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Abstract: This paper considers a non-mixture cure model for right-censored data. It utilizes
the maximum likelihood method to estimate model parameters in the non-mixture cure model.
The simulation study is based on Fréchet susceptible distribution to evaluate the performance of the
method. Compared with Weibull and exponentiated exponential distributions, the non-mixture
Fréchet distribution is shown to be the best in modeling a real data on allogeneic marrow
HLA-matched donors and ECOG phase III clinical trial e1684 data.

Keywords: Non-mixture model; Fréchet distribution; Right-censored survival data; Maximum
likelihood method

1. Introduction

The cure fraction models are broadly used for analyzing survival data. In the literature, there
are two major models to fit survival data with a cure fraction. The first one is the mixture cure rate
model, also known as the standard cure rate model. This model was initially introduced by Boag [1]
in 1949 and further developed by Berkson and Gage [2] in 1952 and later extensively studied by
other authors. In this model, it is assumed that a certain proportion of the population is cured and
the remaining is not cured. In order to estimate the cure fraction, parametric, semi-parametric and
non-parametric methods have been studied by several authors. Farewell [3] in 1982 used a Weibull
distribution for uncured subjects and a logistic regression for cure probability. Goldman [4] in 1984
discussed parametric survivorship analyses using maximum likelihood estimation and the likelihood
ratio test. Taylor [5] in 1995 proposed the semi-parametric method to a mixture model using the logistic
regression for an incidence part and the Kaplan–Meier for the latency part. Peng and Dear [6] in 2000
investigated the non-parametric approach to a mixture model to estimate parameter of interest in
the model using EM algorithm, marginal likelihood approach, and multiple imputations. They also
extended to Cox’s proportional hazards cure model. Kuk and Chen [7] in 1992 also proposed the
semi-parametric cure model using the logistic regression for cure probability and the proportional
hazard regression model for failure time. Zhang and Peng [8] in 2009 proposed a mixture cure model
where the covariate effects on the proportion of cure and the distribution of the failure time of uncured
patients are separately modeled. Patilea and Van Keilegom [9] in 2017 proposed a general approach to
estimate a mixture cure model for random right censoring data. They worked with a parametric model
for the cure proportion and the conditional probability for the uncured subjects. Moreover, Kim and
Jhun [10] in 2008 investigated interval censored data based on a mixture cure model. They derived
the likelihood in interval censored data based on an approximate likelihood approach suggested by
Goetghebeur and Ryan [11] in 2000.
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The second one is a non-mixture cure rate model, also known as the bounded cumulative hazard
model and promotion time cure model. In cancer study, this model was developed based on the
assumption that the number of cancer cells that remain active after cancer treatment and that may grow
slowly and produce a detectable cancer, which assumed to follows a Poisson distribution. This model
was first proposed by Yakovlev et al. [12] in 1993 and was further discussed by Chen et al. [13] in
1999. The semi-parametric approaches of estimation for survival data with a cure fraction have been
discussed by Chen et al. [14] in 2001. Tsodikov et al. [15] in 2003 provided a review of existing
methodology of statistical inference based on the non-mixture model. They have highlighted that
there are the distinct advantages of the non-mixture cure model: the non-mixture cure model has
proportional hazard model structure, the non-mixture cure model presents a much more biologically
meaningful interpretation of the results of the data analysis and the non-mixture cure model is
easy in computations due to its simple structure for the survival function which can provide a
certain technical advantage when developing maximum likelihood estimation procedures. Herring
and Ibrahim [16] in 2002 studied the parametric estimation of random effects for non-ignorable
missing covariates in a non-mixture cure model. Uddin et al. [17,18] in 2006 approached both
non-parametric and parametric methods in a non-mixture model for uncensored data. Liu et al. [19]
in 2009 investigated the semi-parametric non-mixture cure model for interval censored data using
the EM method. Lopes et al. [20] in 2012 studied both bayesian and classical approaches to long-term
survivors and random effects based on a non-mixture cure model.

