log c + n log λ + n log k + n log α− n log C[λ] + (c− 1)
n

∑
i=1

log xi − (k + 1)
n

∑
i=1

log (1 + xc
i )

+ (n α− 1)
n

∑
i=1

log
[
1− (1 + xc

i )
−k
]
+ log

(
C′
{

λ− λ
[
1− (1 + xc

i )
−k
]α})

.

The components of score vector are

Uλ =
n
λ
− n C′[λ]

C[λ]
+

n

∑
i=1

[
1−

(
1 + xc

i
)−k
]α

C′′
{

λ− λ
[
1−

(
1 + xc

i
)−k
]α}

C′
{

λ− λ
[
1−

(
1 + xc

i
)−k
]α} ,

Uα =
n
α
− λ

n

∑
i=1

log
[
1−

(
1 + xc

i
)−k
] [

1−
(
1 + xc

i
)−k
]α

C′′
{

λ− λ
[
1−

(
1 + xc

i
)−k
]α}

C′
{

λ− λ
[
1−

(
1 + xc

i
)−k
]α}

+n
n

∑
i=1

log
[
1− (1 + xc

i )
−k
]

,

Uk =
n
k
−

n

∑
i=1

log (1 + xc
i ) + (n α− 1)

n

∑
i=1

log
(
1 + xc

i
) (

1 + xc
i
)−k

1−
(
1 + xc

i
)−k

−α λ
n

∑
i=1

log
(
1 + xc

i
) (

1 + xc
i
)−k

[
1−

(
1 + xc

i
)−k
]α−1

C′′
{

λ− λ
[
1−

(
1 + xc

i
)−k
]α}

C′
{

λ− λ
[
1−

(
1 + xc

i
)−k
]α} ,

and

Uc =
n
c
−

n

∑
i=1

log xi − (k + 1)
n

∑
i=1

xc
i log xi

1 + xc
i

+ k (nα− 1)
n

∑
i=1

xc
i log xi (1 + xc

i )
−k−1

−(1 + xc
i )
−k1

−k α
n

∑
i=1

xc
i log xi (1 + xc

i )
−k−1

[
1−

(
1 + xc

i
)−k
]α−1

C′′
{

λ− λ
[
1−

(
1 + xc

i
)−k
]α}

C′
{

λ− λ
[
1−

(
1 + xc

i
)−k
]α} .

Setting the nonlinear system of equations Uλ = Uα = Uk = Uc = 0 above and solving them
simultaneously yields the MLE Θ̂ = (λ̂, α̂, k̂, ĉ)T . To solve these equations, it is usually more convenient
to use nonlinear optimization methods such as the quasi-Newton algorithm to numerically maximize
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`. The above log-likelihood function also can be maximized numerically by using R (optim), SAS (PROC
NLMIXED) or Ox program (sub-routine MaxBFGS), among others.

For interval estimation of the parameters, we obtain the 4 × 4 observed information matrix
Jrs = J(Θ) = { ∂2`

∂r ∂s} (for r, s = λ, α, k, c), whose elements are available upon request from the
authors. Its elements also can be computed numerically by the packet program. Under standard
regularity conditions when n → ∞, the distribution of Θ̂ can be approximated by a multivariate
normal N4(0, J(Θ̂)−1) distribution to construct approximate confidence intervals for the parameters.
Here, J(Θ̂) is the total observed information matrix evaluated at Θ̂. Then, approximate 100(1− δ)%

confidence intervals for α, λ, c and k can be determined by: α̂ ± zδ/2

√
Ĵ−1
αα , λ̂ ± zδ/2

√
Ĵ−1
λλ ,

ĉ± zδ/2

√
Ĵ−1
cc and k̂± zδ/2

√
Ĵ−1
kk , where zδ/2 is the upper δth percentile of the standard normal model

and Ĵ−1
ii are diagonal elements of J(Θ̂)−1 for i = α, λ, c and k.

6. Simulation Studies

In this section, we perform two simulation studies by using the EBXII binomial and EBXII logarithmic
distributions to see the performance of MLEs corresponding to these distribution. The random numbers
generation is obtained by the inverse of their cdfs. Thus, we use the following steps:

• Generate u ∼ uni f orm(0, 1),
• Solve the following nonlinear equation for given parameters values,

F(x; Θ) = 1−C
[
λ− λ

[
1− (1+ xc)−k

]α]
/C(λ)− u = 0.

The uniroot routine of the R packet program can be used to solve the nonlinear equation given in the
second item. All results related to MLEs were obtained using the optim-CG routine in the R program.

