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Abstract: Modified pectin (MP) is a bioactive complex polysaccharide that is broken down into
smaller fragments of units and used as an oral dietary supplement for cell proliferation. MP is safe
and non-toxic with promising therapeutic properties with regard to targeting galectin-3 (GAL-3)
toward the prevention and inhibition of viral infections through the modulation of the immune
response and anti-inflammatory cytokine effects. This effect of MP as a GAL-3 antagonism, which has
shown benefits in preclinical and clinical models, may be of relevance to the progression of the novel
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) in coronavirus disease 2019 patients.
The outbreak of emerging infectious diseases continues to pose a threat to human health. Further to
the circulation of multiple variants of SARS-CoV-2, an effective and alternative therapeutic approach
to combat it has become pertinent. The use of MP as a GAL-3 inhibitor could serve as an antiviral
agent blocking against the SARS-CoV-2-binding spike protein. This review highlights the potential
effects of MP in viral infections, its proposed role as a GAL-3 inhibitor, and the associated function
concerning a SARS-CoV-2 infection.
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1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged as a novel
virus in December 2019 in Wuhan, Hubei Province, China, causing the global pandemic
coronavirus disease 2019 (COVID-19) [1]. Up to 27 July 2021, a total of about 194 million
cases and over 4 million deaths were reported around the world, making COVID-19 a major
worldwide health risk [2]. The global public health community faced an imminent need to
understand the pathogenesis of the novel coronavirus and produce an effective therapeutic
approach to combat its emergence and re-emergence [3]. Several therapies including the
antivirals remdesivir and chloroquine have been intensively researched. However, these
come with mixed results, lacking a viable standard of treatment for COVID-19 patients [4,5].
Consequently, it has become imperative to identify alternative therapeutic medicines.

SARS-CoV-2 belongs to enveloped RNA viruses, subgenus betacoronavirus of the
family coronaviridae [6–8]. SARS-CoV-2 is made up of four primary structural proteins:
homotrimer spike (S) glycoprotein, small envelope (E) glycoprotein, membrane (M) glyco-
protein and nucleocapsid (N) protein as well as a few ancillary proteins [8]. In coronavirus,
the spike proteins (with a distinctive “corona” crown-like shape on the virion surface) have
two subunits, the S1 and S2 glycoproteins. S1 has an N-terminal domain (NTD) and a
C-terminal domain (CTD), which facilitate the host adhesion binding to the receptor. S2
has a CTD responsible for the fusion of the viral and cellular membranes and the entrance
into the cells by attracting angiotensin-converting enzyme 2 (ACE-2) [9,10].

The recent literature has indicated a COVID-19 treatment with a GAL-3-targeted
therapy linking the spike proteins of coronaviruses, with human GAL-3 having a similar
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protein structure [11–13]. This involves the use of the GAL-3 inhibitor as an antiviral
agent blocking against the SARS-CoV-2-binding spike protein. However, there is still more
to explore and understand about this promising GAL-3 target therapy route. Recently,
attention has been paid to the potential involvement of pectin as a bioactive complex
polysaccharide, which when broken down into smaller fragments is referred to as modified
pectin (MP). The antagonistic activity of MP against GAL-3 has been of great interest in
the majority of the preclinical and clinical reports in the prevention of and reduction in
cancer [14–19] as well as fibrotic, renal injury and cardiovascular diseases [20–23] and
inflammatory and immune functions [24–27].

The effects of MP are the subject of new and interesting research with evidence indicat-
ing that galactan-rich tiny molecular weight pectin fragments can bind to the carbohydrate
recognition domain (CRD) on the pro-metastatic protein, GAL-3. This hinders GAL-3 from
interacting with other proteins and peptides, limiting its capacity to stimulate cell adhe-
sion, migration, angiogenesis, tumorigenesis and apoptosis [28–30]. This suggests that MP
through the inhibition of GAL-3 could be used in a potentially safe and non-toxic method to
prevent or reduce the viral adhesion and viral-associated inflammatory responses targeting
a therapeutic approach [13,31]. Given the above, this review looks to highlight the potential
effects of MP in viral infections, its proposed role as a GAL-3 inhibitor, and the associated
function concerning SARS-CoV-2 infections.

