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Abstract: We recall the classical tree-cotree technique in magnetostatics. (1) We extend it in the
frame of high-order finite elements in general domains. (2) We focus on its connection with the
question of the invertibility of the final algebraic system arising from a high-order edge finite element
discretization of the magnetostatic problem formulated in terms of the magnetic vector potential.
With the same purpose of invertibility, we analyse another classically used condition, the Coulomb
gauge. (3) We conclude by underlying that the two gauges can be naturally considered in a high
order framework without any restriction on the topology of the domain.
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1. Introduction

We extend, in an easy way, the classical tree-cotree technique in the frame of high-order
finite elements (FEs). We focus on magnetostatics as it represents a significative problem
where this technique is usually applied. Particular attention is given to the magnetic vector
potential formulation of such a problem. This problem admits infinite solutions hence its
discretization by Whitney edge FEs yields to a singular algebraic system.

The techniques that are generally adopted in magnetostatics to eliminate the matrix
nullspace are described in two seminal works, one by Albanese and Rubinacci [1] and the
other by Cendes and Manges [2]. Albanese and Rubinacci showed that one converts the
singular systems, resulting from low-order edge-based discretizations of magnetostatic
problems, into nonsingular ones by setting to zero the vector potential circulations on a
spanning tree edges of the FE mesh graph. Manges and Cendes underlined the relation
between the tree-cotree approach proposed by Albanese and Rubinacci and the enforce-
ment in a weak sense of the Coulomb gauge. The tree-cotree technique was then used for
example in [3] to reduce the number of unknowns of a three-dimensional magnetostatic
problem or in [4] to solve the eddy-current problem in a multiply connected region. It
has led to several variants, see an overview in [5]. The tree-cotree decomposition of the
unknowns in two-dimensional applications has been also considered for face elements
in [6]. Indeed, in two dimensions, the face element basis functions are obtained from the
edge element ones by a rotation of 90 degrees. However, in all the previous works, only the
lowest order finite element discretisation is considered, which simplifies the identification
of the degrees of freedom (dofs) with mesh edges. Indeed, with classical edge FEs, dofs are
the circulations of the approximated vector field along the edges of the FE mesh [7]. Hence,
tree-cotree techniques are perfectly adapted to this type of discretizations since there is a
one-to-one correspondence between edges, listed in the tree or cotree sets, and dofs.

In a high order FE discretization of the same problem, the dofs introduced in [8], the
so-called weights, have again a physical signification. For edge discretizations, they have
the meaning of circulations on suitable edges of a fictitious refinement of the FE mesh. This
fact allows us to rely in a very natural way on tree-cotree techniques. These new dofs were
born from using the same geometrical approach, proposed by Whitney [9] to construct low
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order polynomial representations of differential forms, on a finer simplicial complex of the
computational domain mesh. These weights do coincide with Whitney edge FE dofs in the
low-order case.

In these pages, by relying on linear algebra, we analyse the fundamental work ac-
complished in the 90 s on tree-cotree techniques and show that it is still in actuality in the
high order case when fields are reconstructed in the discrete space by using their weights.
Further, the interest of the analysis presented, for the weights, in these pages is to underline
that the tree-cotree approach can be adopted within any high order FE approach where it is
possible to state a clear correspondence of dofs with geometrical objects creating a graph.

We thus start by considering an open bounded connected polyhedral domain Ω ⊂ R3

with boundary ∂Ω. We indicate by (∂Ω)j, for j = 0, . . . , p, the connected components of
∂Ω (in particular, (∂Ω)0 is the external one). We denote by g the number of independent
non-bounding cycles in Ω. Note that b1(Ω) = g and b2(Ω) = p are, respectively, the first
and the second Betti numbers of Ω (see, e.g., [10]). For a domain Ω ⊂ R3, the 0th Betti
number b0(Ω) is equal to the number of connected components of Ω. If Ω is connected,
as assumed in these pages, then b0(Ω) = 1. The third Betti number b3(Ω) = 0 in the
present case. Betti numbers describe the topology of Ω and provide a way of computing its
Euler-Poincaré characteristic as the number χ(Ω) = b0 − b1 + b2 − b3. We introduce the
space of the magnetic harmonic vector fields, that is

Hµ(m; Ω) = {w ∈ (L2(Ω))3, curl w = 0, div (µ w) = 0, µ w · n∂Ω = 0 on ∂Ω}.

