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Abstract: A new compound distribution called Burr XII-Weibull-Logarithmic (BWL) distribution is
introduced and its properties are explored. This new distribution contains several new and well
known sub-models, including Burr XII-Exponential-Logarithmic, Burr XII-Rayleigh-Logarithmic,
Burr XII-Logarithmic, Lomax-Exponential-Logarithmic, Lomax–Rayleigh-Logarithmic, Weibull,
Rayleigh, Lomax, Lomax-Logarithmic, Weibull-Logarithmic, Rayleigh-Logarithmic, and
Exponential-Logarithmic distributions. Some statistical properties of the proposed distribution
including moments and conditional moments are presented. Maximum likelihood estimation
technique is used to estimate the model parameters. Finally, applications of the model to real data
sets are presented to illustrate the usefulness of the proposed distribution.

Keywords: Burr XII-Weibull-logarithmic distribution; logarithmic distribution; Burr XII distribution;
Weibull distribution; maximum likelihood estimation

1. Introduction

Compound distributions have applications in various fields of study such as economics,
engineering, public health, industrial reliability and medicine. New distributions have been
developed by compounding well-known continuous distributions such as the exponential, Weibull,
and exponentiated exponential distributions with the power series distribution that includes the
Poisson, logarithmic, geometric and binomial distributions as particular cases [1,2]. In recent years,
compound distributions have been proposed because of their flexibility as they provide both monotonic
and non-monotonic hazard rate functions that are encountered in real life. Amongst these is the
Weibull-power series (WPS) distributions by Morais and Barreto-Souza [3]. Silva et al. studied the
extended Weibull power series family, which includes as special models the exponential power series
and Weibull power series distributions [4]. Silva and Cordeiro introduced a new family of Burr XII
power series models [5]. Oluyede et al. recently proposed a Log-logistic Weibull Poisson distribution
that has applications in several areas including lifetime data, reliability and economics [6].

The primary motivation for this study is the development of a model that generalizes both the
Burr XII and Weibull distributions and the modeling of lifetime data and other data types with a
diverse model that takes into consideration not only shape, and scale but also skewness, kurtosis and
tail variation. Hitherto, the nested and non-nested distributions such as gamma log-logistic Weibull
(GLLoGW), beta modified Weibull (BetaMW),beta Weibull Poisson (BWP), gamma-Dagum (GD) and
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exponentiated Kumaraswamy Dagum (EKD) have lower precisions with high Sum of Squares (SS),
Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) when compared to the
new Burr XII-Weibull Logarithimic (BWL) distribution.

Weibull distribution is one of the most popular and well reputed to model failure time in
life-testing and reliability theory. Nevertheless, hazard rate function (hrf) of Weibull distribution
in modelling lifetime analysis has been reported to have monotonic behaviour and this is considered as
a major shortcoming of the distribution [7]. Tahir et al. [7] had suggested the need to search for some
generalizations or modifications of Weibull distribution that can provide more flexibility in lifetime
modeling since empirical hazard rate curves often exhibit non-monotonic shapes including bathtub,
upside-down bathtub (unimodal) and others in real-life applications.

In addition, motivated by various applications of Burr XII, Weibull and logarithmic distributions
in several areas including reliability, exponential tilting (weighting) in finance and actuarial sciences,
as well as economics, where Burr XII distribution plays an important role in income, we construct and
develop the statistical properties of this new class of generalized Burr XII-Weibull-type distribution
called the Burr XII-Weibull-Logarithmic distribution and apply it to real lifetime data in order to
demonstrate the usefulness of the proposed distribution. In this regard, we propose a new distribution,
called the Burr XII-Weibull-Logarithmic (BWL) distribution.

Let Xi, i = 1, . . . , N, be independent and identically distributed random variables from the Burr
XII-Weibull distribution [8] whose cumulative distribution function (cdf) and probability density
function (pdf) are given by

G(x) = 1− (1 + xc)−k exp(−αxβ), (1)

and
g(x) = e−αxβ

(1 + xc)−k−1
(

kcxc−1 + (1 + xc)αβxβ−1
)

, (2)

respectively, for c, k, α, β > 0, and x ≥ 0. Now, let N be a discrete random following a power series
distribution assumed to be truncated at zero, whose probability mass function is given by

P(N = n) =
anθn

C(θ)
, n = 1, 2, . . . ,

where C(θ) = ∑∞
n=1 anθn is finite, θ > 0, and {an}n≥1 a sequence of positive real numbers. Let

X(1) = min(X1, . . . , XN). The conditional cdf of X(1) given N = n is given by

GX(1) |N=n(x) = 1−
n

∏
i=1

(1− G(x)) = 1− Sn(x) = 1− (1 + xc)−kn exp(−nαxβ).