In this paper, we considered a generalized extreme value type II distribution for long-term
survivors. The generalized extreme value distribution was introduced by Jenkinson [21] in 1955 and its
sub-models are widely used for modeling extreme events. The generalized extreme value distribution
sub-models are Gumbel, Fréchet and Weibull distributions. An extreme value distributions play an
important role in statistics. Ramos et al. [22] in 2017, discussed some properties of the long-term
Fréchet distribution. We study a long-term survival non-mixture cure model with Fréchet distribution
for uncured population. The Fréchet distribution is one of the flexible distribution for survival analysis
due to its properties. Its probability density function is skewed to the right and it has also increasing
and decreasing hazard rate function depending on the values of a shape parameter. A simulation
study is conducted to show the performance of the maximum likelihood estimators. Moreover, we
compare the our proposed model with other established models using the real data-sets of leukemia
for 46 allogeneic marrow transplantation patients presented by Kersey et al. [23] in 1987 and ECOG
phase III clinical trial e1684 available in R package smcure.

The rest of the article is organized as follows. In Sections 2 and 3 we derive the likelihood function
of a mixture cure model and a non-mixture cure model rspectively. In Section 4 we introduce the
Fréchet distribution and we derive the likelihood function of the non-mixture Fréchet distribution.
In Section 5 we conduct the simulation study of the non-mixture Fréchet distribution. In Section 6
we present the leukemia dataset and melanoma dataset to compare the mixture cure model and the
non-mixture cure model with different susceptible distributions and finally the conclusion is presented
in Section 7.

2. Likelihood Function of a Mixture Cure Model

A mixture cure model refers to a class of model for survival data with long-term survivors when
some of them will not develop the event of interest. In a mixture cure model, the population consists
of two types of subjects: uncured (susceptible) subjects who experience the event of interest and cured
(non-susceptible) subjects who will never experience it. Those who are not going to develop the event
of interest are referred to as “cured subjects”, or “long-term survivors”.

Let T denote the survival time of a subject and let ∆ be the cure indicator with ∆ = 0 when the
subject is cured and ∆ = 1 when the subject is uncured. Let p be the proportion of subjects that are
cured, and 1− p be the proportion of subjects that are not cured. That is, P(∆ = 1) = 1− p and
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P(∆ = 0) = p. So, P(T ≤ t|∆ = 0) = 0 and P(T ≤ t|∆ = 1) = F(t), the cumulative distribution
function of uncured subjects. Then the cumulative distribution function of the overall population T is

FT(t) = P(T ≤ t) = P(T ≤ t|∆ = 0)P(∆ = 0) + P(T ≤ t|∆ = 1)P(∆ = 1)

= (1− p)F(t)

and the survival function of T is

ST(t) = 1− FT(t) = 1− (1− p)F(t) = p + (1− p)S(t), (1)

where S(t) denotes a proper survival function for the uncured patients. Notice that ST(t) is not proper.
The corresponding density function of T is

fT(t) = (1− p) f (t), (2)

where f (t) is the probability density function of uncured patients.
Suppose yi be the right-censored survival time for subject i, then yi = min(Ti, Ci), where Ti be

the failure time of the ith subject and Ci be the right-censored variable of the ith subject, i = 1, · · · , n.
The observed survival time of ith subject is yi and the censoring indicator is δi, where δi = I(Ti ≤ Ci),
for i = 1, · · · , n . Then the likelihood function of the mixture model is

Lm =
n

∏
i=1

f δi
T (yi)S

1−δi
T (yi) =

n

∏
i=1

[(1− p) f (yi)]
δi [p + (1− p)S(yi)]

1−δi

and the log-likelihood function is

lm ≡ ln(Lm) = ln(1− p)
n

∑
i=1

δi +
n

∑
i=1

δi ln( f (yi)) +
n

∑
i=1

(1− δi) ln(p + (1− p)S(yi)). (3)

