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Abstract: We consider the little-known one parameter Lindley distribution. This distribution may 
be of interest as it appears to be more flexible than the exponential distribution, the Lindley fitting 
more data than the exponential. We give smooth tests of fit for this distribution. The smooth test for 
the Lindley has power comparable with the Anderson-Darling test. Advantages of the smooth test 
are discussed. Examples that illustrate the flexibility of this distributions is given. 
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1. Introduction 

The Lindley distribution was introduced by Lindley [1] to analyze failure time data. The Lindley 
distribution belongs to the exponential family and it can be written as a mixture of the exponential 
and gamma distributions. Its motivation arises from its ability to model failure data with increasing, 
decreasing, unimodal, and bathtub-shaped hazard rates. See [2]. Ghitany et al. [3] give many 
properties of the Lindley distribution. They suggest it is often a better model than the traditional 
exponential distribution that is commonly used to model lifetime or waiting time data. For example, 
the exponential distribution is limited to lifetime data with coefficients of variation 1, skewness 2, 
and kurtosis 6. The Lindley distribution allows a greater range for these coefficients: namely 1/2 to 
1, 2 to 2 and 6 to 9 respectively. Similarly, the hazard rate function of the exponential is more limited 
than that of the Lindley. 

Ghitany et al. [3] examine the fit of the Lindley distribution to some waiting time data by looking 
at plots and by showing the Lindley likelihood is better than the exponential likelihood. However, 
this does not demonstrate that the Lindley distribution fits the data well, only that it fits better than 
the exponential. Assessment of the plots is subjective and here we derive a smooth test of fit to give 
a more objective assessment of goodness of fit of the Lindley model. We also consider the widely 
used Anderson-Darling test. 

The Lindley distribution has probability density function 

f(x; θ) = q 2

q +1
 (1+ x) e-qx  for x > 0 and zero otherwise, in which θ > 0 

and cumulative distribution function 

F(x; θ) = 11
1

xx e qq q
q

-+ +
-

+
 for x > 0 and zero otherwise. 
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Smooth tests of fit can be found using the second and third order smooth test components. 
Section 2 discusses smooth testing for goodness of fit. Section 3 looks at the approach to the 
asymptotic chi-squared distributions of the smooth test statistics and finds them to be quite slow. It 
is suggested that p-values be found using the parametric bootstrap. A slightly expanded version of 
an algorithm in Ghitany et al. [3] generating random Lindley variates is given in Section 3 so that 
these p-values can be calculated. Some powers of the smooth test and the Anderson-Darling test are 
compared in Section 4 while Section 5 gives two examples.  

2. The Smooth Test Statistics 

Tests of fit are an important element in determining the suitability of statistical models. The 
genesis of the smooth tests is Neyman [4], who nested the null probability density function in a family 
of distributions indexed by the elements of a vector parameter and tested if that parameter was 
consistent with zero. Neyman only considered testing for distributions with no nuisance parameters 
and hence, after transforming by the probability integral transformation, testing for the simple 
uniform (0, 1) distribution. Best and Rayner [5] give an early discussion of smooth tests for 
distributions with nuisance parameters by considering a smooth test for normality. The subject has 
undergone considerable development, especially in recent years. See, for example, [6] and [7]. 

Of particular interest here is [6] (Section 9.2) in which the following is shown. Suppose we have 
a random sample X1, …, Xn from a distribution hypothesized to have probability density function f(x; 
β) in which β = (β1, …, βq)T is a q × 1 vector of nuisance parameters. Moreover, assume that the densities 
f(x; β) form a multi-parameter exponential family. An alternative probability density function is taken 
to be 

gk(x; θ, β) = 
1

( , )exp{ ( ; )} ( ; )
k

i i
i

C h x f xq  q  

   

in which θ = (θ1, …, θk)T, it is assumed a normalizing constant C(θ, β) exists and {hi(x; θ, β)} is a set of 
orthonormal functions with weight function f(x; β). 