2. Galectin-3

GAL-3 is a chimeric carbohydrate-binding protein member of the galectin family.
It is a galactose-binding protein that is expressed in numerous human cells including
epithelial, endothelial, immunological and inflammatory cells as well as macrophages from
the head, neck, thyroid, stomach, brain and alveolar cells in the lungs [32–35]. GAL-3
has a small molecular weight (30 kDa) and comprises three main terminals, namely, the
-NH2 terminal domain (NTD), a collagen-like repeated tandem rich of the Gly-Pro-Ala-
Try protein domain (CPD) and the carbohydrate recognition domain (CRD) containing
-COOH terminals and the Asp-Trp-Gly-Arg (NWGR) anti-death motif (Figure 1) [29,36].
The GAL-3 CRD is connected to a long, flexible N-terminal domain with a specific affinity
that binds to β-galactosides such as lactose and larger galacto-oligosaccharides. The N-
terminal domain of GAL-3 is required for multimerization and is vulnerable to proteolysis
by matrix metalloproteinases and may interact with other intracellular proteins. The
interaction of GAL-3 with glycoconjugates containing N-acetyllactosamine is controlled by
its C-terminal CRD [37].

J 2021, 4 FOR PEER REVIEW  2 
 

The recent literature has indicated a COVID-19 treatment with a GAL-3-targeted 
therapy linking the spike proteins of coronaviruses, with human GAL-3 having a similar 
protein structure [11–13]. This involves the use of the GAL-3 inhibitor as an antiviral agent 
blocking against the SARS-CoV-2-binding spike protein. However, there is still more to 
explore and understand about this promising GAL-3 target therapy route. Recently, at-
tention has been paid to the potential involvement of pectin as a bioactive complex poly-
saccharide, which when broken down into smaller fragments is referred to as modified 
pectin (MP). The antagonistic activity of MP against GAL-3 has been of great interest in 
the majority of the preclinical and clinical reports in the prevention of and reduction in 
cancer [14–19] as well as fibrotic, renal injury and cardiovascular diseases [20–23] and in-
flammatory and immune functions [24–27]. 

The effects of MP are the subject of new and interesting research with evidence indi-
cating that galactan-rich tiny molecular weight pectin fragments can bind to the carbohy-
drate recognition domain (CRD) on the pro-metastatic protein, GAL-3. This hinders GAL-
3 from interacting with other proteins and peptides, limiting its capacity to stimulate cell 
adhesion, migration, angiogenesis, tumorigenesis and apoptosis [28–30]. This suggests 
that MP through the inhibition of GAL-3 could be used in a potentially safe and non-toxic 
method to prevent or reduce the viral adhesion and viral-associated inflammatory re-
sponses targeting a therapeutic approach [13,31]. Given the above, this review looks to 
highlight the potential effects of MP in viral infections, its proposed role as a GAL-3 in-
hibitor, and the associated function concerning SARS-CoV-2 infections. 

2. Galectin-3 
GAL-3 is a chimeric carbohydrate-binding protein member of the galectin family. It 

is a galactose-binding protein that is expressed in numerous human cells including epi-
thelial, endothelial, immunological and inflammatory cells as well as macrophages from 
the head, neck, thyroid, stomach, brain and alveolar cells in the lungs [32–35]. GAL-3 has 
a small molecular weight (30 kDa) and comprises three main terminals, namely, the -NH2 
terminal domain (NTD), a collagen-like repeated tandem rich of the Gly-Pro-Ala-Try pro-
tein domain (CPD) and the carbohydrate recognition domain (CRD) containing -COOH 
terminals and the Asp-Trp-Gly-Arg (NWGR) anti-death motif (Figure 1) [29,36]. The GAL-
3 CRD is connected to a long, flexible N-terminal domain with a specific affinity that binds 
to β-galactosides such as lactose and larger galacto-oligosaccharides. The N-terminal do-
main of GAL-3 is required for multimerization and is vulnerable to proteolysis by matrix 
metalloproteinases and may interact with other intracellular proteins. The interaction of 
GAL-3 with glycoconjugates containing N-acetyllactosamine is controlled by its C-termi-
nal CRD [37]. 