The cdf of the Burr XII-Weibull Power Series (BWPS) class of distributions is the marginal cdf of
X(1), which is given by

FBWPS(x) = 1−
C
(

θ(1 + xc)−k exp(−αxβ)
)

C(θ)
, (3)

where x > 0, c > 0, k > 0, α > 0, β > 0 and θ > 0.
In this paper, we present the BWL distribution and our results are organized as followed. The BWL

distribution and its quantile function functions are given in Section 2. In Section 3, moments and
conditional moments are presented. The maximum likelihood estimates of the model parameters are
given in Section 4. A Monte Carlo simulation study to examine the bias and mean square error of the
maximum likelihood estimates are presented in Section 5. Section 6 contains applications of the new
model to real data sets. A short conclusion is given in Section 7.
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2. Burr XII-Weibull-Logarithmic Distribution

The BWL distribution is a special case of the BWPS distribution with C(θ) = − log(1− θ) and
an = 1

n . From Equation (3), the cdf of the BWL distribution is given by

FBWL(x; c, k, α, β, θ) = 1− log(1− θ(1 + xc)−ke−αxβ
)

log(1− θ)
, (4)

for x > 0, c > 0, k > 0, α > 0, β > 0 and 0 < θ < 1. The corresponding pdf of the BWL distribution is
given by

fBWL(x; c, k, α, β, θ) =
θe−αxβ

(1 + xc)−k−1 (kcxc−1 + αβxβ−1(1 + xc)
)

−(1− θ(1 + xc)−ke−αxβ
) log(1− θ)

.

The plots show that the BWL pdf can be decreasing or concave down with positive skewness as
shown in Figure 1.

Figure 1. Probability density function of Burr XII-Weibull Logarithimic distribution.

Quantile Function

In this sub-section, the quantile function of the BWL distribution is presented. The quantile
function of the BWL distribution is obtained by solving the nonlinear equation

αxβ + k log(1 + xc) + log
(

1
θ

(
1− 1− θ

(1− θ)u

))
= 0 (5)

by using numerical methods. Consequently, random numbers can be generated based on Equation (5).

3. Moments, Conditional Moments and Mean Deviations

In this section, moments, conditional moments, mean deviations, Lorenz and Bonferroni
curves are given for the BWL distribution. Moments are necessary and crucial in any statistical
analysis, especially in applications. Moments can be used to study the most important features and
characteristics of a distribution (e.g., central tendency, dispersion, skewness and kurtosis).
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3.1. Moments

Using the series expansions e−αxβ
= ∑∞

k=0(−1)k (αxβ)k

k! and (1− x)−1 = ∑∞
k=0

Γ(1+k)
Γ(1)k! xk = ∑∞

k=0 xk,
the rth moment of the BWL distribution can be written as

E(Xr) =
∫ ∞

0
xr fBWL(x)dx

=
∞

∑
p,j=0

(−1)p+1Γ(j + 1)[α(j + 1)]pθ j+1

p!j! log(1− θ)

×
[

kc
∫ ∞

0
xr+βp+c−1(1 + xc)−kj−k−1dx + αβ

∫ ∞

0
xr+βp+β−1(1 + xc)−kj−kdx

]
.

Let y = (1 + xc)−1 , then the rth moment of the BWL distribution is given by:

E(Xr) =
∞

∑
p,j=0

(−1)p+1Γ(j + 1)[α(j + 1)]pθ j+1

p!j! log(1− θ)

×
[

kB
(

kj + k− 1
c
(r + βp) + 4,

1
c
(r + βp) + 1

)
+

αβ

c
B
(

kj + k− 1
c
(r + βp + β− 1) + 3,

1
c
(r + βp + β− 1) + 1

)]
,

where B(a, b) =
∫ 1

0 ta−1(1− t)b−1dt is the complete beta function.

3.2. Conditional Moments

For lifetime models, it may be useful to know about the conditional moments that is defined as
E(Xr | X > t). The rth conditional moment is given by

E(Xr | X > t) = 1
F(t)

∫ ∞
t xr fBWL(x)dx

= 1
F(t)

{
∞
∑

p,j=0

(−1)p+1Γ(j + 1)[α(j + 1)]pθ j+1

p!j! log(1− θ)

×
[

kB(1+tc)−1

(
kj + k− 1

c (r + βp) + 4, 1
c (r + βp) + 1

)
+ αβ

c B(1+tc)−1

(
kj + k− 1

c (r + βp + β− 1) + 3, 1
c (r + βp + β− 1) + 1

)]}
,

(6)

where Bx(a, b) =
∫ x

0 ta−1(1− t)b−1dt is the incomplete beta function. The mean residual lifetime
function of the BWL distribution is given by E(X|X > t)− t.

