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Abstract: The multiple steady states of Ag/Bi2212-composite high- cT  superconducting leads mod-

eling current delivery to a superconducting magnet have been numerically calculated. The model is 
based on longitudinal conduction combined with convective heat dissipation from a helium gas 
stream along the conductor. Because of the nonlinearities introduced by the voltage–current rela-
tionship and the temperature-dependent material properties, up to three solutions have been iden-
tified within the range of parameters considered. Linear stability analysis reveals that two of them 
are stable, i.e., the superconducting and the normal branches, while the remaining one is unstable. 
The limit points separating the stable from the unstable steady states form the blow-up threshold, 
beyond which any further increase in the operating current results in a thermal runway. Interesting 
findings are that for low filling ratios no bounded solution exists when the length of the lead exceeds 
the lower limit point, while very high maximum temperatures may be encountered along the nor-
mal solution branch. The effect of various parameters such as the conduction–convection parameter, 
the applied current, and the reduction in coolant flow (LOFA) on the bifurcation structure and their 
stabilization effect on the blow-up threshold are also evaluated. Apart from the steady and unsteady 
operating modes, the multiplicity analysis is also used to identify the range of the design and oper-
ating variables where safe operation, with a sufficient margin from the onset of instabilities, may be 
established, thus facilitating the protection of the leads and the device connected to it. 
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1. Introduction 
Since the breakthrough discovery of Bednorz and Müller in 1986 [1], high-tempera-

ture superconductors (HTSs) have been extensively used in particle accelerators, toka-
maks, and specialized high-field applications. The complexity and the development costs 
for such projects call for multi-national ventures across the globe [2–10]. An extensive 
summary of the active HTS current lead projects worldwide may be found in the work of 
Diev et al. [10]. For the current leads, in particular, HTSs offer considerable economic ad-
vantages compared to conventional (metallic) ones, since a substantial reduction in the 
required cooling power and thereby in the corresponding operating costs may be 
achieved [11]. However, the beneficial absence of resistive losses is inevitably associated 
with electro-thermal instabilities, triggering not only transition to the normal state 
(quench) but even catastrophic thermal runaway in certain cases. To this end, a significant 
effort is underway to understand the underlying mechanisms responsible for the degra-
dation of the current-carrying capacity of superconductors and to design devices for their 
effective protection and control [12–15]. Such a promising protective device that takes full 
advantage of the bistability is the HTS-based fault current limiter in its various configura-
tions (resistive, inductive) which, in the superconducting state, introduces no additional 
resistive losses to the network, while during fault conditions the transition to normal state 
increases the line resistance, thus limiting the fault current [16–22]. 
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The multiple steady states in metallic (copper) current leads stemming from the bal-
ance of the nonlinear Joule heating by conduction and convection have been demonstrated 
both experimentally and theoretically [23–26]. Two steady states exist, one stable and one 
unstable, separated by a limit point. In case this limit is exceeded, no bounded solution 
exists, resulting in thermal runaway (temperature blow-up). On the other hand, the ad-
vantages of composite current leads, made of an HTS and a normal metal conductor, over 
the conventional ones, became apparent early (Mumford [27]). Consequently, the exist-
ence and the implications of the multiple steady states emanating from the nonlinear elec-
tro-thermal properties of the HTS, together with the overall design, performance, and op-
timization, have been addressed in several studies [28–37]. The aim of the present study 
is to numerically explore the multiplicity and blow-up (thermal runaway) features of com-
posite HTS (Ag/Bi2212) current leads operating between the liquid nitrogen temperature 
at the hot end and the liquid helium temperature at the cold end. Up to three steady states 
have also been identified, within the range of variables and parameters considered, for 
conduction and vapor-cooled leads. The solution structure is analyzed with sufficient bi-
furcation diagrams describing the effects of the filling ratio, the conduction–convection 
parameter, and the applied current density on the multiplicity regions and the blow-up 
threshold. Apart from the steady and unsteady operating modes, the multiplicity analysis 
is also used to identify the range of the design and operating variables where a safe oper-
ation, with a sufficient margin from the onset of instabilities, may be established, thus 
facilitating the protection of the leads and the device connected to it, be that a supercon-
ducting magnet or an HTS-based superconducting fault current limiter. 