 
Figure 1. Structure of galectin-3 comprising the -NH2 terminal domain (NTD), the collagen-like 
protein domain (CPD), consisting of about 100 amino acids, and the carbohydrate recognition do-
main (CRD), consisting of the -COOH terminal and NWGR. 

Recent studies have begun to shed more light on the significance of GAL-3 and its 
prominent role in viral infections. GAL-3 has been identified as a binding mediator in the 

Figure 1. Structure of galectin-3 comprising the -NH2 terminal domain (NTD), the collagen-like
protein domain (CPD), consisting of about 100 amino acids, and the carbohydrate recognition domain
(CRD), consisting of the -COOH terminal and NWGR.

Recent studies have begun to shed more light on the significance of GAL-3 and its
prominent role in viral infections. GAL-3 has been identified as a binding mediator in
the entrance and attachment of the herpes simplex virus (HSV) in ocular infection [38].
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However, it remains unclear whether this holds for the virus at other sites of entry during
infection, including the mucosa [31]. During HSV infection, the expression of GAL-3 is
increasingly high [39]. Similarly, HIV infection increases GAL-3 expression by activating
Toll-like receptor 4 (TLR4)/NF-kB-dependent pathways [40]. GAL-3 is abundantly pro-
duced in many infected human T-lymphotropic virus type 1 (HTLV-1) T cells and causes
the GAL-3 to be upregulated via HTLV-1 Tax binding to the GAL-3 promoter [41,42]. En-
dogenous GAL-3 works by interacting intracellularly with the HIV-1 protein Gag and the
cellular ALG-2-interacting protein X (Alix), both of which are required for viral budding
and replication when new infectious virions are produced [43]. GAL-3 was found to be
upregulated in promoting HIV-1 replication in infected CD4 T cells [44].

The endogenous galactoside-binding GAL-3 is implicated in cell growth, as well as cell
proliferation, adhesion, differentiation, migration, angiogenesis, mRNA splicing promoter,
malignant transformation, and apoptosis [45]. These cellular processes are potential targets
to inhibit viral genome replication. Coronaviruses have five primary open reading frames
(ORFs) encoded in their genomes which include a 5′ frameshifted polyprotein and four
3′ structural proteins—S, E, M, and N proteins [46]. Potential ORFs implicated in viral
genome replication in SARS-CoV-2 and related severe acute respiratory syndrome genomes
were investigated using the computer program Gene prediction by Open reading Frame
Identification utilizing X motifs [47]. The ORF8b encoded in the SARS-CoV genome
promotes the synthesis of cellular DNA and viral replication, as well as the activation of the
nucleotide oligomerization domain-like receptor protein 3 (NLRP3) inflammasome [48,49].
Similarly, the activation of the NLRP3 inflammasome by the endogenous GAL-3 increases
the severity of avian influenza A H5N1 virus-induced lung inflammation. The lungs of
infected mice produced more GAL-3 mRNA protein as a result of influenza virus A H5N1
infection [50]. ORF8b aggregates associated with the GAL-3 cause endoplasmic reticulum
and lysosomal stress lead to the nuclear translocation of the transcription factor. The
viral genomic RNA triggers TLR to activate the NLRP3 inflammasome [50]. Therefore,
the genetic manipulation or inhibition of TLR4 may impede the activation of NLRP3 to
reduce the ability of the influenza A virus replication [51] through ORF8b-associated GAL-3
inhibition. This implies that targeting the inhibition of GAL-3 may also affect viral RNA
synthesis in the case of the SARS-CoV-2.