We recall that dim (Hµ(m; Ω)) = g (= b1(Ω)). The magnetostatic problem in its most
basic form reads: find the magnetic induction field B due to prescribed compatible currents
J and defined by the field equations and conditions

curl (µ−1B) = J, in Ω,
div B = 0, in Ω,

B · n|∂Ω = 0, on ∂Ω,∫
Ω µ−1B ·w = 0, ∀w ∈ Hµ(m; Ω).

(1)

Here above, n|∂Ω is the outward going unit normal to ∂Ω and µ the magnetic perme-
ability of the material contained in Ω. It is assumed that µ ∈ L∞(Ω) is symmetric and
positive definite, bounded from below, namely, µ ≥ µ0 > 0 for a real number µ0 (that
coincides with the magnetic permeability of the air). The last condition of L2-orthogonality
to the spaceHµ(m; Ω) is of key importance to guarantee the solution uniqueness. Indeed,
when J = 0, the first three equations in (1) give µ−1 B ∈ Hµ(m; Ω) that, together with
the last condition , yields µ−1 B = 0, that means B = 0, due to the properties of µ (see
more details in [11]). For compatible currents, we mean J such that div J = 0 in Ω and∫
(∂Ω)j

J · n|∂Ω = 0, for any jth (out of p + 1) connected component (∂Ω)j of ∂Ω.
The paper layout is as follows. In Section 2, we reformulate problem (1) in terms of

the magnetic vector potential and its weak formulation. We thus define the high-order
FE approximation space and write the discrete problem together with its matrix form
in Section 3. In Section 4 we present the tree-cotree approach and the analysis of the
linear system to solve in the block form dictated by the tree. Section 5 is dedicated to the
imposition of a discrete Coulomb-like gauge. We briefly discuss in Section 6 about the
other formulation of the magnetostatic problem and on its connection with the tree-cotree
approach. We conclude in Section 7 by analysing differences and similarities between the
presented gauges.

2. The Magnetic Vector Potential Problem

A way to exactly satisfy the solenoidality condition div B = 0 on the magnetic
induction field B is to represent B in terms of a vector potential, namely a vector A
such that B = curl A. This magnetic potential A is not uniquely defined as the vec-
tor Ã = A + grad V, for V a scalar function, still verifies B = curl Ã. A classical way to
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ensure the uniqueness of A is to prescribe a gauge condition on A, e.g., the Coulomb gauge
div A = 0. We introduce the space of the electric harmonic vector fields, as

H(e; Ω) = {w ∈ (L2(Ω))3, curl w = 0, div w = 0, w× n∂Ω = 0 on ∂Ω}.

It holds that dim (H(e; Ω)) = p (= b2(Ω)). The magnetostatic problem (1) thus reads:
given a compatible J, find a vector A satisfying the field equations (as stated in, e.g., [12])

curl µ−1curl A = J in Ω,
div A = 0 in Ω,

A× n|∂Ω = 0 on ∂Ω,∫
(∂Ω)j

A · n∂Ω = 0 ∀ j = 0, . . . , p .

(2)

We remark that from the boundary condition A× n|∂Ω = 0 it follows curl A · n|∂Ω = 0
hence B · n|∂Ω = 0. It is possible to show (see again [11]) that grad zj ∈ H(e; Ω) for each
function zj ∈ H1(Ω) that is solution of div grad zj = 0 in Ω, with boundary conditions
(zj)|(∂Ω)i

= δij, for i, j = 0, . . . , p (here δ.. is the Kronecker symbol, namely δij takes the
value 1 if i = j and 0 otherwise). If J = 0, we have curl A = 0. If div A = 0 and∫

Ω A · grad zj = 0 then
∫
(∂Ω)j

A · n∂Ω = 0, for each j = 0, . . . , p.
In view of using FEs, we need to rewrite problem (2) in weak form. We multiply

the first equation of (2) by a test function v ∈ H0(curl; Ω) where H0(curl; Ω) = {u ∈
(L2(Ω))3, curl u ∈ (L2(Ω))3, u× n|∂Ω = 0}. We then integrate by parts over Ω to obtain∫

Ω
µ−1curl A · curl v =

∫
Ω

J · v, ∀ v ∈ H0(curl; Ω). (3)

The condition div A = 0 yields the following characterisation for A in Ω:∫
Ω

div A ϕ = 0 , ∀ ϕ ∈ C∞
c (Ω), (4)

being C∞
c (Ω) the space of smooth functions with compact support in Ω. By integration by

parts and applying a density argument, we can write∫
Ω

A · grad ϕ = 0 , ∀ ϕ ∈ H1
0(Ω) , (5)

and (5) yields div A = 0 in Ω (in the sense of distributions). When p > 0, the second and
fourth equations in problem (2) can be imposed by using (5) with ϕ ∈ H1

∗(Ω) = { ϕ ∈
H1(Ω), ϕ|(∂Ω)j

= cj, ∀ j = 0, . . . , p} where c ∈ Rp+1 is a constant vector. In fact, taking

zi ∈ H1
∗(Ω), with cj = δij for all i, j = 0, . . . , p, we have

0 =
∫

Ω
A · grad zi = −

∫
Ω

div A zi +
∫

∂Ω
A · n∂Ω zi =

∫
(∂Ω)i

A · n∂Ω.