4. Maximum Likelihood Estimation

Let X ∼ BWL(c, k, α, β, θ) and ∆ = (c, k, α, β, θ)T be the parameter vector. The log-likelihood
` = `(∆) for a single observation of x of X is given by

`(∆) = log θ − αxβ − (k + 1) log(1 + xc) + log
(

kcxc−1 + αβxβ−1(1 + xc)

)
− log

[
− (1− θ(1 + xc)−ke−αxβ

]
− log

[
log(1− θ)

]
.

(7)
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The first derivative of the log-likelihood function with respect to ∆ = (c, k, α, β, θ)T are given by

∂`

∂c
= − (k + 1)xc log(x)

1 + xc +
kxc−1 + kcxc−1 log(x) + xβxβ−1xc log(x)

kcxc−1 + αβxβ−1(1 + xc)

− θ(1 + xc)−k−1e−αxβ
xc log(x)

−(1− θ(1 + xc)−ke−αxβ
)

,

∂`

∂k
= − log(1 + xc) +

cxc−1

kcxc−1 + αβxβ−1(1 + xc)
− θ(1 + xc)−ke−αxβ{log(1 + xc)}−1

−(1− θ(1 + xc)−ke−αxβ
)

,

∂`

∂α
= −xβ +

βxβ−1x(1 + xc)

kcxc−1 + αβxβ−1(1 + xc)
− θxβ(1 + xc)−ke−αxβ

−(1− θ(1 + xc)−ke−αxβ
)

,

∂`

∂β
= −αxβ log(x) +

αxβ−1(1 + xc) + αβxβ−1 log(x)x(1 + xc)

kcxc−1 + αβxβ−1x(1 + xc)

− θαxβ log(x)(1 + xc)−ke−αxβ

−(1− θ(1 + xc)−ke−αxβ
)

,

and
∂`

∂θ
=

1
θ
− (1 + xc)−ke−αxβ

−(1− θ(1 + xc)−ke−αxβ
)
+

1
(1− θ) log(1− θ)

.

The total log-likelihood function based on a random sample of n observations: x1, x2, ...., xn
drawn from the BWL distribution is given by `∗n = ∑n

i=1 `i(∆), where `i(∆), i = 1, 2, ....., n is
given by Equation (7). The equations obtained by setting the above partial derivatives to zero are
not in closed form and the values of the parameters c, k, α, β, λ must be found by using iterative
methods. The maximum likelihood estimates of the parameters, denoted by ∆̂ is obtained by

solving the nonlinear equation ( ∂`∗n
∂c , ∂`∗n

∂k , ∂`∗n
∂α , ∂`∗n

∂β , ∂`∗n
∂θ )

T = 0, using a numerical method such as

Newton–Raphson procedure. The Fisher information matrix is given by I(∆) = [Iθi ,θj ]5X5 =

E(− ∂2`
∂θi∂θj

), i, j = 1, 2, 3, 4, 5 can be numerically obtained by MATLAB (version 9.1, Math Works Inc,

Natick, Massachusetts, USA) or R Project for Statistical Computing (version 3.4.4, R Core Team, Vienna,
Austria). The total Fisher information matrix nI(∆) can be approximated by

J(∆̂) ≈
[
− ∂2`∗n

∂θi∂θj

∣∣∣∣
∆=∆̂

]
5X5

, i, j = 1, 2, 3, 4, 5. (8)

For a given set of observations, the matrix given in Equation (8) is obtained after the convergence
of the Newton–Raphson procedure in MATLAB or R software.

Asymptotic Confidence Intervals

In this sub-section, we present the asymptotic confidence intervals for the parameters of the BWL
distribution. The expectations in the Fisher Information Matrix (FIM) can be obtained numerically.
Let ∆̂ = (ĉ, k̂, α̂, β̂, θ̂) be the maximum likelihood estimate of ∆ = (c, k, α, β, θ). Under the usual
regularity conditions and that the parameters are in the interior of the parameter space, but not on

the boundary, we have:
√

n(∆̂− ∆)
d−→ N5(0, I−1(∆)), where I(∆) is the expected Fisher

information matrix. The asymptotic behavior is still valid if I(∆) is replaced by the observed



Stats 2018, 1 82

information matrix evaluated at ∆̂, which is J(∆̂). The multivariate normal distribution N5(0, J(∆̂)−1),
where the mean vector 0 = (0, 0, 0, 0, 0)T , can be used to construct confidence intervals and confidence
regions for the individual model parameters and for the survival and hazard rate functions. That is,
the approximate 100(1− η)% two-sided confidence intervals for s, k, α, β and λ are given by:

ĉ± Z η
2

√
I−1

cc (∆̂), k̂± Z η
2

√
I−1

kk (∆̂), α̂± Z η
2

√
I−1

αα (∆̂), β̂± Z η
2

√
I−1

ββ (∆̂),

and θ̂ ± Z η
2

√
I−1

θθ (∆̂), respectively, where I−1
cc (∆̂), I−1

kk (∆̂), I−1
αα (∆̂), I−1

ββ (∆̂), and I−1
λλ (∆̂), are the

diagonal elements of I−1
n (∆̂) = (nI(∆̂))−1, and Z η

2
is the upper η

2 th percentile of a standard
normal distribution.