The plasma levels of GAL-3 protein were higher in viral infections associated with
inflammatory cell infiltration. In hepatitis B infection, the level of GAL-3 may be a useful
predictor of chronicity by stimulating CD98 interaction with macrophages to promote
the production of certain cytokines and chemokines [52]. The interaction of endogenous
GAL-3 with NLRP3 amplifies the impact of H5N1 infection by modulating the production
of macrophage IL-1 [50]. In addition, the binding of GAL-3 to influenza virus A promotes
pneumococcal adherence to the cell surface [53]. All these indicate that GAL-3 may also
have an important role in the primary and secondary airway infections in COVID-19
patients. Although, it is still unclear what causes the increase in GAL-3 in the majority
of viral infections. It was suggested that viral gene expression may be driving GAL-3
expression in part [41,54]. This multi-functional protein is synthesized in the cytoplasm as
a cytosolic protein but can be expressed in the nucleus when transported to the multiple
subcellular localization of the cell nucleus, or secreted into the extracellular matrix (ECM)
(outside of the cell) [35,55]. GAL-3 regulates cell homeostasis both intracellularly and
extracellularly [56]. At the extracellular surface, GAL-3 can bind glycoconjugates as an
aggregate of cells coming together to form cell–matrix interactions [57].

3. Modified Pectin

Pectin is a naturally occurring polysaccharide found in the cell wall of plants such as
fruits and vegetables. It is mainly extracted from the citrus peel due to its high concentration
in the skin and core parts of the fruit [58]. Pectin is known to be a complex water-soluble
polysaccharide composed majorly of: (i) predominant 1,4-linked α-D-galacturonic acid
of the Rhamnogalacturonan-I (RG-I) region, (ii) a part of the methoxylated-esterified
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carboxyl group structure of the Homogalacturonan (HG) region, which makes it an acidic
polysaccharide, and (iii) the Rhamnogalacturonan-II (RG-II) [29]. The RG-I region has
more flexibility which is so important because galactan, arabinan, and arabinogalactan side
chains are located on the RG-I and attached to the rhamnose residue [59,60]. The rhamnose
backbone residue is covered in two forms of arabinogalactans: the linear β-(1-4)-D-galactan
and the branched β-(1-3,6)-D-galactan. The β-(1-4)-D-galactan is most likely a structural
weapon with an affinity for binding to the CRD [29].

When MP is originally derived from the citrus fruit, it is then referred to as mod-
ified citrus pectin (MCP). MCP is a smaller size uniform fragment of about 10–20 kDa
obtained through the effect of pH modification by alkaline (sodium hydroxide) and/or
acid treatment or by enzymatic breakdown [61]. Ordinarily, the degree of esterification in
industrial pectin is as high as 70%; it has been defined in MP to be <10% by the removal
of methoxyl group from the high methoxyl pectin to form low methoxyl pectin. This
modification causes the β-elimination cleavage from the HG backbone, thereby releasing
oligomers of polygalacturonic acid. The RG-I region can be further split into galactan and
arabinogalactan with fewer arabinose substitutes as the treatment cleaves linkages between
the neutral sugars and eventually modifies the RG-I (Figure 2) [62,63]. This modification
produces unique bioactivity in MCP which creates a chance for the carboxyl group on the
galactan to interact more with GAL-3 and increases the bioavailability of the free galactans
that bind to the GAL-3 [63].
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Figure 2. Schematic diagram of modified pectin RG-I consisting of the linear β-(1-4)-D-galactan and
the arabinogalactans residues after the enzymatic treatment cleaves the sugars linkage in pectin [29].