When testing H: θ = 0 against K: θ ≠ 0 the smooth test statistic is a sum of squares of the 

components Vq+1, …, Vk, that is, 2 2
1 ...q kV V+ + + , in which Vr = 

1
ˆ( ; ) /n

r jj
h X n

 , ̂  being the 

maximum likelihood estimator of β when θ = 0. The model gk(x; θ, β) is over-parametrized, with the 
θ1, …, θq playing the same role as β1, …, βq. One way of dealing with this technically is to drop θ1, …, 
θq from gk(x; θ, β). The over-parametrization is apparent when it is realized that the likelihood 

equations are equivalent to 
1

( ; ) /n
r jj

h X n
  = 0 for r = 1, …, q and so V1  …  Vq  0. The non-

degenerate components are asymptotically independent and asymptotically 2
1  distributed. 

Since the components Vr involve the orthonormal polynomials, we now give the orthonormal 
polynomials of a random variable X up to order three. These results are true for any distribution for 
which the moments exist. The notation suppresses the dependence on the nuisance parameter. We 
take h0(x) = 1 for all x. Write μ for the mean of X and μr, r = 2, 3, … for the central moments of X. Then 

h1(x) = (x − μ)/μ2,  

h2(x) = {(x − μ)2 − μ3(x − μ)/μ2 − μ2}/d  

in which 2 2
4 3 2 2/d     - - , and 

 

h3(x) = {(x − μ)3 − a(x − μ)2 − b(x − μ) − c}/e,  
in which a = 5 3 4 2 2 3( / ) / d     - - , 

b = 2 2
4 2 2 4 3 5 2 3( / / ) / d       - - + , 

c = 2
3 4 3 2 2 5(2 / ) / d     - - , and 

e = μ6 − 2aμ5 + (a2 − 2b)μ4 + 2(ab − c)μ3 + (b2 + 2ac)μ2 + c2. 
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Should further orthonormal polynomials be required the recurrence relation in [8] can be used. 
See [9] (Appendix D) for details of the numerical construction of orthogonal polynomials in R. 

The moments about the origin of the Lindley distribution are 

E[Xr] = r!(θ + r + 1)/{θ r(θ + 1)}  

from which the central moments can be found. In particular 

μ= (θ + 2)/{θ(θ + 1)}, μ= (θ2 + 4θ + 2)/{θ2(θ + 1)2},  

μ= 2(θ3 + 6θ2 + 6θ + 2)/{θ3(θ + 1)3}, and  

μ= 3(3θ4 + 24θ3 + 44θ2 + 32θ + 8)/{θ 4(θ + 1)4}.  

For the exponential distribution the moments are relatively simple and lead to 
h1(x) = 1 − x/ x , h2(x) = 1 − 2x/ x  + (x/ x )2 and 

h3(x) = 1 − 3x/ x  + 3(x/ x )2/2 − (x/ x )3/6. 
The early literature suggested that the components Vr were diagnostic. That is, if the test statistic 

2 2
1 ...q kV V+ + +  was found to be significant at some prescribed level then the Vr could be used to 

diagnose the model failure. For example, a significant V3 would indicate the third moment of the 
hypothesized distribution was not consistent with the data. In fact, a significant Vr could be attributed 
to moments up to the 2rth. However, in most applications it is reasonable to say that a significant Vr 
suggests model failure in moments up to the rth. This could be confirmed (or not) by plotting the data. 

For distributions from a one parameter exponential family the maximum likelihood and method 

of moments estimators coincide. It follows that q̂  can be readily found by solving 
ˆ ˆ ˆˆ ( 2) /{ ( 1)}X  q q q  + + , which gives 

21 ( 1) 8ˆ
2

X X X
X

q
- + - +

  provided X  > 0. 

That V1 is degenerate is clear from V1 = 2
1

ˆ( ) /
n

i
i

X n 


-  = 2ˆ ˆ( ) / 0X n -  . 

The choice of the order k of the smooth test is typically a trade-off between the test power and 
the alternatives detected. A larger k means the test is more omnibus, seeking to detect alternatives to 
the null in a richer family of distributions. A smaller k gives a more focused test with greater power 
for the alternatives for which the test is sensitive, but no power for other alternatives. Based solely on 
intuition Neyman [4] took k to be four. Rayner et al. [6] discuss modeling approaches for the choice 
of k. A larger k requires more orthonormal polynomials and hence more moments to calculate them. 
Here we make the pragmatic option of considering only two non-degenerate components through 
V2

2 , V3
2  and S = V2

2  + V3
2 . In the next section we briefly consider the approach of these test 

statistics to their asymptotic chi-squared distributions. Use of S is similar to the test in [10] which is 
also based on the first two non-zero smooth test components. 