We thus look for A ∈ H0(curl; Ω) such that (3) holds together with the condition∫
Ω

A · grad ϕ = 0 , ∀ ϕ ∈ H1
∗(Ω) . (6)

3. The Discrete Problem and Its Matrix Form

Let τh = (V, E, F, T) be a simplicial triangulation over Ω and Ωh = ∪t∈Tt. Even if τh is
a simplicial triangulation of Ω, the topological properties computed on Ωh are the same as
those of Ω. For Ω connected, with g loops and p cavities, the Euler-Poincaré characteristics
χ(Ω) and χ(Ωh) are equal and we have

(χ(Ω) = b0 − b1 + b2 − b3 = ) 1− g + p = nV − nE + nF − nT (= χ(Ωh))
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where nV , nE, nF, nT are, respectively, the cardinalities of the sets of vertices V, edges E,
faces F and tetrahedra T of the mesh τh. Given a simplicial mesh τh over Ω̄, we denote
by Wk

r+1 = P−r+1Λk(τh) the set of Whitney differential k-forms of polynomial degree r + 1,
where k ∈ {0, 1, 2, 3} is the order of the form (see [13] for more details on the properties
of these spaces). It is a compact notation to indicate space of polynomial functions which
are well-known in finite elements. Indeed, for k = 0, we have W0

r+1 = Lr+1, the space
of continuous, piecewise polynomials of degree r + 1; for k = 1, we obtain W1

r+1 = Nr+1
the first family of Nédélec edge element functions of degree r + 1; for k = 2, we get
W2

r+1 = RTr+1 the space of Raviart-Thomas functions of degree r + 1; for k = 3, we
find W3

r+1 = Pr discontinuous piecewise polynomials of degree r. The spaces Wk
r+1 are

connected in a complex by linear operators which can be represented by suitable matrices,
namely G (k = 0), R (k = 1), D (k = 2) respectively, once a set of unisolvent dofs and
consequently a basis in each space Wk

r+1 have been fixed. Note that the entries of these
matrices are 0,±1, only for few bases of these spaces Wk

r+1 associated with dofs chosen as,
for example, the weights of a physical field, intended as a differential k-form, on chains of
k-simplices of the high-order FE mesh.

For r = 0, the dimension of the space Wk
1 coincides with the number of k-simplices in

the mesh, indeed dim L1 = nV , dim N1 = nE, dim RT1 = nF and dim P0 = nT . Moreover,
the matrices G, R, D are, resp., the edge-to-node, face-to-edge and tetrahedron-to-face
connectivity matrices taking also into account respective orientations. Dofs for fields in Wk

1
are, respectively, their values at the mesh nodes (k = 0), their circulations along the edges
(k = 1), their fluxes across the mesh faces (k = 2) and their densities at the mesh tetrahedra
(k = 3).

For r > 0, as explained in [8], by connecting the nodes of the principal lattice of degree
r + 1 in a n-simplex t ∈ T, we obtain a number of small n-simplices that are 1/(r + 1)-
homothetic to t. The small k-simplices, 0 ≤ k < n, are all the k-simplices that compose the
boundary of the small n-simplices. Any small k-simplex is denoted by a couple {α, s},
with s a k-simplex of τh and α is a multi-integer (α0, . . . , αn) with ∑n

i=0 αi = r, αi ∈ Z and
αi ≥ 0. By relying on the last two pictures on the right of Figure 1, we give an example of
small edges {ααα, s} with r + 1 = 4. In the first of these two pictures, the three small edges
lying at the interior of T are, respectively, {(1, 1, 1), [x0, x1]} (left), {(1, 0, 2), [x0, x1]} (right),
{(2, 0, 1), [x0, x1]} (top). In the last picture, the small edge lying on the boundary of T is
{(0, 0, 3), [x1, x2]}. The term active is to indicate all couples {α, s} such that the function
λαws belongs to a basis of Wk

r+1, where λα = λα0
0 λα1

1 · · · λ
αn
n and ws ∈ Wk

1 . Indeed, by
considering all possible multi-indices α in the couples {α, s}, one generates more functions
λαws than necessary. The dimension of the space Wk

r+1 coincides with the number of active
small k-simplices in the mesh. The small k-simplices were born to define a set of unisolvent
dofs, the weights

∫
{α,s} u, for functions u ∈Wk

r+1(t) when r > 0, that, in distinction to the
classical moments, maintain a physical interpretation. About the weights, their definition
was first given in [8] and unisolvence, despite redundancies, proved in [14]. For the
unisolvence of a minimal (i.e., without redundancies) set of such weights, we refer to [15].

