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Abstract: In this note we discuss the development of a new Gamma exponentiated functional GE(α, h)
distribution, using the Gamma baseline distribution generating method by Zografos and Balakrishnan.
The raw moments of the Gamma exponentiated functional GE(α, h) distribution are derived. The related
probability distribution class is characterized in terms of Lambert W-function.
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1. Introduction

The idea of adding a positive parameter in the exponent of the cumulative distribution function
(cdf) for a continuous distribution was introduced by Lehmann [1], which results in a class of so-called
exponentiated distribution, see also ([2], Chapter 2). Using exponentiated Gamma-type random variables
(rv) (or Stacy’s generalized Gamma distribution [3]) for generating further distribution classes were used
by Zografos and Balakrishnan ([4], p. 350 et seq.). Subsequently, considering a similar method Ristić and
Balakrishnan ([5], p. 1192, Equation (2)) introduce a new family od distributions via the survival function
of the general continuous baseline (or parent) distribution which turns out to be a “dual family of the
Zografos–Balakrishnan family of distributions” ([5], p. 1192) with a set of three main motivations for
their new distribution class [5], ibid. We point out that Ristić and Balakrishnan linked their study to the
Gamma-exponentiated exponential distribution, which certain properties are discussed by Ristić and
Nadarajah [6]; it is worth mentioning the companion note by Pogány [7] where their findings concerning
moments are precised in terms of higher transcendental functions including confluent Fox–Wright
generalized hypergeometric and generalized Hurwitz–Lerch zeta function.

Introducing two extra parameters Cordeiro et al. ([8], pp. 1–2) have covered both Lehmann I and
Lehmann II type exponentiated distribution classes, calling these exponentiated generalized families,
giving full consideration to certain special cases like exponentiated generalized Frèchet, Normal, Gamma
and Gumbel distributions ([8], 2. Special Models). Numerous authors have linked to listed models
considering special cases of Gamma generalized, exponentiated distribution classes, among others we
refer to Gamma-exponentiated Weibull [9,10], exponentiated Weibull, exponentiated Pareto, exponentiated
Gamma [11], Kumaraswamy generalized Gamma and Gumbel [12,13] distributions with exhaustive
references lists and links to further sub–models and special cases, consult e.g., ([13], pp. 415–416); also see
the recent article [14] where an extension is obtained for the generalized integro-exponential function
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by which the moment expression of the above listed distribution classes can be expressed in a closed or
more compact form. Finally, we mention the related recent article [15] as well.

The main purpose of adding parameters to an existing distribution is to obtain classes of more
flexible distributions which provide more adaptability in modeling various types of data. According to
Zografos and Balakrishnan [4] the Gamma-exponentiated extended distribution possesses cdf F(x) given as

F(x) =
1

Γ(α)

∫ − log G(x)

0
tα−1 e−t dt , α > 0, x ∈ R , (1)

where the baseline distribution G has the survival function G(x) = 1− G(x). The Gamma–exponentiated
extended probability density function (pdf) related to Equation (1) can be expressed in the following form:

f (x) =
1

Γ(α)
[
− log G(x)

]α−1 G′(x) , α > 0, x ∈ R .

The regularized Gamma function reads

Q(a, z) =
Γ(a, z)
Γ(a)

=
1

Γ(a)

∫ ∞

z
ta−1e−t dt, <(a) > 0 ,

where Γ(a, x) denotes the upper incomplete Gamma function. Both, regularized Gamma and incomplete
Gamma, are in-built in Mathematica under GammaRegularized[a,z] and Gamma[a,z], respectively.

We specify the approach presented in [4] by choosing the baseline distribution’s survival function to
be G(x) = 1− G(x) = exp(−h(x)), where h : R+ 7→ R+ denotes a nonnegative Borel function.