3. Likelihood Function of a Non-Mixture Cure Model

In this section, we introduce a non-mixture cure model developed for survival data with long-term
survivors in cancer study. Let N be the number of cancer cells for a patient after cancer treatment.
Since the number of cancer cells may grow rapidly and may later produce a detectable cancer disease,
the number of cancer cells, N, is assumed to have a Poisson distribution with mean λ. Let Zj be the
random time for the jth cancer cell to produce a detectable cancer mass. Then, the time to relapse of
cancer can be defined by the random variable T such that T = min{Zj, j = 1, 2, ..., N}. Furthermore, we
assume that Zj are independently and identically distributed with distribution and survival functions
F(·) and S(·), respectively. Then the survival function of T is given by:

ST(t) = P[No cancer by time t]

= P[N = 0] + P[Z1 > t, Z2 > t, ..., ZN > t, N ≥ 1]

= e−λ +
∞

∑
N=1

SN(t)
λN

N!
e−λ = e−λ+λS(t) = e−λF(t) = pF(t),

where p = e−λ is the probability of cure or cure fraction in this model since

lim
t→∞

ST(t) = p = e−λ > 0,

which implies that ST(·) is an improper survival function. The cumulative distribution, density and
hazard functions of T are given below respectively,

FT(t) = 1− pF(t), fT(t) = − ln(p) f (t)pF(t), hT(t) = − ln(p) f (t).
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Since ST(t) is not proper survival function, then we can derive the following theorem:

Theorem 1. Let 0 ≤ p ≤ 1. For T ∼ FT(·) = 1− pF(·) and F(·) is a strictly increasing proper distribution
function, then Y = FT(T) has an improper uniform distribution over [0, 1− p].

Proof of Theorem 1. Notice that as t→ ∞, pF(t) → p. So,

lim
t→∞

FT(t) = lim
t→∞

(
1− pF(t)

)
= 1− p.

Since F(·) is strictly increasing which implies that FT(·) is also strictly increasing, it has an inverse,
denoted by F−1

T (·). Then for 0 ≤ y ≤ 1− p,

FY(y) = P(Y ≤ y) = P(FT(T) ≤ y) = P(T ≤ F−1
T (y)) = FT(F−1

T (y)) = y.

Therefore, Y = FT(T) has an improper uniform distribution over [0, 1− p].
Case-1: If p = 0, this theorem is equivalent to the Inverse Transform Method.
Case-2: If p = 1, the result is not realistic for real life.

We now consider the right-censored life time data and assume there are n patients under cancer
study. Let yi refer to the right-censored survival time for individual i and Ti = min{Zij, j = 1, 2, ..., Ni}
where Ci be the right-censored variables. Then we observe yi = min(Ti, Ci) and the censoring indicator
δi = I(Ti ≤ Ci). The likelihood function of (y1, ..., yn) is

L =
n

∏
i=1

hδi
T (yi)ST(yi) =

n

∏
i=1

[−ln(p) f (yi)]
δi pF(yi)

and the log-likelihood function is

ln(L) =
n

∑
i=1

δiln(−ln(p)) +
n

∑
i=1

δiln f (yi) +
n

∑
i=1

ln(p)F(yi). (4)

4. Fréchet Susceptible Distribution

We used a generalized extreme value distribution as the susceptible distribution, i.e., the type
II Fréchet distribution. The class of extreme value distributions essentially consists of three types of
extreme value distributions: type I (Gumbel distribution), type II (Fréchet distribution) and type III
(Weibull distribution). The extreme value distribution is useful in modeling and measuring the events
which occur with very low probability. Moreover, extreme value distributions are widely used in
finance, insurance, risk management, economics, material sciences and many other subjects which
dealing with extreme events.