6.1. Simulation Study 1

In the first simulation study, we obtain the graphical results. We generate n = 1000 samples of
size n = 20, 25, . . . , 400 from EBXII binomial distribution with true parameters’ values α = 1.5, θ = 10,
c = 8 and k = 0.5. We assume that the parameter m, number of replicas, is 3. In this simulation study,
we empirically calculate the mean, standard deviations (SD), bias and mean square error (MSE) of the
MLEs. The bias and MSE are calculated by (for h = α, θ, c, k)

B̂iash = 1
1000 ∑1000

i=1

(
ĥi − h

)
,

and
M̂SEh = 1

1000 ∑1000
i=1

(
ĥi − h

)2
,

respectively. We give results of this simulation study in Figure 5. From Figure 5, we observe that, when
the sample size increases, the empirical means approach the true parameter value, whereas all biases,
SDs and MSEs approach 0 in all cases.
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Figure 5. Simulation results of the special EBXII binomial distribution with m = 3.

6.2. Simulation Study 2

In the second simulation study, we generate 1000 samples of sizes 50, 100 and 200 from selected
EBXII logarithmic distributions. For this simulation study, we obtain the empirical means and SDs of
the MLEs. The results of this simulation study are reported in Table 2. Table 2 shows that, when the
sample size increases, the empirical means approach true parameter values, whereas the SDs decrease,
as expected.

Table 2. Empirical means and standard deviations (in parentheses) for the special EBXII
logarithmic distributions.

Parameters n = 50 n = 100 n = 200

α, c, k, θ α̂ ĉ k̂ θ̂ α̂ ĉ k̂ θ̂ α̂ ĉ k̂ θ̂

2, 0.5, 0.5, 0.5 2.1928 0.5310 0.3114 2.1858 2.1284 0.5115 0.3696 2.0686 2.0594 0.5008 0.4321 2.0351
(0.3739) (0.1468) (0.2383) (0.5159) (0.2951) (0.1055) (0.2005) (0.4276) (0.1405) (0.0677) (0.1259) (0.2414)

1, 0.5, 3, 0.75 1.0621 0.6203 2.9386 0.6986 1.0569 0.5545 2.9642 0.7734 0.9722 0.5219 2.9723 0.7567
(0.4210) (0.2078) (0.3679) (0.3324) (0.3474) (0.1529) (0.2411) (0.2188) (0.2352) (0.0731) (0.1793) (0.1538)

3, 0.1, 3, 0.1 2.9904 0.1044 3.0617 0.1154 2.9902 0.1002 2.9978 0.0785 3.0087 0.1005 3.0027 0.1022
(0.1310) (0.0117) (0.1578) (0.1754) (0.1053) (0.0078) (0.1181) (0.1633) (0.0805) (0.0053) (0.0942) (0.1170)

5, 0.9, 2, 0.9 4.9810 0.9545 2.1140 0.8496 5.0138 0.9169 2.0942 0.8699 4.9976 0.9104 1.9875 0.8711
(0.7592) (0.1832) (0.6073) (0.9044) (0.2847) (0.0882) (0.4431) (0.4365) (0.1819) (0.0703) (0.2970) (0.1816)

5, 5, 5, 0.99 4.9483 4.9838 5.0854 0.9572 4.9415 5.0126 5.1212 0.9842 4.9743 4.9785 5.0246 0.9954
(0.3309) (0.2440) (0.4827) (0.1362) (0.3526) (0.2423) (0.5678) (0.1036) (0.1308) (0.1446) (0.2212) (0.0209)

10, 0.7, 0.5, 0.3 10.0795 0.7367 0.4899 0.2615 10.0686 0.7103 0.4901 0.2925 10.0355 0.7077 0.4974 0.3026
(0.3178) (0.2787) (0.1950) (0.5675) (0.2825) (0.2398) (0.1558) (0.4701) (0.1563) (0.2049) (0.1341) (0.2793)

0.8, 2, 0.2, 0.5 1.0035 1.8689 0.2907 0.4027 0.8862 1.9841 0.2169 0.5169 0.8488 1.9911 0.2104 0.5121
(0.3488) (0.4761) (0.2087) (0.4911) (0.1938) (0.3719) (0.0883) (0.2861) (0.1275) (0.2608) (0.0616) (0.2586)
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7. Data Analysis

In this section, we provide applications to three real data sets to prove empirically the
potentiality of some members of the EBXIIPS distributions. We also compare the fits of these models
with Burr XII geometric (BXII-G) model, which is studied by [14,16]. To determine the optimum
model, we also compute the estimated log-likelihood values ˆ̀, Akaike Information Criteria (AIC),
Kolmogorov–Smirnov (KS), Cramer–von Mises (W∗) and Anderson–Darling (A∗) goodness of-fit
statistics for all models. The statistics W∗ and A∗ are described in detail in [17]. In general, it can be
chosen as the best model which has the smaller values of the AIC, KS, W∗ and A∗ statistics and the
larger values of ˆ̀.