The rv X defined on a standard probability space (Ω,F,P), having cdf and pdf

F(x) =
[
1−Q

(
α, h(x)

)]
1R+

(x) (2)

f (x) =
h′(x)
Γ(α)

hα−1(x) e−h(x) 1R+
(x),

respectively, is called Gamma-exponentiated functional h distributed, signifying this X ∼ GE(α, h).
Here and in what follows, 1A(x) denotes the indicator function of the set A, i.e., 1A(x) = 1 when x ∈ A
and equals 0 elsewhere.

As an illustrative example of this approach can be the case considered by Pogány and Saboor [16]
choosing h(x) = λx + βxk introduced the Gamma-exponentiated exponential Weibull distribution
GEEW(θ), θ = (λ, β, k, α) > 0, which cdf and pdf are

F(x) =
[
1−Q

(
α, λx + βxk)] 1R+

(x)

f (x) =
1

Γ(α)

(
λ + β k xk−1

)
e−λ x−β xk

(
λx + βxk

)α−1
1R+

(x) .

Finally, the incomplete Gamma function possesses a representation in terms of the Kummer’s
confluent hypergeometric function ([17], Chapter 13)

1F1(a; b; z) = ∑
n≥0

(a)n

(b)n

zn

n!
,

we have the equivalent form of the cdf

F(x) =
hα(x)

Γ(α + 1) 1F1
(
α; α + 1;−h(x)

)
;
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the particular cases of 1F1 to other functions as elementary, incomplete Gamma, orthogonal polynomials,
generalized hypergeometric, Bessel, Coulomb functions are documented e.g., in [17], §13.6. In this note,
bearing in mind this relationship and motivated with the general model of distribution families by
Zografos and Balakrishan, and also the model by Ristić and Balakrishnan which can be described by the
Gamma exponentiated functional model GE(α, h) we derive two formulae for the raw moments of rv
having GE(α, h) distribution in terms of a hypergeometric function the integrand. Moreover, the random
variable X ∼ GE(α, h) has been characterized and described in terms of the Lambert’s W function.

2. Moments and Quantile Function

Firstly, we note that further on pFq denotes the generalized hypergeometric function of p numerator
and q denominator parameters, see e.g., [18]; for 2F0 we refer to [19].

Theorem 1. Let h : R+ 7→ R+ be analytic monotone increasing function with h′(0) 6= 0 and let rv X ∼ GE(α, h).
Then for all α > 0, r ≥ 0 we have

E Xr =
r

4π2

∮
γz

∮
γw

zr−1 [(1− w)α − 1]
h(z)w2(1− w)α 2F0

(
1, 1;−;

1
h(z)w

)
dz dw , (3)

where the positively oriented closed integration paths γz, γw are taken in a way that enclose the origins in the
complex z−, and w−planes, respectively.

Moreover, under the same assumptions, we have

E Xr =
r

2πi

∮
γz

∫ ∞

0

zr−1 [(1− t)−α − 1
]

t
e−h(z)t dz dt . (4)

Proof. Assume r > 0 and denoting h−1 the inverse of h, we have

E Xr =
∫ ∞

0

xr

Γ(α)
h′(x) hα−1(x) e−h(x) dx =

1
Γ(α)

∫ ∞

0
[h−1(t)]r tα−1e−t dt.

The Lagrange–Bürmann inversion theorem ([20], Equation (1.1) et seq.) reads:

Let a(z) = ∑n≥0 anzn, with a1 6= 0 (interpreted either as analytic function or a formal power series),
and A(z) = ∑n≥0 Anzn. Then

A
(
a−1(z)

)
= A0 + ∑

n≥1

zn

n

[
ζn−1

]
A′(ζ)

(
ζ

a(ζ)

)n
; (5)

where
[
ζm] extracts the coefficient of ζm in a series:

[
ζm](∑

k
ckxk) = cm.