More specifically, we considered the Fréchet distribution, which was named after the French
mathematician Maurice Fréchet (1878–1973), to fit the survival time of uncured individuals. The
Fréchet distribution is also known as inverse Weibull distribution under some parametric constraints.
The probability density function of Fréchet distribution is

f (y) =
α

β

(
β

y

)α+1
e−
(

β
y

)α

, y ≥ 0

where α > 0 is the shape parameter and β > 0 is the scale parameter. The survival and hazard
functions are respectively

S(y) = 1− e−
(

β
y

)α

and h(y) =
α

β

(
β

y

)α+1
e−
(

β
y

)α [
1− e−

(
β
y

)α]−1

, y ≥ 0.
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Denote θ = (α, β, p)′. Substituting the above functions into (4) of the non-mixture model with
Fréchet susceptible distribution, we obtain the log-likelihood:

l(θ) = lnL(θ) =
n

∑
i=1

δiln[−ln(p)] +
n

∑
i=1

ln(p)e−
(

β
yi

)α

+
n

∑
i=1

δi

[
ln(α) + αln(β)− (α + 1)ln(yi)−

(
β

yi

)α ]
.

(5)

The maximum likelihood estimator (MLE) of θ = (α, β, p)′ is one that maximizes l(θ), denoted by
θ̂. The score functions are given below by taking partial derivatives of log-likelihood function (5) with
respect to θ:

∂l(θ)
∂α

=
n

∑
i=1

δi

[
1
α
+ ln(β)− ln(yi)−

(
β

yi

)α

ln
(

β

yi

)]
− ln(p)

n

∑
i=1

e−
(

β
yi

)α (
β

yi

)α

ln
(

β

yi

)
∂l(θ)

∂β
=

α

β

{
n

∑
i=1

δi

[
1−

(
β

yi

)α]
− ln(p)

n

∑
i=1

e−
(

β
yi

)α (
β

yi

)α
}

∂l(θ)
∂p

=
1

p ln(p)

n

∑
i=1

δi +
1
p

n

∑
i=1

e−
(

β
yi

)α

If the log-likelihood function has a global maximizer, then the MLE is the solution of
the score equations. Since it is a non-linear system, numerical solution is computed by the
Newton-Raphson method.

5. Simulation Study

We conducted simulation studies to examine the performance of the maximum likelihood
estimator of θ = (α, β, p)′ in finite samples. The right-censored survival times were generated by using
the inverse transform method to the survival function ST(t) = pF(t). We used the following algorithm
to simulate a sample of size n from the non-mixture Fréchet distribution with right-censored data:

Step 1: Generate a simple sample of u1, · · · , un from ∼ U(0, 1).
Step 2: Suppose p is a cure fraction. The random survival time can be calculated from the equation

ti = β

[
− ln

(
ln(1− ui)

ln(p)

)]− 1
α

,

if ui ≤ 1− p, otherwise ti is infinity.
Step 3: Generate the simple sample of the censoring times c1, · · · , cn from a Fréchet distribution and

adjust the parameters of the Fréchet distribution to obtain the desired censoring rates.
Step 4: The right-censored data is obtained from the minimum of censoring time and survival time.

That is yi = min(ti, ci), δi = I(ti ≤ ci), i = 1, 2, · · · , n.
Step 5: The observed data-set is D = {(yi, δi), i = 1, · · · , n}.
Step 6: Maximize the likelihood function with respect to θ to obtain θ̂. The standard optimization

method, optim() in R is used.

We consider various simulation settings with different proportion of cure fractions and different
censoring rates. The censoring variable follows a Fréchet distribution with parameter α > 0 and β > 0,
where the value of α and β would be adjusted to get the desired censoring rate in the right-censored
survival data.