This work relies on the spaces W0
r+1 and W1

r+1. In particular, the meaning of the
matrix G is the same as for the case r = 0 provided that we work with the active small
k-simplices instead of the k-simplices of the mesh τh, with k = 0, 1. The weights for high
order Lagrangian finite elements W0

r+1 are the values of the function at the points of the
corresponding principal lattice of each tetrahedron of the mesh, and the weights for high
order Nédélec finite elements W1

r+1 are the line integrals of the vector field along the active
small edges connecting adjacent points of the principal lattice. The geometrical realization
of the graph G associated with the gradient operator, is straightforward (see an example in
triangles, for r + 1 = 4, in Figure 1, the picture in second position from the left). A spanning
tree T G is a maximal subgraph of G (maximal because it visits all vertices of G) without
closing circuits (this means that it is a tree). The remaining subgraph G \ T G is called the
cotree. An example of spanning tree and associated cotree in triangles, for r + 1 = 4, is
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given in Figure 1, the last two pictures on the right. In a mesh, a similar construction is
used to enrich a spanning tree of the vertices-edges graph of the mesh.

x
1

x0

x
2

Figure 1. For r + 1 = 4, in a mesh triangle t = [x0, x1, x2], from left to right, are drawn, respectively,
the small nodes of the principal lattice, the active small edges of the graph G associated with the
small-edge-to-small-node incidence matrix G, a spanning tree in G and its cotree.

From now on, dL (resp. dN) denotes the cardinality of the set of nodes or small nodes
(resp. edges or active small edges) whatever r ≥ 0 is, and the terms active and small for
k-simplices are taken for granted. We now make for the discrete problem.

Let {wj}j=1,...,dN be the (dual) basis for W1 = W1
r+1 ∩ H0(curl; Ω) (for simplicity, we

keep on denoting by dN the dimension of W1 and dL that of W0 = W0
r+1 ∩ H1

0(Ω)) with
respect to the weights over the active small edges as dofs, i.e.,∫

({ααα,e})`
wj = δj,` for all ` = 1, . . . , dN . (7)

The discrete form of the variational formulation (3) can be stated as: find Ah ∈ W1,
such that ∫

Ω
µ−1curl Ah · curl vh =

∫
Ω

J · vh, ∀ vh ∈W1. (8)

By writing Ah = ∑dN
j=1 ajwj and selecting vh = wi for all i ∈ {1, . . . , dN}, the discrete

variational problem results in the linear algebraic system

Sa = b, (9)

where

Si,j =
∫

Ω
µ−1curl wj · curl wi, bi =

∫
Ω

J ·wi, aj =
∫
{ααα,e}j

A · τ j, (10)

and {ααα, e}j is the jth active small edge with unit tangent vector τ j. The discrete form of
condition (6) reads: ∫

Ω
Ah · grad ϕh = 0, ∀ ϕh ∈W0

∗ , (11)

with W0
∗ = W0

r+1 ∩ H1
∗(Ω). Condition (11) says that Ah is orthogonal to grad (W0

∗ ).
At the beginning of the next section, we show that a vector v ∈ Ker(S) if and only if
vh = ∑dN

i=1 viwi satisfies curl vh = 0, and this implies that vh ∈ grad (W0
∗ ). In this sense, we

are identifying the space Ker(S) with grad (W0
∗ ).

With the help of the tree-cotree technique we will see, in a general domain, the
conditions for the invertibility of system (9) imposed by the tree gauge and those imposed
by the orthogonality to the kernel of S that we consider as a discrete Coulomb-like gauge.