All computations of the MLEs are performed by the maxLik routine and all goodness-of-fits
statistics are calculated by the goftest routine in the R program. The details are given by followings.

7.1. Stress Data

The first real data set introduces the stress–rupture life of kevlar 49/epoxy strands which are
subjected to constant sustained pressure at the 90% stress level until all had failed such that we obtain
complete data with exact failure times. This data set was studied by [1,18,19]. The data are: 0.01, 0.01,
0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.1, 0.1, 0.11, 0.11, 0.12, 0.13, 0.18,
0.19, 0.2, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.4, 0.42, 0.43, 0.52, 0.54, 0.56, 0.6, 0.6, 0.63, 0.65, 0.67,
0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.8, 0.8, 0.83, 0.85, 0.9, 0.92, 0.95, 0.99, 1, 1.01, 1.02, 1.03, 1.05, 1.1,
1.1, 1.11, 1.15, 1.18, 1.2, 1.29, 1.31, 1.33, 1.34, 1.4, 1.43, 1.45, 1.5, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60,
1.63, 1.64, 1.8, 1.8, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.2, 4.69, 7.89.

Table 3 lists the MLEs, their standard errors of the parameters, ˆ̀ and goodness-of-fits statistics
from the fitted models. Table 3 shows that the EBXII-L model could be chosen as the best model among
the fitted models since these models have the lowest values of the AIC, KS, W∗ and A∗ statistics and
have the biggest ˆ̀ values.

Table 3. MLEs, standard errors of the estimates (in parentheses), ˆ̀ and goodness-of-fits statistics for
the first data set.

Model α̂ θ̂ ĉ k̂ − ˆ̀ AIC KS A∗ W∗

EBXII-G 0.1837 −2.3736 2.8794 0.7734 102.2356 212.4712 0.0835 0.8597 0.1276
(0.0531) (1.2987) (0.0852) (0.0573)

BXII-G −6.5779 0.7905 3.8292 103.7589 213.5178 0.0907 1.3308 0.1920
(9.3669) (0.2420) (1.6013)

EBXII-L 0.1466 −16.6902 3.5208 0.7453 101.0149 210.0298 0.0761 0.6064 0.0821
(0.0244) (5.1283) (0.0233) (0.1067)

EBXII-P 0.2237 −1.6098 2.8432 0.6581 103.4967 214.9934 0.0850 1.2765 0.2155
(0.0592) (0.8678) (0.0996) (0.1445)

BurrXII 1.1736 1.6327 108.5477 221.0955 0.1143 2.8873 0.3072
(0.0983) (0.1638)

The plots of the fitted densities and cdfs are displayed in Figure 6. We also draw
probability–probability (P–P) plot of all models in Figure 7. These plots shows that the EBXII-L
provides the good fit to these data compared to the other models.
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Figure 6. The fitted densities and cdfs for the first data set.
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Figure 7. P–P plots of all models for the first data set.

7.2. Service Times Data

The second real data set represents the data on service times of 63 aircraft windshield given in [20].
The data are: 0.046, 1.436, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670, 0.248, 1.719, 2.717, 0.280, 1.794,
2.819, 0.313, 1.915, 2.820, 0.389, 1.920, 2.878, 0.487, 1.963, 2.950, 0.622, 1.978, 3.003, 0.900, 2.053, 3.102,
0.952, 2.065, 3.304, 0.996, 2.117, 3.483, 1.003, 2.137, 3.500, 1.010, 2.141, 3.622, 1.085, 2.163, 3.665, 1.092,
2.183, 3.695, 1.152, 2.240, 4.015, 1.183, 2.341, 4.628, 1.244, 2.435, 4.806, 1.249, 2.464, 4.881, 1.262, 2.543,
5.140. These data sets were recently studied by [21]. The unit for measurement is 1000 h for both
data sets.