2. Analysis 
Consider a Bi-based composite high-𝑇௖ conductor (Ag/Bi2212) with a constant cross 

section A, length L, thermal conductivity K, electric resistivity 𝜌ො, and specific heat C, sche-
matically depicted in Figure 1. The warm end is maintained at the liquid nitrogen temper-
ature, 𝑇ு = 77𝐾, and the cold end at the liquid helium temperature 𝑇௅ = 4.2𝐾. A helium 
gas stream of constant mass flow rate 𝑚ሶ  is used to cool the conductor along the longitu-
dinal direction X. Assuming that the conductor is thermally thin (i.e., the Biot number is 
much less than unity), the transverse temperature gradients may be neglected and the 
energy balance for the lead and the cooling gas stream takes the form (Krikkis [26]): 

( ) ( ) ( )g
T T

C T A K T A HP T T EJA
t X X

∂ ∂ ∂
= − − +

∂ ∂ ∂
 
  

 (1)

[ ]( ) ( ) ( )g g

p g gg

T T
C T A mc T HP T T

t X

∂ ∂
= − −

∂ ∂
  (2)

where T is the conductor’s temperature, 𝐶௚ is the gas heat capacity, 𝑇௚ its temperature, 
H is the convective heat transfer coefficient, E is the electric field intensity, and J is the total 
transport current density. The boundary conditions for the cold and hot ends are: 

(0) , ( ) , (0)L H g gLT T T L T T T= = =  (3)

The total current density is equal to the sum of currents in the superconducting core 𝐽௦ and the matrix 𝐽௠, according to the following relationship: 

(1 )s mJ J Jη η= + −  (4)

For the Ag/Bi2212 composite conductor, the voltage–current characteristic curve is 
described by a power-law equation, considering current sharing between the supercon-
ductor and the metal (Ag) matrix connected in parallel: 
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where 𝐸௖ is the voltage criterion, n is the power-law exponent, also known as the n-value, 
and 𝜌ො௠ is the matrix resistivity. 

 
Figure 1. Geometry and energy balance on the current leads. 

2.1. Material Properties 
The critical current density of Ab/Bi2212 is described by a relationship proposed by 

Bottura [38] which is based on the results presented by van der Laan et al. [39] and Wesche 
[40]: 
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In the above equations, α, β, γ, χ, and 𝐵଴ are fitting parameters, 𝑇௖ is the critical tem-
perature of the superconductor in the zero magnetic field, and 𝐽଴ and 𝐵௖଴ are the approx-
imation of the critical current density and the critical magnetic field at zero temperature, 
respectively. The set of parameters adopted in the present study is the same as that used 
by Romanovskii and Watanabe [41] and is summarized in Table 1. 

Table 1. Fitting parameters used in the critical current density curve, Equation (6), of Ag/Bi2212. 𝐵଴ 1.0 [T] 𝐵௖଴ 465.5 [T] 𝐽଴ 5.9 × 108 [A/m2] 𝑇௖ 87.1 [K] 
α 10.33 [–] 
β 6.76 [–] 
γ 1.73 [–] 
χ 0.27 [–] 
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The thermo-electrical properties of the composite conductor were estimated with the 
aid of the formulas developed by Dresner [42] and Lim and Iwasa [43]. More specifically, 
the temperature dependence of silver’s specific heat was approximated with a power-law 
fit between the Debye and the Dulong–Petit limits. The electric resistivity of the silver ma-
trix was calculated according to Matthiesen’s rule as the sum of the temperature-inde-
pendent residual resistivity and the temperature-dependent phonon resistivity according 
to the Bloch–Grüneisen theory. The former is calculated using the residual resistivity ratio 
(RRR): 

ˆ (273K)
ˆ (4.2K)
m

m

RRR
ρ
ρ

=  (8)

where 8ˆ (273K) 1.48 10 Ωmmρ −= × . 