3. The Approach to the Asymptotic Distribution 

In Table 1 we look, for θ = 0.5 and 1.5, at the approach to the asymptotic 1
2  distribution of 

V2
2  and 2

3V  and the approach to the asymptotic 2
2  distribution of S = V2

2  + 2
3V . The results 

in Table 1 are 5% critical values found using 100,000 simulations of Monte Carlo samples of size n. A 
random variate generator, given below, is needed for these results, the powers of the next section and 
bootstrap p-values. 
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Table 1. 5% critical values based on 100,000 simulations of samples of size n for V2
2 , V3

2  and S 

when θ = 0.5 and 1.5. 

n θ = 0.5 θ = 1.5 
 V2

2  2
3V  S V2

2  2
3V  S 

20 2.59 1.93 4.38 2.65 1.93 4.33 
100 3.47 2.71 5.06 3.41 2.52 4.98 
200 3.69 2.95 5.42 3.66 2.90 5.73 

1000 3.83 3.59 5.72 3.83 3.28 5.88 
10,000 3.89 3.90 6.02 3.87 3.89 6.06 
 3.84 3.84 5.99 3.84 3.84 5.99 

The convergence to the asymptotic values is quite slow and so we suggest in applications that 
for smaller sample sizes the parametric bootstrap will be needed to find p-values. The Table 1 results 
are similar for θ = 0.5 and θ = 1.5. 

To generate random Lindley values, we follow [3] and observe that the Lindley distribution is a 
mixture of an exponential (θ) distribution and a gamma (2, θ) distribution. To obtain a random x 
value we need four uniform (0, 1) values, u1, u2, u3 and u4 say, and take x = −{log(u1 u2)}/θ unless u4 < 
θ/(θ + 1), in which case x = −(log u3)/θ. 

To find parametric bootstrap p-values generate Lindley samples of size n many (10,000 
subsequently) times and take the p-values as the proportion of the samples with test statistics greater 
than or equal to the values of the test statistics for the original dataset. To find parametric bootstrap 
powers for each alternative distribution generate many (10,000 subsequently) samples of size n. Then 
the power is the proportion of these samples with p-value less than the significance level. 

4. Power Comparisons 

For a significance level of α = 0.05 and a sample size of n = 20, Tables 2–4 give some powers for 
tests based on V2

2 , 2
3V , S and AD where AD is the Anderson-Darling test statistic 

AD = ( ) ( 1 )
1

1 (2 1){log log(1 )}
n

i n i
i

n i z z
n + -



- - - + -  

in which {z(i)} are ordered values of {zi}, where zi = F(xi; θ). The Anderson-Darling test is included as 
it is well-known and usually performs well in power studies for other distributions. 

Table 2. Powers of tests based on V2
2 , 2

3V , S and AD for α = 0.05 and n = 20. 

Alternative V2
2  2

3V  2
3V  AD 

Lindley (0.5) 0.05 0.05 0.05 0.05 
2

75.0  0.83 0.76 0.88 0.92 
2

1  0.63 0.62 0.72 0.8 
2
2  0.18 0.16 0.18 0.15 
2
3  0.06 0.04 0.06 0.05 
2
4  0.08 0.10 0.09 0.09 
2
8  0.53 0.55 0.59 0.60 

Weibull (0.8) 0.43 0.34 0.44 0.43 
Weibull (1.5) 0.21 0.26 0.27 0.28 
Weibull (2.0) 0.75 0.84 0.84 0.84 

Beta (1, 2) 0.14 0.18 0.18 0.15 
Beta (1, 3) 0.07 0.11 0.11 0.11 
Beta (2, 3) 0.87 0.93 0.94 0.90 

Uniform (0, 1) 0.51 0.57 0.57 0.54 
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Table 3. Powers of tests based on V2
2 , 2

3V , S and AD for α = 0.05 and n = 50. 

Alternative V2
2  2

3V  S AD 
Lindley (0.5) 0.05 0.05 0.05 0.05 

2
75.0  0.94 0.75 0.97 0.99 

2
1.5  0.63 0.50 0.70 0.73 
2
2  0.30 0.20 0.31 0.27 
2
3  0.06 0.06 0.06 0.08 
2
4  0.15 0.16 0.18 0.23 
2
8  0.93 0.94 0.96 0.99 

Weibull (0.8) 0.74 0.55 0.78 0.81 
Weibull (1.5) 0.56 0.55 0.60 0.65 
Weibull (1.7) 0.90 0.89 0.93 0.96 

Beta (1, 2) 0.52 0.42 0.51 0.50 
Beta (1, 3) 0.24 0.19 0.24 0.24 

Table 4. Powers of tests based on V2
2 , 2

3V , S and AD for α = 0.05 and n = 100. 