4. The Tree-Cotree Decomposition to Analyse the System S a = b

To accomplish the first step, we characterize the nullspace of S, namely the set of
vectors a such that Sa = 0. Correspondingly, we have∫

Ω
µ−1curl Ah · curl vh = 0, ∀ vh ∈W1. (12)

By selecting vh = Ah in (12), we obtain
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0 =
∫

Ω
(curlAh)

>µ−1curl Ah ≥ C‖curlAh‖2
L2(Ω), (13)

where the constant C > 0 depends on µ. For this reason, from (13) we deduce that
curlAh = 0. Then Sa = 0 ⇒ curlAh = 0 ⇒ Ra = 0, where R is the active small-face-to-
small-edge connectivity matrix. Since Sa = 0 if and only if Ra = 0, then S and R share the
same nullspace Ker (S) = Ker (R), therefore, they are row equivalent Row (S)

⊕
Ker (S) =

RdN = Row (R)
⊕

Ker (R)⇒ Row (S) = Row (R).
Identifying the free variables corresponding to R ∈ RdRT×dN (with more columns than

rows, namely dN > dRT) is possible by a tree-cotree decomposition (e.g., as it was done
in the last row of ([16] Equation (3)). Namely, we set to zero all the variables associated
with a spanning tree T G of a suitable graph G∗ derived from the graph G of the gradient
operator G. The construction of the graph G∗ from G is done as follows. In the graph G,
since A× n|∂Ω = 0, for each j = 0, . . . , p, we eliminate all the active small edges {α, e}
lying on the connected component (∂Ω)j. To do this, we collapse all their extremities into
a unique node, say x∗j . Accordingly, an active small edge, say {α, e} = [x0, x1], with one
extremity at a node x0 6∈ ∂Ω and the other extremity at a node x1 ∈ (∂Ω)j, is deformed ( )
into an edge, still denoted by {α, e}, with extremity x0 and x∗j , that is [x0, x1] [x0, x∗j ]. We
thus get a modified graph G∗ = (N ∗, E∗) with vertices, the set

N ∗ = {x0 ∈ G, x0 6∈ ∂Ω}
⋃

j=0,...,p
{x∗j } ,

and arcs, the set defined as

E∗ = {[x0, x1], both x0, x1 6∈ ∂Ω }
⋃

j=0,...,p
{[x0, x1] [x0, x∗j ], x0 6∈ ∂Ω, x1 ∈ (∂Ω)j },

that is the set of small edges {α, e} of G with both extremeties not on ∂Ω together with
the set of the deformed ones, namely those small edges of G with an extremity on ∂Ω that
has collapsed into one of the nodes x∗j . Note that the number of nodes in G∗ is equal to
dL + p + 1 and the number of arcs coincides with dN .

Taking advantage of the row equivalence between R and S (following the ideas of
Manges and Cendes [2]), we decompose S into blocks, corresponding with a partition of
the active small edges in two sets, by relying on a spanning tree of the graph G∗. Dofs
supported by small edges out of the tree (thus on the so-called cotree), are numbered first,
and dofs corresponding with small edges on the tree are numbered second. The subscript
ct (resp., t) indicates the block of indices associated with small edges in the complement of
the spanning tree (resp., in the spanning tree), namely, a = [act, at]>. The number of edges
in a spanning tree of G∗ is the number of the nodes of G∗ minus one, that is dL + p + 1− 1.
Hence, the size of at is dL + p, and that of act is then dN − (dL + p). According to this
decomposition, the system (9) reads[

Sct, ct Sct, t
St, ct St, t

][
act
at

]
=

[
bct
bt

]
. (14)

Note that S is a singular matrix and this mimics the singularity of the continuous
problem (2). The singularity of S raises two issues. First, compatibility, namely, which are
the requirements on b so that b is in the range of S? Secondly, uniqueness, namely, is there
a way to ensure uniqueness for the solution of (9), under compatibility condition?

4.1. Characterising the Block of Maximal Rank in the System Matrix

The tree-cotree technique provides a way to define the set of indices ct (corresponding
with dofs associated with the cotree) such that Sct,ct is maximal rank. Indeed, we have the
following result.
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Theorem 1. The square block Sct,ct is invertible.

Proof of Theorem 1. Let us denote by q the size of Sct,ct and let us consider a vector z ∈ Rq

such that z ∈ ker(Sct,ct). Hence, Sct,ct z = 0 and z> Sct,ct z = 0, too. We have

0 = z> Sct,ct z =
∫

Ω
µ−1 curl Zh · curl Zh ,

where Zh = ∑j∈ct zj wj is an element of W1. Due to the requirement on µ, this gives
curl Zh = 0. As a consequence, Zh = grad ψh for a scalar field ψh ∈W0

∗ . Let us check that
this yields Zh = 0. Indeed, each small edge {α, e}j of the cotree (j ∈ ct) closes, together
with other arcs {α′, e′}k that all belong to the tree (k ∈ t), a circuit γ in G∗. Being Zh equal
to the gradient of a scalar function, its circulation on circuits is zero. Note that Zh has the
form Zh = ∑j∈ct zj wj + ∑k∈t 0 wk. We thus have∮

γ
Zh · τγ = 0 =

∫
{α,e}j

Zh · τγ +
∫

γ\{α,e}j

Zh · τγ = zj + 0.