2.2. The Electro-Thermal Problem in Dimensionless Form 
Dimensionless variables are introduced as below: 

2

ref ref

ref ref ref ref ref

, , ,

, , , ,
g gx X L T T T T t L

h H H k K K c C C j J J e E E

τ α= Θ = Δ Θ = Δ =

= = = = =
 (9)

The partial differential equations describing the temperature distribution of the con-
ductor and the cooling gas stream take the form: 

2 ( )gc k u h Gej
x xτ

∂Θ ∂ ∂Θ   = − Θ − Θ +   ∂ ∂ ∂ 
 (10)

2 ( )g g
gu h F

x
δ

τ
∂Θ ∂Θ

= Θ − Θ −
∂ ∂

 (11)

where ref( ) ( )gAC ACδ =  is a time-scaling factor. Three important dimensionless num-
bers appear in the above relationships, namely, the generation number G, the flow number 
F, and the conduction–convection parameter u. The generation number is defined as: 

ref

A EJ
G

P HT
=   
  
  

 (12)

Physically, it provides a measure of the ratio of the Joule heating to the heat dissi-
pated by conduction. The flow number is defined as: 

ref

ref ref( )
p pmc L mc T

F
K A K T A L

Δ
= =

Δ

 
 (13)

This measures the ratio of the convective to conductive cooling, whereas the conduc-
tion–convection parameter 

2
2

ref( )
L Hu
A P K

 =  
 

 (14)

is extensively used in extended surfaces and conjugate heat transfer problems [44–46], and 
strongly affects the solution and the multiplicity structure. As will become evident in the 
next sections, all three numbers have a profound effect on the bifurcation structure. More-
over, utilizing the following reference values, 𝐸ref = 𝐸௖ = 10ି଺  [V/m], 𝐽ref = 𝐽଴ = 5.9 ×10଼  [Am−2], 𝑇ref = 𝑇௖ = 87.1  [K], and 𝐻ref = 10ିଷ  [Wm−2 K−1], the voltage–current rela-
tionship in Equation (5) may be recast as: 
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where ref ref ref 0
ˆ

cE J E Jρ = = . Under steady state conditions the partial differential Equa-
tions (10) and (11) reduce to a system of ordinary differential equations for the composite 
conductor and gas temperatures 𝛩(𝑥) and 𝛩௚(𝑥): 

[ ]2( ) ( ) 0gk u h Gej′ ′Θ − Θ − Θ + =  (17)

2 ( ) 0g gF u h′Θ − Θ − Θ =  (18)

where 𝛩′ and 𝛩௚′  denote differentiation with respect to x. The boundary conditions at the 
cold and warm ends are: 

(0) , (1) , (0)L H g gLΘ = Θ Θ = Θ Θ = Θ  (19)

2.3. Stability 
As will be shown in Section 3, Equations (17) and (18) have three solutions, and an as-

sessment of the stability is essential since only stable solutions are physically realizable. The 
stability of a certain steady state 𝛩௦௦(𝑥), 𝛩௚௦௦(𝑥) to small perturbations, 𝜗(𝑥), 𝜓(𝑥), i.e., 

( , ) ( ) ( ) exp( )ssx x xτ ϑ λτΘ = Θ +  (20)

( , ) ( ) ( ) exp( )g gssx x xτ ψ λτΘ = Θ +  (21)

will be determined by the eigenvalues λ of the corresponding linearized problem with 
respect to the steady state. Substituting Equations (20) and (21) into Equations (10) and 
(11) and considering a constant heat transfer coefficient (ℎ = 1) for simplicity, the eigen-
value problem describing the stability of the steady states for the lead and the gas read: 

( ) ( ) [ ]2 2 ( ) 0ss ss ssk k k k c u Ge jϑ ϑ λ ϑ ϑ ψ ϑΘ ΘΘ Θ Θ
′′ ′ ′ ′ ′′+ Θ + Θ + Θ − − − − =  (22)

2 ( ) 0F uψ δλψ ϑ ψ′ + − − =  (23)

where ( )ssc c= Θ  , ( )ssk k= Θ  , ( )( )
ss x

k kΘ Θ= ∂ ∂Θ  , 
22

( )( )
ss x

k kΘΘ Θ= ∂ ∂Θ   , ( )( )
ss x

e eΘ Θ= ∂ ∂Θ   , 
and primes denote differentiation with respect to x. The corresponding boundary conditions 
are 