5. Simulation Study

We study the performance and accuracy of maximum likelihood estimates of the BWL model
parameters by conducting various simulations for different sample sizes and different parameter
values. Equation (5) is used to generate random data from the BWL distribution. The simulation
study is repeated N = 1000 times each with sample size n = 25, 50, 75, 100, 200, 400, 800, 1000 and
parameter values I : c = 5.9, k = 0.9, α = 0.5, β = 0.6, θ = 0.7 and I I : c = 9.8, k = 2.5, α =
0.5, β = 0.4, θ = 0.7. The choice of N=1000 is based on the need to have a reasonably large N to yield
a true sampling distribution of our data on which our estimates of the distribution are based. Four
quantities are computed in this simulation study.

(a) Average bias of the MLE ϑ̂ of the parameter ϑ = c, k, α, β, θ :

1
N

N

∑
i=1

(ϑ̂− ϑ).

(b) Root mean squared error (RMSE) of the MLE ϑ̂ of the parameter ϑ = c, k, α, β, θ :√√√√ 1
N

N

∑
i=1

(ϑ̂− ϑ)2.

(c) Coverage probability (CP) of 95% confidence intervals of the parameter ϑ = c, k, α, β, θ,
i.e., the percentage of intervals that contain the true value of parameter ϑ.

(d) Average width (AW) of 95% confidence intervals of the parameter ϑ = c, k, α, β, θ.

Table 1 presents the Average Bias, RMSE, CP and AW values of the parameters c, k, α, β, θ for
different sample sizes. From the results, we can verify that as the sample size n increases, the RMSEs
decay toward zero. We also observe that the bias decreases in general as the sample size n increases.
In addition, the average confidence widths decrease as the sample size increases.
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Table 1. Monte Carlo simulation results: Average bias, Root Mean Square, Coverage Probability and
Average Width.

Parameter n I II
Average Bias RMSE CP AW Average Bias RMSE CP AW

c

25 2.675779 8.851342 0.994000 23.936930 1.84205 5.301441 0.976000 18.566570
50 1.101271 4.041046 0.991000 12.25807 0.677570 2.166961 0.991000 12.468810
75 0.776600 2.437517 0.994000 9.070155 0.498752 1.758328 0.989000 10.092830

100 0.535438 1.634913 0.998000 7.341681 0.396074 1.469932 0.996000 8.697054
200 0.263376 1.061385 0.995000 4.845233 0.173937 1.009647 0.991000 6.011405
400 0.156439 0.680718 0.994000 3.304505 0.084850 0.718829 0.995000 4.211869
800 0.061912 0.4918901 0.986000 2.285547 0.095066 0.570643 0.992000 2.976686
1000 0.081336 0.452049 0.980000 2.044596 0.095846 0.550242 0.984000 2.659770

k

25 0.0237202 0.494053 0.936000 3.481823 1.369074 9.144814 0.990000 11.460170
50 0.001349 0.342498 0.951000 2.405994 0.270353 0.915826 0.997000 5.205493
75 −0.012153 0.269091 0.966000 1.904094 0.179129 0.643348 0.995000 4.283715

100 −0.009058 0.226214 0.974000 1.652106 0.098394 0.508880 0.995000 3.661433
200 −0.007307 0.174008 0.981000 1.149372 0.049542 0.364229 0.995000 2.564741
400 −0.006503 0.127224 0.989000 0.804003 0.021869 0.270349 0.997000 1.810466
800 −0.004124 0.103233 0.99000 0.566534 0.009208 0.220733 0.994000 1.276235

1000 −0.001613 0.093743 0.989000 0.506535 0.006077 0.204273 0.992000 1.137812

α

25 0.069957 0.310585 0.992000 4.833469 0.121678 0.301760 0.980000 4.541517
50 0.0430549 0.242650 0.986000 3.694583 0.058815 0.218128 0.982000 3.630756
75 0.031248 0.202928 0.987000 3.015649 0.049777 0.185170 0.978000 3.089071

100 0.016989 0.189611 0.984000 2.599544 0.027009 0.175936 0.975000 2.633679
200 0.008977 0.162091 0.986000 1.862088 0.025182 0.160722 0.981000 1.907583
400 0.010789 0.148684 0.990000 1.307337 0.015547 0.147112 0.987000 1.342973
800 0.006690 0.139677 0.989000 0.919219 0.010717 0.138944 0.993000 0.947612
1000 0.006347 0.133964 0.992000 0.826020 0.004011 0.129613 0.993000 0.836210