Alternative V2
2  2

3V  S AD 
Abs N (0, 1) 0.55 0.20 0.47 0.49 

2
2  0.41 0.26 0.42 0.43 
2
3  0.67 0.63 0.67 0.76 
2
4  0.34 0.27 0.35 0.48 

Weibull (1.5) 0.9 0.84 0.91 0.96 
Beta (1, 2) 0.96 0.64 0.89 0.85 
Beta (1, 3) 0.65 0.33 0.57 0.50 

The tests based on S and AD have similar powers. Notice that we used critical values such that 
all four of the tests we examined had equal test size. This is necessary so that power advantages are 
not due to poor approximation to the finite sample null distribution by, say, use of the asymptotic 
critical values. Random values from the alternative distributions were generated using the IMSL 
software package. Alternatives were chosen to give powers not all near 0.05 or 1.00, to demonstrate 
differences in the effectiveness of the tests. 

The test based on V2
2  has slightly less power than the tests based on S and AD. It has little 

power if the alternative has similar variance to the Lindley variance, which is quite reasonable as it 
is particularly sensitive to distributions with the Lindley variance. The test based on 2

3V  is, roughly, 

testing for distributions with the Lindley skewness when V2
2  is not significant. This is why it is 

useful to apply V2
2  and 2

3V  together, either separately as in exploratory data analysis, or more 
formally together, via S. 

5. Examples 

In both the examples following the bootstrap p-values are based on 1000 samples. 
Waiting Time Data. Ghitany [3] gives the waiting times (in minutes) before service of 100 bank 

customers. On the basis of a superior log likelihood they conclude that the Lindley distribution gives 
a better fit than the exponential. 

In testing for the Lindley distribution, we find bootstrap p-values for the tests based on V2
2 , 2

3V , S 
and AD to be 0.61, 0.49, 0.70 and 0.50 respectively. Using the asymptotic chi-squared distributions 
the p-values for V2

2 , 2
3V  and S are 0.62, 0.60 and 0.77 respectively. We can conclude that for a 



Stats 2018, 1, 7 6 of 7 

 

sample size this large there is acceptable agreement between the p-values based on the bootstrap and 
the asymptotic chi-squared distributions. Moreover, the Lindley distribution fits the data well. 

Operational Lifetime Data. Angus [11] gave 20 operational lifetimes in hours, namely: 

6278, 3113, 5236, 11584, 12628, 7725, 8604, 14266, 6125, 9350, 
3212, 9003, 3523, 12888, 9460, 13431, 17809, 2812, 11825, 2398. 

These data are analysed in [6] (Example 6.3.1 and Example 11.7.1) where it is found that a test 
for exponentiality is significant at the 0.05 level while several tests for the generalised Pareto 
distribution are not significant at the 0.05 level. 

In testing for the Lindley distribution bootstrap p-values for the tests based on V2
2 , 2

3V , S and 
AD are 0.14, 0.27, 0.17 and 0.30 respectively. Using the asymptotic chi-squared distributions the p-
values for V2

2 , 2
3V  and S are 0.21, 0.44 and 0.34 respectively. For this sample size there is not good 

agreement between the p-values based on the bootstrap and the asymptotic chi-squared distributions. 
Moreover, it appears that, unlike the exponential distribution, the Lindley fits the data well. 

6. Conclusions 

Tests of fit are an important element in determining the suitability of statistical models. They 
give objective model assessments, which may be complemented by subjective graphical methods 
such as Q-Q plots. Comparison of statistics such as likelihoods can show that one model is a better fit 
than another, but not whether either model is a good fit or not. We have given a smooth test of fit 
statistic S for the Lindley distribution. Two datasets illustrate the applicability of the Lindley 
distribution, which provides a good model for both datasets, while each of the exponential models 
fails. For small sample sizes, we suggest that p-values be given using the parametric bootstrap. For 
larger sample sizes, the asymptotic χ2 distribution may be useful. 
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