(0) (1) (0) 0ϑ ϑ ψ= = =  (24)

If all eigenvalues are negative then the steady state solution under consideration is 
stable (and denoted with a continuous line on the bifurcation diagrams). If, on the other 
hand, at least one eigenvalue is positive, the steady state solution is unstable (denoted 
with a dashed line). For the numerical solution of Equations (22) and (23), the steady state 
solutions 𝛩௦௦(𝑥) and 𝛩௚௦௦(𝑥) must be available, so Equations (17) and (18) are attached 
to Equations (22) and (23), forming an extended boundary value problem. The eigenfunc-
tions were normalized using the condition 𝜗′(0) = 1. 
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3. Results and Discussion 
The numerical methods and the computer code developed in [26] were applied to the 

solution of the two-point boundary value problem described by Equations (17)–(19). The same 
algorithms were also utilized for the numerical continuation and the stability analysis (eigen-
values and eigenfunctions). Let us consider first the limiting case where 1F  , that is the 
gas coolant is in abundance, so 𝛩௚′ → 0 and the gas temperature remains constant along the 
composite conductor, i.e., 𝛩௚ = 𝛩௅. Consequently, Equation (17) is reduced to 

[ ]2( ) ( ) 0Lk u h Gej′ ′Θ − Θ − Θ + =  (25)

As can be seen from the above equation, the conductor temperature 𝛩(𝑥) will be a 
function of the conduction–convection parameter u and the applied current j. It will addi-
tionally depend on the generation number G, the residual resistivity ratio RRR, the exter-
nal magnetic field, and the material properties. Because of the nonlinearities involved in 
Equation (25), the corresponding bifurcation diagram 𝛩௅′  versus u consists of multivalued 
curves, which are depicted in Figure 2 for a filling ratio of 𝜂 = 0.1 and different current 
densities. More specifically, for a given value of the conduction–convection parameter, up 
to three solutions exist bounded by two limit points, shown as (●) and denoted with dif-
ferent colors for clarity, which are the roots of the equation 

( ) 0L j
du d ′Θ =  (26)