In this simulation study, we are interested in the bias, standard error, root mean square error,
and 95% confidence interval as the performance measures. The bias is the difference between the
expected value of an estimator and true parameter as given by bias = E(θ̂)− θ and the standard error
is a measure of the dispersion of the values in the sampling distribution, which is a statistical term
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that measures the accuracy and is defined by the standard deviation divided by the square root of
sample size. The mean square error (MSE) of an estimator is the expected squared deviation of the
estimator of a parameter from the true parameter. The root mean square error (RMSE) is the squared
root of MSE, where MSE(θ̂) = (bias)2 + var(θ̂). The confidence intervals tell you about the parameter
of interest and not about the values of the estimated parameter.

The simulation results are based on 500 replications with the sample sizes 100, 200, 300, and
500 for each parameter setting. Results are presented in Tables 1–4, which show the values of mean,
bias, standard error (SE), root mean square error (RMSE), and 95% confidence interval of MLE.
The simulation results suggest that the proposed method has a good performance overall. The
averages of the estimates are very close to respective true parameter values in all different settings
of simulations. However, the simulation results for cure fractions of both 1% and 2% with lower
censoring rates perform better than the higher censoring rates. The biases of estimates are small,
and the estimates of the standard error (SE), and root mean square error (RMSE) of all examined
parameters decreased with increasing sample size for all settings. The length of the confidence interval
of each parameter also decreased with increasing sample size for all different setting. The estimates
of all examined parameters perform better for low levels of censoring than high levels of censoring.
Moreover, the estimates of all examined parameters performed well for low rates of cure proportion
compared to high rates of cure proportion. Finally, we can conclude that the MLE works well for the
non-mixture cure model with Fréchet susceptible distribution.

The overall censoring rate of Table 1 is about 7.78%, while Table 2 is about 10.34%. Moreover, θ0 is
the true parameter vector, CR the censoring rate, SE the standard error, RMSE a root mean square error
and CI the confidence interval.

Table 1. Summary statistics of a non-mixture model with 1% cure fraction for right-censored data.

θ0 Mean Bias SE RMSE 95% CI

n = 100 and CR 7.71%

α 0.50 0.5100 0.0100 0.0880 0.0886 (0.338, 0.683)
β 1.00 1.4130 0.4130 1.4900 1.5462 (−1.491, 4.126)
p 0.01 0.0146 0.0046 0.0151 0.0158 (−0.015, 0.044)

n = 200 and CR 7.68%

α 0.50 0.5023 0.0023 0.0620 0.0621 (0.381, 0.624)
β 1.00 1.1822 0.1822 0.6277 0.6536 (−0.048, 2.412)
p 0.01 0.0119 0.0019 0.0104 0.0106 (−0.008, 0.032)

n = 300 and CR 7.81%

α 0.50 0.5019 0.0019 0.0499 0.0499 (0.404, 0.599)
β 1.00 1.1022 0.1022 0.4343 0.4462 (0.251, 1.953)
p 0.01 0.0117 0.0017 0.0083 0.0085 (−0.004, 0.028)

n = 500 and CR 7.82%

α 0.50 0.5003 0.0003 0.0371 0.0371 (0.428, 0.573)
β 1.00 1.0588 0.0588 0.2879 0.2938 (0.495, 1.623)
p 0.01 0.0108 0.0008 0.0061 0.0062 (−0.001, 0.023)

Table 2. Summary statistics of non-mixture model with 2% cure fraction for right-censored data.

θ0 Mean Bias SE RMSE 95% CI

n = 100 and CR 10.27%

α 0.50 0.5110 0.0110 0.0895 0.0902 (0.336, 0.686)
β 1.00 1.3538 0.3538 1.1763 1.2284 (−0.952, 3.659)
p 0.02 0.0253 0.0053 0.0225 0.0231 (−0.019, 0.069)

n = 200 and CR 10.24%
α 0.50 0.5019 0.0019 0.0637 0.0637 (0.377, 0.627)
β 1.00 1.1954 0.1954 0.6277 0.6574 (−0.035, 2.426)
p 0.02 0.0218 0.0018 0.0160 0.0161 (−0.009, 0.053)
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Table 2. Cont.