β

25 0.033337 0.219043 0.973000 1.311640 0.033815 0.166012 0.981000 0.841818
50 0.022060 0.141783 0.991000 0.905219 0.018499 0.085023 0.994000 0.622538
75 0.022018 0.116760 0.983000 0.7267897 0.009590 0.066644 0.994000 0.503165

100 0.013218 0.100725 0.994000 0.619022 0.011386 0.060717 0.996000 0.439842
200 0.008977 0.073217 0.993000 0.429614 0.007230 0.043097 0.989000 0.309474
400 0.006178 0.052166 0.991000 0.299177 0.003806 0.033442 0.996000 0.216698
800 0.004166 0.041231 0.993000 0.210559 0.003685 0.027366 0.993000 0.153173
1000 0.005101 0.037446 0.991000 0.188943 0.004511 0.025963 0.996000 0.137367

θ

25 −0.129980 0.339392 0.912000 8.252486 −0.176417 0.379665 0.858000 7.477688
50 −0.094879 0.304801 0.939000 6.317330 −0.101459 0.302833 0.936000 6.194896
75 −0.074418 0.274624 0.964000 5.125504 −0.105268 0.293129 0.950000 5.591709

100 −0.065701 0.266921 0.970000 4.408751 −0.073181 0.271070 0.967000 4.649491
200 −0.064284 0.253383 0.983000 3.211048 −0.079330 0.270891 0.978000 3.467229
400 −0.062139 0.244138 0.991000 2.269061 −0.065711 0.250295 0.987000 2.412363
800 −0.053284 0.234049 0.963000 1.559317 −0.060658 0.245471 0.981000 1.698596

1000 −0.048387 0.227437 0.957000 1.392764 −0.046279 0.228074 0.958000 1.451740

6. Applications

In this section, we present examples to illustrate the flexibility of the BWL distribution and
its sub-models including the Burr XII-Weibull (BW), Burr XII-Rayleigh (BR), Burr XII Exponential
(BE), Lomax Exponential-Logarithmic (LEL, Exponential-Logarithmic (EL), Lomax–Rayleigh (LR),
Lomax (L), Weibull (W) and Exponential (E) distributions for data modeling. Estimates of the
parameters of BWL distribution (standard error in parentheses), Akaike Information Criterion (AIC),
Consistent Akaike Information Criterion (AICC), Bayesian Information Criterion (BIC), Sum of
Squares (SS, described in this section), Cramer Von Mises (W∗), Anderson–Darling statistics (A∗),
Kolmogorov–Smirnov (KS) and its p-value are presented for each data set. We also compare the
BWL distribution with the non-nested gamma log-logistic Weibull (GLLoGW), beta modified Weibull
(BetaMW), beta Weibull Poisson (BWP), gamma-Dagum (GD) and exponentiated Kumaraswamy
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Dagum (EKD) distributions. The pdf of the beta modified Weibull (BetaMW) [9] distribution is
given by

gBetaMW (x) =
αxγ−1(γ + λx) exp(λx)

B(a, b)
e−bαxγ exp(λx)(1− e−αxγ exp(λx))a−1, x > 0.

The pdf of exponentiated Kumaraswamy Dagum (EKD) [10] distribution is given by

gEKD(x) = αλδφθx−δ−1(1 + λx−δ)−α−1[1− (1 + λx−δ)−α]φ−1

× {1− [1− (1 + λx−δ)−α]φ}θ−1 (9)

for α, λ, δ, φ, θ > 0, and x > 0.
The beta Weibull-Poisson (BWP) pdf [11] is given by

gBWP(x) =
αβλxα−1eλe−βxα−λ−βxα

(eλ − 1)2−a−b(eλ − eλe−βxα

)a−1(eλe−βxα

− 1)b−1

B(a, b)(1− e−λ)
(10)

for a, b, α, β, λ > 0, and x > 0. The GD pdf (Oluyede et al. [12]) is given by

gGD(x) =
λβδx−δ−1

Γ(α)θα
(1 + λx−δ)−β−1

(
− log[1− (1 + λx−δ)−β]

)α−1

× [1− (1 + λx−δ)−β](1/θ)−1. (11)

In addition, the pdf of the gamma log-logistic Weibull (GLLoGW) distribution (Oluyede et al. [13])
is given by

gGLLoGW (x) =
1

Γ(δ)θδ
(1 + xc)−1e−αxβ

[(1 + xc)−1cxc−1 + αβxβ−1]

×
(
− log[1− (1 + xc)−1e−αxβ

]

)δ−1

[1− (1 + xc)−1e−αxβ
](1/θ)−1. (12)

The maximum likelihood estimates (MLEs) of the BWL model parameters ∆ = (c, k, α, β, θ) are
computed by maximizing the objective function via the subroutine mle2 in R [14]. The subroutine
mle2 in R was applied and executed for wide range of initial values. The issues of existence and
uniqueness of the MLEs are of theoretical interest and has been studied by several authors for different
distributions including [15–18].