Table 4 lists the MLEs, their standard errors of the parameters, ˆ̀ and goodness-of-fits statistics
from the fitted models. Table 4 shows that the EBXII-L model fits this data set better than the other
models according to the statistics ˆ̀, AIC and A∗. At the same time, we can say that the data set is
better fitted by the EBXII-G according to the statistics K and W∗.

We draw the fitted densities and cdfs, and the P–P plots in Figures 8 and 9, respectively, for the
data set. Clearly, the EBXII-L distribution provides a closer fit to the empirical cdf. From all these
results, we may choose the EBXII-L model as the best model for this data set.
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Table 4. MLEs, standard errors of the estimates (in parentheses), ˆ̀ and goodness-of-fits statistics for
the second data set.

Model α̂ θ̂ ĉ k̂ − ˆ̀ AIC KS A∗ W∗

EBXII-G 0.3573 −69.4175 1.3364 2.6885 102.0361 212.0721 0.0935 0.6693 0.0803
(0.4481) (7.6873) (0.7013) (1.7470)

BXII-G −47.7605 1.0344 3.6365 102.3057 210.6114 0.0967 0.7748 0.0861
(4.0336) (0.1569) (0.3727)

EBXII-L 0.2364 −3.5× 106 2.9710 3.0922 99.5671 207.1343 0.1067 0.4639 0.0860
(0.0461) (0.4027) (0.1331) (0.1867)

EBXII-P 1.0879 −3.6258 1.4626 1.5307 108.0832 224.1664 0.1498 1.7402 0.2545
(0.6565) (1.1587) (0.4915) (0.6687)

BurrXII 2.1335 0.6151 116.1148 236.2296 0.2545 10.4160 1.3521
(0.2804) (0.0982)

The plots of the fitted densities and cdfs are displayed in Figure 8. We also draw P–P plot of all
models in Figure 9. These plots shows that the EBXII-L provides the good fit to these data compared to
the other models.
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Figure 8. The fitted densities and cdfs for the second data set.
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Figure 9. P–P plots of all models for the second data set.
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7.3. Failure Data

The third real data consists of the number of successive failures for the air conditioning systems
reported for each member in a fleet of 13 Boeing 720 jet airplanes. The pooled data with 213 observations
was considered by [22,23].

Table 5 lists the MLEs, their standard errors of the parameters, ˆ̀ and goodness-of-fits statistics
from the fitted models. Table 5 shows that the EBXII-G model fits this data set better than the other
models according to the statistics ˆ̀, AIC and A∗.

We draw the fitted densities and cdfs, and the P–P plots in Figures 10 and 11, respectively, for
the data set. Clearly, the EBXII-G distribution provides a closer fit to the empirical cdf. From all these
results, we may choose the EBXII-G model as the best model for this data set.

Table 5. MLEs, standard errors of the estimates (in parentheses), ˆ̀ and goodness-of-fits statistics for
the third data set.

Model α̂ θ̂ ĉ k̂ − ˆ̀ AIC KS A∗ W∗

EBXII-G 324.1786 −59.7180 0.2562 7.4612 1178.5170 2365.0330 0.0410 0.5110 0.0592
(0.5597) (0.1066) (0.0085) (0.1257)

BXII-G −349.9338 0.8401 1.7449 1180.261 2366.5210 0.0413 0.5832 0.0678
(1.2261) (0.2915) (0.5884)

EBXII-L 377.6428 −267.0753 0.3544 5.6072 1189.0280 2386.0560 0.1026 3.9962 0.7387
(0.1188) (0.1809) (0.0226) (0.2711)

EBXII-P 68.2377 −4.1156 0.3268 3.9270 1186.3710 2380.7430 0.0645 1.4650 0.1768
(2.2356) (0.9638) (0.0319) (0.3690)

BurrXII 53.7460 0.0047 1335.4150 2674.8300 0.3697 44.8020 9.2016
(1.6200) (0.0004)
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Figure 10. The fitted densities and cdfs for the third data set.
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Figure 11. P–P plots of all models for the third data set.

8. Conclusions

In this work, we introduce a new Burr XII power series class of distributions, which is obtained by
compounding Burr XII and power series distributions and has a strong physical motivation. The new
distribution contains several important lifetime models. We derive explicit expressions for the ordinary
and incomplete moments and generating functions. We discuss the maximum likelihood estimation of
the model parameters. The maximum likelihood estimation procedure is presented. We assess the
performance of the maximum likelihood estimators in terms of biases, variances, and mean square of
errors by means of two simulation studies. The usefulness of the new models is illustrated by means
of three real data sets. The new models provide consistently better fits than other competitive models
for these data sets.
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