Applying Equation (5) to the integrand of the moment E Xr above, being a ≡ h and A(ζ) = ζr, r ≥ 0,
we conclude

E Xr =
r

Γ(α) ∑
n≥1

1
n

(∫ ∞

0
tα+n−1 e−t dt

) [
ζn−1

] ζr+n−1

hn(ζ)

= r ∑
n≥1

(α)n

n

[
ζn−1

] ζr+n−1

hn(ζ)

= rα ∑
n≥0

(α + 1)n(1)n

(2)n
[ζn]

ζr+n

hn+1(ζ)
.

By the Cauchy differentiation formula we have
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[ζn]
ζr+n

hn+1(ζ)
=

1
n!

dn

dζn

(
ζr+n

hn+1(ζ)

)∣∣∣∣
ζ=0

=
1

2πi

∮
γz

zr−1

hn+1(z)
dz ,

that is

E Xr =
rα

2πi

∮
γz

zr−1

h(z) ∑
n≥0

(α + 1)n(1)n

(2)n

1
hn(z)

dz , (6)

where γz is a positively oriented simple integration path enclosing the origin. Having in mind the
differentiation property of the Gauss’ hypergeometric function ([18], p. 28, (1.6.11))

∂n

∂wn 2F1(a, b; c; w)

∣∣∣∣
w=0

=
(a)n(b)n

(c)n
2F1(a + n, b + n; c + n; 0) =

(a)n(b)n

(c)n
,

it follows also by the Cauchy’s differentiation formula:

(α + 1)n(1)n

(2)n
=

∂n

∂wn 2F1(α + 1, 1; 2; w)
∣∣∣
w=0

=
n!

2πi

∮
γw

2F1(α + 1, 1; 2; w)

wn+1 dw .

Choosing the integration paths γz, γw according to the assumptions we get

E Xr = − rα

4π2

∮
γz

∮
γw

zr−1
2F1(α + 1, 1; 2; w)

h(z)w ∑
n≥0

(1)n

(h(z)w)n dz dw ,

which is in fact Equation (3) since

2F1(α + 1, 1; 2; w) = − (1− w)α − 1
αw(1− w)α

. (7)

The rest is obvious.
As to Equation (4), we take the Laplace–integral formula ([18], p. 31, Equation (1.6.33)):

3F1
(
λ, a, b; c; s−1) = sλ

Γ(λ)

∫ ∞

0
e−st tλ−1

2F1(a, b; c; t)dt , (8)

which holds true for all a, b ∈ C; c ∈ C \ Z0
− provided that min{<(λ),<(s)} > 0. Thus, starting from

Equation (6), we transform the inner sum into a 3F1 expression by Equation (8) and conclude

E Xr =
rα

2πi

∮
γz

zr−1

h(z) ∑
n≥0

(1)n(α + 1)n(1)n

(2)n n!

(
1

h(z)

)n
dz

=
rα

2πi

∮
γz

zr−1

h(z) 3F1

(
1, α + 1, 1; 2;

1
h(z)

)
dz

=
rα

2πi

∮
γz

zr−1
∫ ∞

0
e−h(z)t

2F1(α + 1, 1; 2; t)dz dt . (9)

By Equation (7), the expression Equation (9) becomes

E Xr =
r

2πi

∮
γz

∫ ∞

0

zr−1 [(1− t)−α − 1
]

t
e−h(z)t dz dt ,

which completes the proof.

The consequence of Theorem 1 when r = 1, recalling that E X = α, is
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Corollary 1. For all α > 0 we have

∮
γz

∮
γw

(1− w)α − 1
zw2(1− w)α 2F0

(
1, 1;−;

1
zw

)
dz dw = 4π2 α

∮
γz

∫ ∞

0

[
(1− t)−α − 1

]
t

e−zt dz dt = 2πi α .

Here the integration contours γz, γw remain the same as in Theorem 1.

The Lambert W-function is the inverse function of W 7→WeW . Its principal branch WP is the solution
of WeW = x, for which WP(x) ≥ WP(−e−1). This function is in–built in Mathematica as ProductLog[z].
We are interested in WP exclusively for x ≥ 0, where it is single–valued and monotone increasing, see [17],
Section 4.13.