and denoted as ൣ𝑢LP௨ , (𝛩௅′ )LP௨ ൧  for the upper one and ൣ𝑢LP௟ , (𝛩௅′ )LP௟ ൧  for the lower one, where (𝛩௅′ )LP௨ > (𝛩௅′ )LP௟ . Two steady states are stable, indicated with a continuous curve, and one is 
unstable, marked with a dashed line. The source of the multiplicity is the nonlinear voltage–
current relationship in Equation (5). To obtain a geometrical perspective of the multiplicity, 
the solution structure is schematically represented in Figure 3. Figure 2 is quite revealing and 
certain features are worth pointing out. For low values of the current density, the Joule heating 
is negligible and all solutions coincide on the stable branch denoted as superconducting. As 
the current density increases, a series of limit points appear on the right, for high values of the 
conduction–convection parameter, indicating the existence of multiple solutions. Interest-
ingly, for a lead length 𝑢 > 𝑢LP௨ , that is to the limit point corresponding to the lower value of 𝛩௅′ , no feasible solution exists, i.e., within the temperature operating limits imposed by the 
materials. Now looking at the left side of Figure 2, for u less than approximately 0.2, a unique 
stable solution exists, namely, the superconducting one. As the length of the lead increases, 
the limit point corresponding to the higher value of the cold end temperature gradient is en-
countered and Equation (25) provides three solutions. However, as shown in Figure 4, when 
the filling ratio increases, the lower limit point shifts to lower cold end temperature gradients 
and the boundary of the multiplicity region is practically determined by the limit point corre-
sponding to the higher values of 𝛩௅′ . The temperature profiles corresponding to the multiplic-
ity region described above are shown in Figure 5 for 𝑢 = 0.8 and 𝑢 = 0.9, and in Figure 6 for 𝑢 = 2 and 𝑢 = 3, respectively, both for a filling ratio of 𝜂 = 0.2. A lower stable temperature 
distribution corresponds to the superconducting state where the Joule heating is negligible, a 
balance between conduction and cooling by convection is being established, and the temper-
ature is below the critical one. The temperature gradient remains positive throughout the lead 
length, that is, the solution is monotonic, indicating that the heat flows from the hot end to the 
cold one. For the unstable branch, the conductor is in the so-called mixed state, as in certain 
segments the critical temperature is exceeded and the conductor is in the normal state. The 
temperature profile is non monotonic. The phenomenon is more pronounced in the upper 
stable solution, where the conductor is mostly in the normal state, especially for high values 
of the conduction–convection parameter. A salient feature is that the maximum temperature 
encountered becomes extremely high as u increases since the curves in Figure 4 above the 
upper limit point become very steep because of the imposed boundary conditions in Equation 
(19). This problem was addressed by Dresner [14] (paragraphs 10.3 to 10.8,29), where under 
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certain simplifying assumptions the upper limit point may be estimated analytically. In es-
sence, temperatures up to 2900 K are predicted. Indeed, maximum temperatures of a similar 
magnitude are predicted from the present model, as shown in Figure 7, where the curves of 
constant current density become very steep and almost vertical. Although values of 𝛩௠௔௫ up 
to 30 (~2600 K) are plotted, to test the code for smoothness and continuity, the bifurcation cal-
culations were carried out up to 𝛩௠௔௫ = 40. It looks that another limit point may exist, as the 
zero-dimensional calculations of Romanovskii and Watanabe [41] show, but since the corre-
sponding temperatures are excessively high, the topic is no longer pursued. Sample stability 
results are summarized in Table 2, where several eigenvalues were calculated for various com-
binations of the conduction–convection parameter and the current density. Negative eigen-
values are associated with the stable superconducting and normal branches, whereas the pos-
itive eigenvalue is associated with the instability of the intermediate branch of the solutions. 
Since each curve exhibits two limit points that define the multiplicity region, as u approaches 
either limit point, defined by Equation (26), the eigenvalues of the stable and the unstable so-
lutions tend to zero. It is worth pointing out that the destabilizing effect of u on the supercon-
ducting steady states is also apparent from the absolute magnitude of the minimum eigen-
value which determines the rate of transient response to disturbances. Their ratio 

min min( 0.9) ( 3)u uλ λ= =  is approximately 6:1, indicating that longer leads are easier to 
destabilize. 

Table 2. Eigenvalues iλ  for the steady states with 10RRR =  and 1F  . 

 33, 0.6 10 , 0.20u j η−= = × =  
30.9, 1.5 10 , 0.10u j η−= = × =  

i Stable (sc) Unstable Stable (n) Stable (sc) Unstable ss stable (n) 
1 −2.0966 +5.1103 −2.5046 −13.1606 +6.3686 −2.6312 
2 −5.3865 −3.4348 −3.4076 −49.6442 −43.5204 −38.2332 
3 −10.8696 −9.5216 −8.7940 −110.4559 −95.2391 −98.6322 
4 −18.5460 −16.1453 −16.4449 −195.6032 −185.5839 −184.0936 
5 −28.4155 −26.6921 −26.3705 −305.0951 −291.8693 −294.5584 

 
Figure 2. Bifurcation diagrams in the (𝑢,𝛩௅′ ) plane for 𝜂 = 0.1 and 𝐹 ≫ 1. 
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Figure 3. Geometrical representation of the multiple-solution structure. 

 
Figure 4. Bifurcation diagrams in the (𝑢,𝛩௅′ ) plane for 𝜂 = 0.2 and 𝐹 ≫ 1. 
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Figure 5. Temperature profiles for 𝑢 = 0.8 and 0.9, 𝐹 ≫ 1. 

 
Figure 6. Temperature profiles for 𝑢 = 2 and 3, 𝐹 ≫ 1. 
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Figure 7. Effect of u on maximum temperature along the normal branch, 𝐹 ≫ 1. 