θ0 Mean Bias SE RMSE 95% CI

n = 300 and CR 10.39%

α 0.50 0.5019 0.0019 0.0511 0.0511 (0.401, 0.602)
β 1.00 1.1035 0.1035 0.4269 0.4393 (0.267, 1.940)
p 0.02 0.0218 0.0018 0.0133 0.0134 (−0.004, 0.048)

n = 500 and CR 10.37%

α 0.50 0.4992 −0.0008 0.0379 0.0379 (0.425, 0.573)
β 1.00 1.0694 0.0694 0.2898 0.2980 (0.502, 1.637)
p 0.02 0.0204 0.0004 0.0097 0.0097 (0.001, 0.039)

The overall censoring rates of Table 3 is about 14.36%, and Table 4 is about 18.55%. Moreover, θ0

is the true parameter vector, CR the censoring rate, SE the standard error, RMSE a root mean square
error and CI the confidence interval.

Table 3. Summary statistics of non-mixture model with 1% cure fraction for right-censored data.

θ0 Mean Bias SE RMSE 95% CI

n = 100 and CR 14.26%

α 0.50 0.5119 0.0119 0.0955 0.0962 (0.325, 0.694)
β 1.00 1.5112 0.5112 1.7149 1.7895 (−1.850, 4.872)
p 0.01 0.0163 0.0063 0.0181 0.0192 (−0.019, 0.052)

n = 200 and CR 14.34%

α 0.50 0.5034 0.0034 0.0679 0.0680 (0.370, 0.636)
β 1.00 1.2270 0.2270 0.7577 0.7909 (−0.258, 2.712)
p 0.01 0.0130 0.0030 0.0123 0.0127 (−0.011, 0.037)

n = 300 and CR 14.41%

α 0.50 0.5034 0.0034 0.0555 0.0556 (0.395, 0.612)
β 1.00 1.1274 0.1274 0.5458 0.5605 (0.058, 2.197)
p 0.01 0.0127 0.0027 0.0103 0.0106 (−0.007, 0.032)

n = 500 and CR 14.42%

α 0.50 0.5001 0.0001 0.0399 0.0399 (0.422, 0.578)
β 1.00 1.0726 0.0726 0.3189 0.3271 (0.448, 1.697)
p 0.01 0.0111 0.0011 0.0072 0.0073 (−0.003, 0.025)

Table 4. Summary statistics of non-mixture model with 2% cure fraction for right-censored data.

θ0 Mean Bias SE RMSE 95% CI

n = 100 and CR 18.49%

α 0.50 0.5162 0.0162 0.1001 0.1014 (0.320, 0.712)
β 1.00 1.4419 0.4419 1.5639 1.6251 (−1.623, 4.507)
p 0.02 0.0285 0.0085 0.0276 0.0289 (−0.026, 0.083)

n = 200 and CR 18.55%

α 0.50 0.5040 0.0040 0.0702 0.0703 (0.366, 0.692)
β 1.00 1.2361 0.2361 0.8332 0.8660 (−0.396, 2.869)
p 0.02 0.0237 0.0037 0.0193 0.0197 (−0.014, 0.062)

n = 300 and CR 18.63%

α 0.50 0.5035 0.0035 0.0588 0.0589 (0.388, 0.618)
β 1.00 1.1442 0.1442 0.5999 0.6170 (−0.032, 2.320)
p 0.02 0.0236 0.0036 0.0171 0.0175 (−0.009, 0.057)

n = 500 and CR 18.53%

α 0.50 0.4981 −0.0019 0.0409 0.0409 (0.418, 0.578)
β 1.00 1.0961 0.0961 0.3576 0.3703 (0.395, 1.796)
p 0.02 0.0206 0.0006 0.0115 0.0115 (−0.001, 0.043)
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Figure 1 shows the relationship between the estimated bias against the censoring rate.

Figure 1. The relationship between the bias and the censoring rate.