Hence, if zj = 0 for each edge {α, e}j in the cotree, that yields z = 0 and the invertibility
of Sct,ct.

We state a property that will be widely applied in the following:

Property 1. If Sct,ct has maximal rank q, then SΓ = St, t − St, ct S−1
ct,ct Sct,t = 0.

Proof of the Property. If the first q lines (block ct) in (14) define the rank of S, the remaining
(dN − q) lines (block t) are linear combination of the first q ones. This means that a matrix
C ∈ R(dN−q)×q exists such that[

St, ct St,t
]
= C

[
Sct, ct Sct,t

]
Hence, for SΓ we have SΓ = C Sct,t − C Sct, ct S−1

ct,ct Sct,t = C Sct,t − C Sct,t = 0.

For a matrix M, the expression MΓ = [Mt, t − Mt, ct M−1
ct,ct Mct,t ] is well known in the

frame of domain decomposition (DD) methods, indeed it coincides with the so-called Schur
complement associated with M for the partition of indices into the sets ct and t. In the
context of DD methods, the maximal rank block of M is not used to put in evidence , since
M in the DD context is an invertible matrix, but rather to solve Ma = b by going through
the inversion of a finite number of better conditioned smaller linear systems (the interested
reader can find more details in [17]).

4.2. Requirements on the System Right-Hand-Side for the Existence of a Solution

We now focus on the compatibility condition for the right-hand-side of (14). It is an
algebraic constraint for a vector b to be the right-hand-side of a linear system with matrix
S, thus stating when b ∈ Im (S) = {S v, v ∈ RdN }.

Theorem 2. b ∈ Im (S) if and only if bt = St ctS−1
ct ctbct.

Proof of Theorem 2. The fact that b ∈ Im (S) implies b is in the columns space of S, so
b = S z for some z ∈ RdN . Written in partitioned matrix form[

bct
bt

]
=

[
Sct,ct Sct,t
St,ct St,t

][
zct
zt

]
(15)

This yields the equations

S−1
ct,ctbct = zct + S−1

ct,ctSct tzt and bt = St,ctzct + St,tzt. (16)
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Thanks to the fact that rank (S) = rank (Sct,ct), we know that [St,t − St,ctS−1
ct,ctSct,t] = 0.

By eliminating zct in (16) and considering St,t = St,ctS−1
ct,ctSct,t in (16), we have the following

relation between the blocks of b:

bt = St,ctS−1
ct,ctbct, (17)

that is what we wished to prove.

Condition (17) has to be satisfied by b to be in the range of S, prior to solving (9).

4.3. Characterising the Nullspace of the System Matrix

Under a compatibility condition on the right-hand side b addressed in the previous
section, the nullspace of S is responsible for the lack of uniqueness of the solution a. We
thus characterise the nullspace of S, i.e., ker (S) = { v ∈ RdN , S v = 0}.

Theorem 3. a ∈ ker (S) if and only if act = −S−1
ct,ct Sct,t at.

Proof of Theorem 3. Let a ∈ ker (S). Under the form (14), the first block of lines in the sys-
tem S a = 0 reads Sct, ct act + Sct, t at = 0. Being Sct,ct invertible, we get act = −S−1

ct,ct Sct,t at.
The other way around, if act = −S−1

ct,ct Sct,t at, then the vector b = S a reads[
bct
bt

]
=

[
Sct, ct Sct, t
St, ct St, t

][
−S−1

ct,ct Sct,t at
at

]
=

[
0

( St, t − St, ct S−1
ct,ct Sct,t ) at

]
.

Hence bct = 0 and bt = SΓ at with SΓ = ( St, t − St, ct S−1
ct,ct Sct,t ). We have that bt = 0,

too, because SΓ = 0 since rank (Sct,ct) = rank (S). So a ∈ ker (S).

If b verifies (17) then b ∈ (ker (S))⊥. Indeed, by a simple calculation, we have
b ·w = 0 for all w ∈ ker (S). In fact, b ·w = bct ·wct + bt ·wt. By relying on (17) and
Theorem 3 for w, we have

bct ·wct + bt ·wt = −b>ct S−1
ct,ct Sct,t wt + (St,ct S−1

ct,ct bct)
>wt = 0

since (S−1
ct,ct)

> = S−1
ct,ct and S>ct,t = St,ct.