The estimated values of the model parameters (standard error in parenthesis), -2log-likelihood
statistic, Akaike Information Criterion, AIC = 2p − 2 ln(L), Bayesian Information Criterion,

BIC = p ln(n)− 2 ln(L), and Consistent Akaike Information Criterion, AICC = AIC + 2 p(p+1)
n−p−1 ,

where L = L(∆̂) is the value of the likelihood function evaluated at the parameter estimates, n is the
number of observations, and p is the number of estimated parameters are presented in each table of
estimates. The goodness-of-fit statistics W∗ and A∗, [19] are also presented in the table. These statistics
can be used to verify which distribution fits better to the data. In general, the smaller the values of W∗

and A∗, the better the fit. BWL distribution is fitted to the data set and these fits are compared to the
fits using some of the submodels and several non-nested distributions given above.

We can use the likelihood ratio test (LRT) to compare the fit of the BWL distribution with
its sub-models for a given data set. For example, to test β = 1, the LR statistic is ω =
2[ln(L(ĉ, k̂, α̂, β̂, θ̂))− ln(L(c̃, k̃, α̃, 1, θ̃))], where ĉ, k̂, α̂, β̂ and θ̂ are the unrestricted estimates, and
c̃, k̃, α̃ and θ̃ are the restricted estimates. The LR test rejects the null hypothesis if ω > χ2

ε
, where χ2

ε

denote the upper 100ε% point of the χ2 distribution with one degree of freedom.
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To obtain the probability plot, we plotted F(y(j); ĉ, k̂, α̂, β̂, θ̂) against
j− 0.375
n + 0.25

, j = 1, 2, · · · , n,
where y(j) are the ordered values of the observed data. The measures of closeness are given by the
sum of squares

SS =
n

∑
j=1

[
F(y(j))−

(
j− 0.375
n + 0.25

)]2
.

6.1. Waiting Time between Eruptions (Seconds)

The ocean swell produces spectacular eruptions of water through a hole in the cliff at Kiama,
about 120 km south of Sydney, known as the Blowhole. The times at which 65 successive eruptions
occurred from 1340 h on 12 July 1998 were observed using a digital watch. The data was collected and
contributed by Jim Irish [20]. Initial values for the BWL model in R are c = 0.1, k = 0.5, α = 0.5, β =
0.8, θ = 0.8. The parameter estimates, goodness-of-fit statistics and results for this data are given in
Table 2.

The estimated variance-covariance matrix for the BWL distribution is given by:
3.0881 −0.1431 −0.0133 0.8750 0.4798
−0.1431 0.0106 0.0009 −0.0585 −0.0369
−0.0133 0.0009 0.0001 −0.0086 −0.0033
0.8750 −0.0585 −0.0086 0.5827 0.2201
0.4798 −0.0369 −0.0033 0.2201 0.1312

 .

Plots of the fitted densities and histogram, observed probability versus predicted probability for
waiting time between eruptions data are given in Figures 2 and 3, respectively.

The LRT statistics for testing H0: BE against Ha: BWL and H0: LR against Ha: BWL are
13.43 (p-value = 0.0012) and 24.22 (p-value < 0.0001), respectively. We conclude that there is a
significant difference between the BE and the BWL distributions. There is also a significant difference
between the LR and the BWL distributions. The LRT statistic for testing H0: BW against Ha: BWL
is 1.03 (p-value = 0.3102). We conclude that there is no significant difference between BW and BWL
distributions; however, there is indeed clear and convincing evidence based on the goodness-of-fit
statistics W∗, A∗ and KS and its p-value that the BWL distribution is far better than the sub-models,
and the non-nested models. In addition, the values of AIC and BIC shows that the BWL distribution
is better than the non-nested GLLoGW, BetaMW, BWP, GD and EKD distributions. The values of SS
from the probability plots is smallest for the BWL distributions when compared to the nested and
non-nested models.

6.2. Time to Failure of Kevlar 49/Epoxy Strands Tested at Various Stress Levels

This real life example is taken from Cooray and Ananda [21], where 101 data points represent
the stress-rupture life of kevlar 49/epoxy strands that are subjected to constant sustained pressure at
the 90% stress level until all have failed, so that the complete data set with the exact times of failure
is recorded. These failure times in hours are originally given in Andrews and Herzberg [22] and
Barlow et al. [23]. Initial values for the BWL model in R are c = 0.1, k = 0.1, α = 0.1, β = 4, and
θ = 0.8. The parameter estimates, goodness-of-fit statistics and results for this data are given in
Table 3.
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Table 2. Model parameter estimates for the waiting time between eruptions data.