Now, using a different parameterization, let us project the solution on the (𝑗,𝛩௅′ ) 
plane along a curve with constant u, as presented in Figure 8. The bifurcation curves have 
an “S” form exhibiting two limit points determined by the roots of the equation 

( ) 0L udj d ′Θ =  (27)

as they separate the stable from the unstable solutions. The lower stable solutions corre-
spond to the superconducting branch, whereas the upper ones correspond to the normal 
branch. As the conduction–convection parameter increases, the limit point on the left-
hand side shifts to lower current densities; thus, cryostability is destroyed and bistability 
(superconducting-normal) is encountered as the current increases. It is important to men-
tion that beyond the limit point on the right-hand side in Figure 8, that is, for 𝑗 > 𝑗LP௟ , no 
solution exists. This is of paramount practical importance because if the operating current 
during a transient or a fault (i.e., LOFA) exceeds the limit point, Equation (25) can exhibit 
unbounded growth in finite time, that is, thermal runaway or temperature blow-up. In 
other words, the existence of the 𝑗LP௟  establishes a safety margin between the operating 
current and the maximum permissible (or safe) current beyond which thermal runaway 
is encountered. As an example, the safety margin for a design with 𝑢 = 0.6 and an oper-
ating current density 𝑗 = 3 × 10ିଷ is shown in Figure 8. Although the multiplicity and 
the solution structure for copper current leads is different since only two solutions exist, 
the thermal runaway phenomenon is common to both composite and metallic conductors, 
as for example it is shown in [26]. Thermal runaway due to Joule heating is also observed 
when the composite or the metallic wire is immersed in a boiling liquid pool [47], although 
the solution structure in this case is far more complicated because of the nonlinear and 
nonmonotonic boiling curve. Hot spot curves have been also calculated by Wesche and 
Fuchs [30] in their Figure 6, simulating a complete loss of coolant for composite HTS leads 
(Bi-2212 bulk material and Bi-2223/Ag tapes). In general, similar behavior is encountered 
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in superconducting devices, where during several experiments it was observed that the 
quenching to a normal state of current-carrying high-temperature superconducting wires, 
tapes, or films was followed by the sample local destruction due to overheating (Pfoten-
hauer and Lawrence [48], Vysotsky et al. [49], Romanovskii and Watanabe [50]), whilst 
the most well-known is perhaps the one associated with the LHC event [51,52]. Further-
more, the inherent difficulties in the protection of HTS magnets from abrupt thermal run-
aways have been underscored by Maeda and Yanagisawa [53]. Hence, thermal runaway 
is a common problem for the components of the superconducting magnet, including the 
coil and both the HTS and the metallic parts of the current lead [47]. Therefore, the line 
connecting the limit points is also the threshold for thermal runaway (blow-up threshold) 
and should be taken into consideration when designing protective apparatus for the su-
perconducting composite. As suggested in Figure 9, the same high maximum tempera-
tures are expected along the normal branch for a fixed conduction–convection parameter. 

 
Figure 8. Bifurcation diagrams in the (𝑗,𝛩௅′ ) plane for 𝜂 = 0.1 and 𝐹 ≫ 1. 
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Figure 9. Effect of j on maximum temperature along the normal branch, 𝐹 ≫ 1. 

The effects of the coolant flow reduction for a fixed current density are shown in Fig-
ure 10. This is the most general case since the variations in the gas temperature along the 
conductor are taken into consideration and the bifurcation analysis is carried out for the 
system of Equations (17) and (18). The most affected branch is the superconducting 
branch, especially at higher CCP values, where, as the flow number F gradually reduces, 
approaching the conditions of LOFA, the cold end temperature gradient substantially in-
creases and the heat leakage to the cryostat can no longer be controlled through the length 
of the leads. However, leads with 1u <  are practically unaffected, since the length of the 
conductor is not enough to enable sufficient heat exchange between the lead and the cool-
ing gas. The same can be also seen in Figure 11, where the curves along a constant CCP 
( 1)u =  are practically unaffected by the variations in the flow number. 