4.4. Generating Solutions to the System

From the previous results, we can state the following.

Theorem 4. Given a vector b satisfying (17), all solutions of (9) look like a = [act, at]> with

∀ at , act = S−1
ct,ct(bct − Sct,tat). (18)

Proof of Theorem 4. All vectors a, with blocks defined in (18), verify the first block line
of system (14). To get the second block line of (14), let us multiply act in (18) by St,ct and
rearrange the terms. We thus obtain

St,ct act + St,ct S−1
ct,ct Sct,t at = St,ct S−1

ct,ct bct. (19)

Then using St,t = St,ctS−1
ct,ctSct,t and the condition (17) for b, relation (19) becomes

St,ctact + St,tat = bt , (20)

that is the second line block of (14). The other way around, from the first line block of (14)
we can set act = S−1

ct,ct(bct − Sct,t at) since Sct,ct is invertible. We replace act in the second
line block of (14) and we have
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−St,ct S−1
ct,ct Sct,t at + St,t at = bt − St,ct S−1

ct,ct bbc.

The right-hand-side b verifies (17) thus bt − St,ct S−1
ct,ct bbc = 0. Therefore we have

SΓ at = 0 with SΓ = 0; thus, at can be any vector in RdL+p.

To summarize, the infinite set of solutions to (9) with the form [ act , at ], is generated
by arbitrarily setting the entries of the block at and by computing act with the system

Sct,ctact = bct − Sct,tat. (21)

The solution of system (9) is thereby reduced to the components indexed out of a tree,
namely to act, once the block at has been set. We say that we impose the classical tree gauge
when we set at = 0. It is worth noting that these tree gauges are not a discretization of the
Coulomb gauge stated in (5) or (6). They are not enforcing in any sense the orthogonality
to the gradient in conditions (5) and (6). We follow this way in the next section.

5. A Discrete Coulomb Gauge

We have seen that the dof block at of the magnetic vector potential Ah is set arbitrarily,
eventually equal to zero, without affecting the corresponding field Bh = curlAh. In this
section, we restrict the solution a of S a = b to verify a ∈ (ker (S))⊥ = Im(S). We recall
that v = (vi) is in ker (S) if and only if vh = ∑dN

i=1 vi wi ∈ grad (W0
∗ ), where {wi}i=1,...,dN

is the basis in W1 defined in (7). We thus have to look for a vector a = T> y where
T =

[
Sct,ct Sct,t

]
is the block ct of rows in S. In fact, according to Theorem 2, we have

a ∈ Im (S) if and only if a has the form[
act

St,ct S−1
ct,ct act

]
=

[
Ict

St,ct S−1
ct,ct

]
act =

[
Sct,ct
St,ct

]
︸ ︷︷ ︸

T>

S−1
ct,ct act︸ ︷︷ ︸

y

= T> y,

with Ict denoting the identity matrix for the block ct.
Applying this discrete Coulomb gauge means to look for a vector y ∈ R[dN−(dL+p)]

such that S T> y = b. Using this change of variable a = T>y , from a to y, by relying on
the block definition of T and S, the relation S T>y = b can be written as[

T
M

]
T>y = b, M =

[
St,ct St,t

]
.

Hence, the discrete Coulomb gauge consists in looking for the solution of S a = b of
the form a = T> y with y solving the system

TT>y = bct. (22)

The ones of T are the rows of S with indices in ct and hence they span all the rowspace
of S, since Sct,ct is maximal rank, namely Row (S) = Row (T). The matrix TT> is square,
symmetric and positive definite, since T is full rank. It can be inverted by efficient, direct or
iterative, techniques well-known in scientific computing.

Under the compatibility conditions on b stated in Theorem 2, the lower part M T> y =
bt of the system S T> y = b is redundant with the upper one given in (22). Let us perform
the matrix products:

(i) TT>y = bct that is (Sct,ctSct,ct + Sct,tSt,ct)y = bct.
(ii) MT>y = bt that is (St,ctSct,ct + St,tSt,ct)y = bt.

If b verifies (17), from (i) we get (ii). Indeed
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(Sct,ctSct,ct + Sct,tSt,ct)y = bct,

(Sct,ct + S−1
ct,ctSct,tSt,ct)y = S−1

ct,ctbct,

(St,ctSct,ct + St,ctS−1
ct,ctSct,t︸ ︷︷ ︸
St,t

St,ct)y = St,ctS−1
ct,ctbct︸ ︷︷ ︸
bt

,

MT>y = bt.