Model Estimates Statistics

c k α β θ −2 log L AIC AICC CAIC BIC W∗ A∗ KS p-Value SS

BWL 4.4524 0.0451 0.0057 2.3625 0.9051 285.78 295.78 296.82 296.82 306.58 0.0407 0.3964 0.0614 0.9694 0.0377
(1.7573) (0.1032) (0.0114) (0.7633) (0.3623)

BW 4.3730 0.1392 0.0078 2.2103 0 286.81 294.81 295.85 295.49 303.45 0.0572 0.4874 0.0898 0.6806 0.0649
(1.2190) (0.0479) (0.0121) (0.5851) -

BR 4.3420 0.1332 0.0135 2 0 286.98 292.98 294.01 293.38 299.45 0.0583 0.4915 0.0890 0.6916 0.0664
(1.2542) (0.0453) (0.0043) - -

BE 4.8239 0.1011 0.1171 1 0 299.21 305.21 306.25 305.61 311.69 0.1114 0.8304 0.1171 0.3440 0.1864
(1.7590) (0.0589) (0.0578) - -

LR 1 0.2893 0.0219 2 0 310.00 314.00 315.04 314.20 318.32 0.2418 1.5705 0.1525 0.1020 0.2035
- (0.0866) (0.0049) - -

L 1 0.7085 0 0.1000 0 352.77 356.77 357.80 356.96 361.08 0.1234 0.9002 0.3250 0.0000 1.6815
- (0.0886) - (7.266566E–17) -

W 0.1000 0 0.1549 1.2744 0 299.07 305.07 306.10 305.47 311.55 0.1471 1.0080 0.1113 0.4061 0.1260
(2.255944E–12) - (0.0392) (0.1203) -

E 0.1000 0 0.2511 1 0 304.89 308.89 309.93 309.09 313.21 0.1317 0.9179 0.1664 0.0579 0.1836
(5.176341E–18) - (0.0314) - -

c α β δ θ

GLLoGW 1.4725 0.0042 2.4336 0.7650 0.3841 289.79 299.79 300.82 300.82 310.58 0.0694 0.5695 0.0901 0.6759 0.0761
(1.1419) (0.0316) (2.0826) (1.3339) (0.4998)

c k α β λ

BMW 4.8935 0.1186 0.0155 1.8669 0.0150 287.33 297.33 298.36 298.36 308.12 0.0640 0.5233 0.0952 0.6080 0.0755
(1.5277) (0.0482) (0.0229) (0.9151) (0.1010)

a b α γ λ

BetaMW 479.79 81.242 1.8115 0.0569 0.0017 292.56 302.56 303.59 303.59 313.35 0.1007 0.7420 0.1018 0.5207 0.1048
(0.0000) (0.0002) (0.0161) (0.0100) (0.0023)

a b α β λ

BWP 0.9655 1.7087 0.0023 2.4690 6.8923 292.75 302.75 303.79 303.79 313.55 0.0881 0.6810 0.0905 0.6706 0.0820
(0.4813) (1.0119) (0.0085) (1.3350) (5.0272)

λ β δ α θ

GD 0.4870 3.9072 0.4828 5.0474 0.0950 293.40 303.40 304.44 304.44 314.20 0.1148 0.8419 0.0942 0.6212 0.1196
(0.7748) (5.9018) (0.4452) (7.6696) (0.1790)

α λ δ φ θ

EKD 16.331 0.1746 0.1739 31.136 22.357 293.87 303.87 304.90 304.90 314.66 0.1295 0.9353 0.0980 0.5699 0.1320
(11.382) (0.1352) (0.0173) (1.1928) (0.7287)
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Figure 2. Fitted densities for waiting time between eruptions data.

Figure 3. Probability plots for waiting time between eruptions data.
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Table 3. Model parameter estimates for time to failure of kevlar 49/epoxy strands data.

Model Estimates Statistics

c k α β θ −2 log L AIC AICC CAIC BIC W∗ A∗ KS p-Value SS

BWL 5.8331 0.2335 0.4260 0.7695 0.7290 196.12 206.12 206.75 206.75 219.19 0.0429 0.3107 0.0516 0.9505 0.0419
(2.0868) (0.1268) (0.3959) (0.1738) (0.5967)

LEL 1 1.5648 4.522787E–05 4.3566 0.0971 220.28 228.28 228.91 228.69 238.74 0.4746 2.5587 0.1572 0.0136 0.5814
- (0.2561) (0.0001) (0.0330) (0.4110)

EL 0.1000 0 0.9255 1 0.1900 206.88 212.88 213.52 213.13 220.73 0.1952 1.0971 0.0834 0.4838 0.1770
(2.011761E–15) - (0.2034) - (0.6219)

BW 0.7099 0.4274 0.6842 1.1195 0 205.72 213.72 214.35 214.13 224.18 0.1541 0.9121 0.0815 0.5141 0.1526
(0.2174) (0.6220) (0.4694) (0.3497) -