 
Figure 10. Effect of F on the bifurcation diagrams on the (𝑢,𝛩௅′ ) plane. 
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Figure 11. Effect of F on the bifurcation diagrams on the (𝑗,𝛩௅′ ) plane. 𝐹 = 10ଷ, 10, 5 and 1. 

4. Conclusions 
A numerical bifurcation analysis was carried out for Ag/Bi2212 HTS composite cur-

rent leads operating between liquid nitrogen temperature at the hot end and liquid helium 
temperature at the cold end. A one-dimensional longitudinal conduction–convection 
model was set up and three solutions were calculated: two were stable, of which one was 
superconducting and one was normal, and one was unstable. A linear stability analysis 
was carried out for the identification of stable and unstable steady states. Interesting find-
ings may be summarized as below: 
• For a specified current density and low filling ratios (𝜂 ∼ 0.1) , no solution exists 

when u exceeds the lower limit point, i.e., 𝑢 > 𝑢LP௟  (Figure 2). 
• The upper limit point 𝑢LP௨  where the multiplicity region begins is a function of the 

applied current (Figure 2). 
• Very high temperatures are predicted along the normal branch of steady states. The 

maximum temperature is a very sensitive function of the conduction–convection pa-
rameter and the applied current (Figures 7 and 9). 

• Similar to the case of the metallic current leads, a temperature blow-up threshold 
exists defined by the lower limit points, which depend on the applied current and 
the conduction–convection parameter, beyond which thermal runaway is encoun-
tered (Figure 8). 
The very existence of multiple solutions, and especially the lower limit points 𝑢LP௟  

and 𝑗LP௟   associated with them, has a profound practical significance. From the design 
point of view, on one hand the higher the CCP, the lower the temperature gradient on the 
cold side. On the other hand, as the CCP increases, the safety margin towards 𝑢LP௟  de-
creases and the current lead is more susceptible to instabilities. This is similar to the case 
from the operating point of view, where the high value of the applied current will result 
in the reduction in the safety margin towards 𝑗LP௟ . Therefore, a complete safety analysis of 
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HTS current leads, apart from the temperature monitoring sensors connected with the 
protecting devices, should also take into account the design and operating margins to-
wards 𝑢LP௟  and 𝑗LP௟ , as demonstrated in the present study. 
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Nomenclature 
A conductor cross-sectional area [m2] 
B magnetic field [T] 

c ref( )C C  reduced specific heat capacity [–] 

C volumetric heat capacity [J/(m3 K)] 
E electric field intensity [V/m] 

cE  voltage criterion in Equation (5) [V/m] 

F flow number, Equation (13) [–] 
G generation number, Equation (12) [–] 

h ref( )H H  reduced heat transfer coefficient [–] 

H heat transfer coefficient [W/(m2 K)] 
J current density [A/m2] 

k ref( )K K  reduced thermal conductivity [–] 

K thermal conductivity [W/(mK)] 
L conductor length [m] 
m coolant mass flow rate [kg/s] 
n power-law exponent (n-value) [–] 
P wetted perimeter [m] 
RRR residual resistivity ratio [–] 
t time [sec] 
T temperature [K] 
u conduction–convection parameter (CCP), Equation (14) [–] 
x )( LX  dimensionless distance along conductor [–] 
X distance along conductor [m] 
Greek Symbols 
α thermal diffusivity [m2/s] 

δ ref( ) ( )gAC AC  time scaling factor [–] 

η filling ratio [–] 

Θ ref( )T T  dimensionless temperature [–] 

λ eigenvalue [–] 

ρ refˆ ˆ( )ρ ρ  reduced electric resistivity [–] 

ρ̂  electric resistivity [Ωm] 

τ 2( )t Lα  dimensionless time [–] 

Subscripts 
c critical property 
g gas stream 
H warm end (𝑥 = 1) 
L cold end (𝑥 = 0) 
LP reference to limit points 
m matrix 
ref reference value 
s superconductor 
ss reference to steady state 
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Superscripts 
( )′  derivative with respect to x 
Abbreviations 
CCP conduction–convection parameter 
HTS high-temperature superconductor 
LHC Large Hadron Collider 
LOFA loss of flow accident 
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