6. A Real Data Analysis

In this section, we would like to compare non-mixture and mixture models with different
distributions. We use different susceptible assessments: the negative value of the log-likelihood
function, the Akaike’s information Criterion (AIC), the corrected Akaike’s information Criterion
(AICc), and the Bayesian Information Criterion (BIC). The (AIC) is defined by AIC = −2lnL(θ) + 2k,
where θ = (α, β, p)′ is the vector of unknown parameters included in the model, L(θ) is the likelihood
function and where k is the number of free parameters in the model. The (AICc) is defined by

AICc = −2lnL(θ) + 2k
n

n− k− 1
,

where n is the sample size. The BIC is defined byBIC = kln(n)− 2L(θ). A lower value of selection
criterion indicates a better fit.

We consider the data-set of 46 patients with an HLA-matched donor-received allogeneic marrow
presented by Kersey [23] in 1987. Out of the 46 patients, 12 with allogeneic transplantation died during
their observed periods. Those are the censored observations (26%). Using this data, we compare
the non-mixture and mixture models with Fréchet, two parameters Weibull and two parameters
Exponentiated Exponential (EE) susceptible distributions using the maximum likelihood method. The
density function of Weibull distribution is defined by

f (y) =
α

β

(
y
β

)α−1
e−
(

y
β

)α

, y ≥ 0

and the density function of Exponentiated Exponential distribution is defined by

f (y) = αβ(1− e−βy)(α−1)e−βy, y ≥ 0.

The notations α, β, and p are same as to the Fréchet distribution.
Tables 5 and 6 show the maximum likelihood estimates of the parameters and their standard

errors of the above three susceptible distributions with both non-mixture and mixture models for
allogenic marrow transplanted (leukemia) data, respectively. Table 7 shows the values of −logL,
AIC, AICc and BIC of three susceptible distributions using both mixture and non-mixture models for
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leukemia data. Table 7 indicates that Fréchet Distribution is the best within both non-mixture and
mixture cure models.

Table 5. Results of non-mixture cure models with leukemia data.

Parameter
Fréchet Weibull EE

Estimate SE Estimate SE Estimate SE

α 0.430 0.134 1.005 0.149 1.045 0.220
β 1.526 1.781 1.221 0.356 0.863 0.318
p 0.068 0.092 0.233 0.069 0.234 0.069

Table 6. Results of mixture cure models with leukemia data.

Parameter
Fréchet Weibull EE

Estimate SE Estimate SE Estimate SE

α 0.608 0.138 0.902 0.132 0.910 0.211
β 0.363 0.162 0.769 0.171 1.184 0.329
p 0.054 0.150 0.239 0.068 0.242 0.067

Table 7. Model comparison by information criteria for leukemia data.

Model
Non-Mixture Model Mixture Model

–logL AIC AICc BIC –logL AIC AICc BIC

Fréchet 47.366 100.73 101.30 99.72 47.371 100.75 101.32 99.73
Weibull 48.340 102.68 103.25 101.67 48.752 103.50 104.70 102.49

EE 48.319 102.64 103.21 101.63 48.937 103.87 104.45 102.86

We also compared the Kaplan–Meier survival curves with the parametric curves. The models offer
a better fit when they are closer to each other. The top left corner figure of Figure 2 is the Kaplan–Meier
survival curve of the allogenic marrow transplanted data. The top right corner of Figure 2 is the
Kaplan–Meier estimated curve overlaid with the estimated survival curves using Fréchet non-mixture
and mixture models. The bottom left corner of Figure 2 is the Kaplan–Meier estimated curve overlaid
with the estimated survival curves using Weibull non-mixture and mixture models. The bottom right
corner of Figure 2 is the Kaplan–Meier estimated curve with survival curve of non-mixture and mixture
models of Exponentiated Exponential Distribution. The curve of non-mixture Fréchet distribution is
closer to the Kaplan–Meier survival curve in comparison to all other distributions, and the mixture
model is a little bit over estimating the survival rate.
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Figure 2. Fitted survival curves of the leukemia (Allogenic) data.