BR 1.0054 1.3175 0.0907 2 0 210.98 216.98 217.61 217.22 224.82 0.2492 1.3902 0.1020 0.2442 0.2396
(0.1247) (0.2130) (0.0471) - -

BE 0.6774 0.2007 0.8595 1 0 205.82 211.82 212.45 212.07 219.66 0.1779 1.0171 0.0875 0.4222 0.1773
(0.2778) (0.2342) (0.1596) - -

LR 1 1.3136 0.0919 2 0 210.98 214.98 215.61 215.10 220.21 0.2471 1.3808 0.1020 0.2445 0.2385
- (0.1928) (0.0383) - -

L 1 1.6638 0 0.1000 0 220.56 224.56 225.20 224.69 229.79 0.4702 2.5406 0.1663 0.0075 0.6549
- (0.1656) - (1.223928E–16) -

W 0.1000 0 1.0094 0.9259 0 205.95 211.95 212.59 212.20 219.80 0.1987 1.1111 0.0906 0.3778 0.1954
(1.523294E–16) - (0.1053) (0.0726) -

R 0.1000 0 0.4365 2 0 360.46 364.46 365.09 364.58 369.69 0.1206 0.9184 0.2711 0.0000 3.5326
(3.377936E–16) - (0.0434) - -

c α β δ θ

GLLoGW 0.2365 0.2591 0.9648 4.3962 0.1396 204.01 214.01 214.64 214.64 227.08 0.1322 0.7996 0.0752 0.6173 0.1289
(0.2965) (0.3727) (0.3741) (10.719) (0.3332)

a b α γ λ

BetaMW 108.86 25.631 1.6632 0.0534 0.0343 207.31 217.31 217.94 217.94 230.38 0.1955 1.1190 0.0932 0.3437 0.1916
(0.0002) (0.0009) (0.0279) (0.0075) (0.0089)

a b α β λ

BWP 0.0745 8.3950 0.8247 1.0698 374.51 202.04 212.04 212.67 212.67 225.12 0.1141 0.7016 0.0706 0.6961 0.1093
(0.0177) (0.3903) (0.2761) (0.2005) (0.0015)

λ β δ α θ

GD 49.090 0.3216 9.9094 0.2055 6.8443 196.58 206.58 207.21 207.21 219.66 0.0367 0.2895 0.0586 0.8788 0.0352
(111.98) (0.2286) (5.0965) (0.1636) (6.1399)

α λ δ φ θ

EKD 0.0179 6.7074 3.7473 0.8577 8.4926 199.84 209.84 210.48 210.48 222.92 0.0553 0.4193 0.0640 0.8024 0.0581
(0.0279) (6.5531) (0.9489) (0.2534) (13.328)
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The estimated variance-covariance matrix for the BWL distribution is given by:
4.3547 −0.2238 −0.1727 0.1574 0.3813
−0.2238 0.0161 0.0156 −0.0144 −0.0337
−0.1727 0.0156 0.1568 −0.0439 −0.2296
0.1574 −0.0144 −0.0439 0.0302 0.0768
0.3813 −0.0337 −0.2296 0.0768 0.3561

 .

Plots of the fitted densities and histogram, observed probability versus predicted probability for
waiting time between eruptions data are given in Figures 4 and 5, respectively.

Figure 4. Fitted densities for time to failure of kevlar 49/epoxy strands data.

The LRT statistics for testing H0: BE against Ha: BWL and H0: LEL against Ha: BWL are 9.7
(p-value = 0.0078) and 24.16 (p-value < 0.0001), respectively. We conclude that there is a significant
difference between the BE and the BWL distributions. There is also a significant difference between
the LEL and the BWL distributions. The LRT statistic for testing H0: BW against Ha: BWL is 9.6
(p-value = 0.0019), hence we conclude that there is a significant difference between BW and BWL
distributions. There is clear and convincing evidence based on the goodness-of-fit statistics W∗, A∗,
KS and its p-value, that the BWL distribution is far better than the sub-models and the non-nested
models. In addition, the values of AIC and BIC show that the BWL distribution is better than the
non-nested GLLoGW, BetaMW, BWP, GD and EKD distributions. The values of SS from the probability
plots is the smallest for the BWL distributions when compared to the nested and non-nested models
GLLoGW, BetaMW, BWP and EKD distributions.
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Figure 5. Probability plots for time to failure of kevlar 49/epoxy strands data.

7. Conclusions

A new generalized distribution called the Burr XII-Weibull-Logarithmic (BWL) distribution has
been proposed and studied. Statistical properties including the moments and conditional moments
were presented. A maximum likelihood estimation technique is used to estimate the model parameters.
Finally, the BWL distribution is fitted to real data sets in order to illustrate its applicability and
usefulness. We found BWL to be more precise than some other nested and non-nested models.
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