We can fix some expressions. The original problem is to solve S a = b under the
compatibility condition on b. The tree allows to find Sct,ct invertible, thus to prepare S in
a block form. To impose a discrete Coulomb gauge on (14) means to select solutions of
such a problem of the form a = T> y. To solve (14) under the discrete Coulomb gauge is
equivalent to solve the gauged problem S T> y = b, in particular T T> y = bct since the
rest of the equations (those with right-hand-side bt) are redundant.

Remark 1. Note that the null space gauge was imposed by the change of variable from a to y, that
actually enforces the orthogonality of a to the kernel of S (that is the same as the kernel of R). The
vectors in the kernel of S are the coefficients in the basis {wi}i=1,...,dN of the gradients of W0

∗ . In
this sense the null space gauge can be intended as a weak enforcement of a discrete Coulomb gauge.

6. Other Formulations in Magnetostatics

Alternative formulations, with respect to the magnetic vector potential one, exploit the
zero divergence condition of the source J. The starting point is the magnetostatic problem
in terms of the magnetic field H. Namely, assigned a solenoidal source current J with
supp (J) ⊂ Ω, we wish to compute the magnetic field H defined in Ω from the equations
curl H = J, div (µ H) = 0, with boundary conditions µ H · n∂Ω = 0 and

∫
Ω H · v = 0

for all v ∈ Hµ(m; Ω). As commonly done [1,18,19], the condition div J = 0 is strongly
satisfied via a curl-conforming source field, namely an electric vector potential T such
that J = curl T. Again, the problem curl T = J is overdetermined, since the kernel of
the curl operator includes the gradients. If Ω is not simply connected, there exist vector
fields in H0(curl; Ω) = {w ∈ H(curl; Ω), curl w = 0} that are not gradients. Indeed, the
dimension of the quotient space H0(curl; Ω)/grad (H1(Ω)) coincides with b1(Ω). We can
thus apply analogous gauging techniques as the ones we have analysed before to solve it.
In this case, a belted tree is used (see, e.g., [20]).

We have seen that a spanning tree on the graph of the gradient operator is involved in
both the discrete version solution of (1) and (2). There is however a difference between the
construction of a spanning tree, say T G

b , when working in terms of B and that of say T G
a

when working in terms of A. We have indeed that T G
b can be a belted tree, that takes into

account b1(Ω), the first Betti number of Ω ( e.g., [20]) whereas T G
a is a genuine spanning

tree of a graph that pays attention to b2(Ω), the second Betti number of Ω. This is much
related to the type of boundary conditions appearing in (1) and (2). The condition on
A× n|∂Ω takes in the p + 1 connected components of ∂Ω. Here we work in terms of A, so
T G is of type T G

a . Similar considerations can be stated for the graph to consider when we
have to build a tree for the solution of the magnetostatic problem in either H or T.

7. Discussion and Concluding Remarks

Using, as dofs for the first family of Nédélec FEs, the weights, it is natural to extend the
classical tree-cotree techniques to high-order approximations. This construction is useful
to any high order FE approach where there is a correspondence of dofs with geometrical
entities that constitute a graph. The idea in this work is to recall the main problems where
this type of techniques are applied. We pay particular attention to the generality of the
domain from a topological point of view and the implication that this generality has on the
graph (and consequently on the spanning tree) to be considered. We have considered in
details the use of the tree-cotree technique when looking for a solution of the magnetostatic
problem in terms of a magnetic vector potential A in a general domain Ω. We have deeply



J 2022, 5 62

analysed, in the high order FE context, the two different ways of performing a discrete
gauge that were considered by Manges and Cendes in the low order case. We have recalled
also briefly the use of this technique for the computation of an electric vector potential T
when solving the magnetostatic problem in terms of the magnetic field H.

In these pages, we have proved some properties for the linear system with matrix S
associated with a high order edge FE discretization of the magnetostatic problem in terms
of the magnetic vector potential A. By relying on a tree-cotree partition of the components
of the solution vector a, Theorem 2 states that a ∈ ker(S) if and only if act = −S−1

ct,ct Sct,t at.
Then, to have a ∈ (ker(S))⊥, when imposing a discrete Coulomb gauge, we look for a
solution of the form a = T>y. Under the compatibility condition on the right-hand-side of
Theorem 2, both gauges provide a unique solution of S a = b. The tree-cotree technique
in Theorem 1 allows to define the block of maximal rank in S and thus to define T. The
tree gauge chooses the solution a by fixing the entries of the block at = 0, in agreement
with (18). However, these entries collected in at can be arbitrarily fixed and when they are
different from zero, we have another gauge.
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