MCP is rich in β-galactose, potentially safe, and non-toxic. It is used as a dietary
supplement to promote cell growth. Recent research has linked the effects of the oral
consumption of MCP to its specific molecular interaction with the GAL-3. Studies have
shown the health benefits of MP, highlighting the roles of targeting the inhibition of GAL-3
in immune response, inflammation, macrophages, cytokines, cardiovascular, renal injury,
fibrosis, and cognitive impairment [28]. Most of these studies have given considerable
focus to the effect of MCP with significant preclinical and clinical trials in vivo and in vitro.
This has demonstrated reliable outcomes to justify the health benefit and acceptable safety
profile of the MCP. Although, to date, there is little or no information on the role of MP
targeting viral infections, particularly toward GAL-3 inhibition. However, it is plausible to
extrapolate the potential role of pectin and its impact on COVID-19 infection.
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4. Potential Role of Modified Pectin Binding Galectin-3 in SARS-CoV-2 Infections

Studies have shown the potential role of industrial pectin in exploring its antiviral
activity (Table 1). In most MCP research, GAL-3 plays several prominent roles which
influence its bioactivity by inducing extracellular functions such as the interaction between
cells and inflammation. The relevance of the effect of MP through GAL-3 antagonism
to the progression of SARS-CoV-2 in COVID-19 patients can be extrapolated from the
perspective of (i) MP and GAL-3 binding as a mediator for viral adhesion in the virus
infection mechanism through the viral spike protein, given that the N-terminal domain of
SARS-CoV-2 evolves from a galectin origin, (ii) MP and GAL-3 response to inflammation
and macrophage driving the cytokine storm in severe SARS-CoV-2 cases.

Table 1. Antiviral effect of pectin on various viral infections.

Disease Indication Model of Study Virus Outcome of Study References

COVID-19 Molecular docking SARS-CoV-2
Citrus pectin binding to the protein
receptor inhibits the replication of

the SARS-CoV-2.
[64]

COVID-19 Molecular docking SARS-CoV-2
Citrus specific binding to the ACE-2

inhibits the replication of
SARS-CoV-2.

[65]

Mosaic disease Plant Tobacco Mosaic Virus
MP mediated virus-induced gene

generates short interfering silencing
of viral RNA and spread.

[66,67]

Mosaic disease Plant Tobacco Mosaic Virus
Pectin methylesterase suppresses
the transport of viral protein in

antisense plants.
[68]

Genital Herpes In vitro Herpes Simplex Virus
Type 1 and Poliovirus

Pectin inhibits viral replication by
binding to the glycoprotein and

carboxyl groups on the cell
membrane.

[69]

Hepatitis In vitro Hepatitis B Virus

Pectin (SLP-4) inhibits the secretion
of surface and envelope antigens of
HBV in HepG2 cells through pectin

polysaccharide and HBV protein
interaction.

[70]

Influenza Mouse Influenza A Virus MCP induces Th1 T-helper immune
response. [71,72]

Genital Herpes In vitro Herpes Simplex Virus
Type 2

Pectin polysaccharide shows an
anti-HSV-2 activity. [73]

Abbreviations: COVID-19: Coronavirus disease 2019, SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2, ACE-2; Angiotensin-
converting enzyme 2, MP: Modified pectin, MCP: Modified citrus pectin.

4.1. Modified Pectin and Galectin-3 Binding against a Viral Adhesion

GAL-3 has been identified as a binding mediator that aids viral attachment. In SARS-
CoV-2 infection, the glycosylation of the outer membrane spike glycoprotein causes the
interaction of the viral protein with the cell receptors and adhesion factors, including
ACE-2. It was hypothesized that the unique N- and O-linked glycosylation sites of the S1-
NTD spike glycoprotein in SARS-CoV-2 may interact with immunoregulatory factors [74].
This suggests that GAL-3 plays an important role in SARS-CoV-2 host interaction [13].
NTD and CTD domains can function as receptor-binding domains (RBDs). The S1-NTDs
are in charge of sugar-binding, recognizing both N-acetylneuraminic acid (Neu5Ac) and N-
glycolylneuraminic acid (Neu5Gc) sugar receptors [75–77] and the S1-CTDs detect ACE-2
protein receptor [78,79]. It is noteworthy that a recent study reveals a dual interaction of S1-
NTD binding to the sugar co-receptor, Neu5Ac [75] and the ACE-2 receptor in SARS-CoV-2
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infection. The negatively charged -COOH terminal of the 9-O-acetyl-Neu5Ac is positioned
for interaction with available sugar or protein molecules [80,81].