The second data-set we considered is the melanoma data without covariates from the Eastern
Cooperative Oncology Group (ECOG) phase III clinical trial e1684 available in R package smcure.
In this trial, we found that a total of 69% patients are censored. This trial, e1684, was a two-arm clinical
trial comparing high-dose interferon alpha-2b (IFN) regimen to observation. There were a total of
286 patients enrolled in the study, collected from 1984 to 1990, and the study was published in 1996.
After deleting the missing data, we used a total of 284 observations without covariates for analyzing
our models.

The statistical summaries under Fréchet susceptible distribution, two parameters Weibull, and
Exponentiated Exponential susceptible distributions are presented in Tables 8 and 9. Table 10 shows
the values of −logL, AIC, AICc and BIC of different distributions with both mixture and non-mixture
models for melanoma data. From the result of Table 10, we conclude that the Fréchet distribution
non-mixture and mixture cure models are better fit, since −logL, AIC, AICc and BIC are smaller when
compared to the other models.

Table 8. Results of a non-mixture cure model for melanoma data.

Parameter
Fréchet Weibull EE

Estimate SE Estimate SE Estimate SE

α 0.574 0.059 1.014 0.058 1.089 0.096
β 0.963 0.240 1.566 0.153 0.695 0.089
p 0.191 0.040 0.293 0.028 0.293 0.028

Table 9. Results of a mixture cure model for melanoma data.

Parameter
Fréchet Weibull EE

Estimate SE Estimate SE Estimate SE

α 0.732 0.061 0.913 0.053 0.947 0.091
β 0.440 0.058 1.076 0.094 0.866 0.092
p 0.201 0.041 0.299 0.028 0.301 0.028
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Table 10. Models comparison by information criteria for melanoma data.

Model
Non-Mixture Model Mixture Model

–logL AIC AICc BIC –logL AIC AICc BIC

Frechet 367.546 741.09 741.18 742.45 367.356 740.72 740.80 742.07
Weibull 378.405 762.81 762.90 764.17 381.396 768.79 768.88 770.15

EE 377.970 761.94 762.03 763.30 382.549 771.10 771.18 772.46

The Kaplan–Meier estimate of survival curve and fitted survival curves of the Fréchet, Weibull
and Exponentiated Exponential distributions for the melanoma data are given in Figure 3. The top
left corner figure of Figure 3 is the Kaplan–Meier survival curve of the melanoma data. The top right
corner of Figure 3 is the Kaplan–Meier estimated curve overlaid with the estimated survival curves
using Fréchet non-mixture and mixture models. The bottom left corner of Figure 3 is the Kaplan–Meier
estimated curve overlaid with the estimated survival curves using Weibull non-mixture and mixture
models. The bottom right corner of Figure 3 is the Kaplan–Meier estimated curve with survival
curve of non-mixture and mixture model of Exponentiated Exponential distribution. The curve of
non-mixture Fréchet distribution is closer to the Kaplan–Meier survival curve in comparison to all
other distributions, and the mixture model is a little bit over estimating the survival rate.

Figure 3. Fitted survival curves of the melanoma data.

7. Conclusions

In this article, we proposed a non-mixture cure model with Fréchet susceptible distribution for
right-censored data. Finite sample properties of the maximum likelihood estimator of the model
parameters are empirically illustrated by a simulation study under various parameter settings.
The results of the simulation studies show that the proposed estimator has a good performance
and is not sensitive to model parameters, but is a little bit sensitive to the censoring rate. Moreover, we
compared the different susceptible dostributions with both non-mixture and mixture models using
real data-sets. We found that the proposed non-mixture Fréchet distribution model is the best one
in comparison to other models for modeling real data regarding allogeneic marrow HLA-matched
donors and the ECOG phase III clinical trial, e1684.
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