Any nondecreasing function h possesses an generalized inverse

h−(x) := inf{t ∈ R+ : h(t) ≥ x}, t ∈ R+ ,

with the convention that inf ∅ = ∞. Moreover, if h is strong monotone increasing then h− coincides with
the ‘ordinary’ inverse h−1.

Theorem 2. Consider rv Υ = hp(X) exp
(
σh(X)

)
; σ, p ≥ 0, where X ∼ GE(α, h). Then

Υ ∼ GE(α, h−), h− := h−
[

p
σ

WP

(
σ

p
x

1
p

)]
. (10)

Moreover, for all s ∈ (−α p−1, σ−1) we have

EΥs =
(α)ps

(1− σs)α+sp ,

whenever h : R+ 7→ R+ is a nondecreasing Borel function.

Proof. The rv X ∼ GE(α, h) possesses cdf FX in the form Equation (2). When σ = 0, then Υ ≡ hp(X).
Letting σ > 0, the pdf FΥ of the rv Υ becomes

FΥ(x) = P

[
h(X) exp

(
σ

p
h(X)

)
< x

1
p

]
= P

[
h(X) <

p
σ

WP

(
σ

p
x

1
p

)]
= P

{
X < h−

[
p
σ

WP

(
σ

p
x

1
p

)]}
= FX

{
h−
[

p
σ

WP

(
σ

p
x

1
p

)]}
· 1R+

(x),

which is equivalent to the first assertion Equation (10). In turn

EΥs = Ehps(X) exp
(
σs h(X)

)
=

1
Γ(α)

∫ ∞

0
hα+ps−1(x) e−(1−σs) h(x) dh(x) ,

where the convergence of the integral is controlled by the condition σs < 1 because h is non–decreasing
and positive at the infinity. Now, routine steps lead to the assertion.

The quantile function QX of the rv X ∼ F(x) is defined as

QX(p) = inf{x ∈ R : p ≤ F(x)} , p ∈ (0, 1) .

It is the generalized inverse of the cdf for a fixed probability p. The related result is the following
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Theorem 3. Let X ∼ GE(h), where h : R+ 7→ R+ is a nonnegative monotone Borel function. Then the quantile
function QX(p) reads

QX(p) = h−1 ◦Q−1(α, 1− p
)
, p ∈ (0, 1) ,

where ◦ denotes the composition of functions.

Proof. The quantile function is derived by inverting Equation (2). Therefore, for p ∈ (0, 1) fixed,
solving the equation 1 − Q(α, h(x)) = F(x) = p with respect to the regularized upper incomplete
Gamma–function Q, we get Q(α, h(x)) = 1 − p. Because Γ′(a, z) = −za−1e−z < 0, the function
Γ(a, z) = Γ(α) Q(a, z) is monotone in z, therefore Q has an unique inverse Q−1:

h(x) = Q−1(α, 1− p
)

.

Remarking that h is monotone too, the proof is finished.

3. Concluding Remarks

In this manuscript, the authors discuss the development of a new distribution, Gamma exponentiated
functional GE(α, h) distribution, using the Gamma baseline distribution generating method by Zografos
and Balakrishnan [4] and also related to the so called “dual family of the Zografos–Balakrishnan family of
distributions” [5]. The main findings of the article are two equaivalent complex path integral expressions
for the raw moments of the Gamma exponentiated functional GE(α, h) distribution derived in Theorem 1
by virtue of the generalized hypergeometric function 2F0 in the integrand. By these results a master
formula is derived for raw moments which are coming from the GE(α, h) distribution family.

As an illustrative example for GE(α, h) distribution serves the GEEW(θ) distributed rv considered
recently by Pogány and Saboor [16]. We also refer to the exhaustive list of special cases listed in Introduction.

Finally, the related probability distribution class is characterized in terms of Lambert W–function
in Theorem 2, while the quantile function is derived in Theorem 3 in terms of the regularized upper
incomplete Gamma function Q.
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