SARS-CoV-2 may be able to recognize Neu5Ac co-receptors besides the ACE-2 by
acquiring the GTNGTKR motif on the S1-NTD [82]. In extreme cases of SARS-CoV-2,
a new type of sialic acid-linked ganglioside-binding domain was discovered at the S
protein’s N-terminal domain [82]. It is therefore noteworthy that SARS-CoV-2 binds to
Neu5Ac, GAL-3, GTNGTKR motif, and sialic acids-linked ganglioside could contribute
to the greater infectivity of the virus compared to the SARS-CoV [75,82,83]. Similarly,
the abundance of Neu5Ac and GAL-3 receptors in the human body particularly at the
nasopharynx and oral mucosa has been noted compared to the ACE-2 receptors [83]. This
could contribute to the high transmissibility and infectivity of SARS-CoV-2, particularly at
viral entry points [32,34].

Recent studies have reported a high degree of similarity in the NTD receptor-binding
domain of different coronaviruses, as well as similarity in the structural alignment of
the S1-NTD and GAL-3 of SARS-CoV-2 [82]. This indicates that both Neu5Ac and GAL-
3 receptors may have similar -COOH terminal domains. The terminal galactose in the
neutral sugar side chain of the polysaccharide enables MP to bind specifically to GAL-3
CRD [84]. GAL-3 CRD has an affinity for β-galactosides and MP is a sugar molecule with
an abundance of β-galactose [85]. This enables MP to antagonize the GAL-3 β-galactoside
protein by binding tightly to it and modulate its bioactivity [86]. It is reasonable to assume
that the β-1,4-galactan of the neutral sugar chain in MP has the potential affinity to bind
specifically to the -COOH terminal of the Neu5Ac and/or GAL-3 receptors. This inhibits
the attachment of the S1-NTD of SARS-CoV-2 to the host cell (Figure 3). Although, a
detailed investigation of the mechanisms involving GAL-3 binding and/or inhibition by
MP will provide a means of testing this molecular hypothesis and identifying the particular
pectin-derived components responsible for the effects.

The knowledge of antiviral compounds containing sugar or sugar analogs that may be
used to prevent coronavirus from attaching to its sugar co-receptor [78] has led to unravel-
ing the antiviral potential of pectin and related flavonoids. A study has shown that plants
can protect themselves against virus infection by silencing virus-induced genes stimulated
by pectin methylesterase [87]. This suggests that pectin methylesterase may contain com-
pounds that mediate the prevention of viral infection in their host. A pectin polysaccharide
from a plant named ‘Portulaca oleracea’ containing galacturonic acid, galactose, and glucose
with small amounts of arabinose and rhamnose showed significant inhibition against
herpes simplex virus type 2 (HSV-2) with a selectivity index of more than 20 [73]. Similarly,
pectin has high inhibitory effects of 179 µg/mL−1 and 58 µg/mL−1 against herpes simplex
virus type 1 (HSV-1) and the poliovirus, respectively in Hep-2 cells [69]. This further
suggests that the interaction of pectin with the cation amino acids glycoprotein-binding
site in HSV-1 and the anion sulfated/carboxyl group heparin-sulfate chains of the cell
membrane impedes viral initiation and replication at the initial early stage [69,88].

The S glycoprotein on the NTD is the major antigen on the viral surface that neutral-
izing antibodies can attack during an infection, hence preventing viral entry [89,90]. It is
pertinent to mention that the attachment of SARS-CoV-2 to the cell surface for replication
through viral spike protein has multiple potential therapeutic targets. Although the rela-
tionship between GAL-3 and SARS-CoV-2 is also mixed, it is still unclear if it is pro- and/or
anti-SARS-CoV-2. Furthermore, investigating the possibility of having similarities in the
molecular structure of S1-NTD and MP could decipher the potential of a direct binding
affinity of the sugar galactan to the CRD of SARS-CoV-2. This will provide an understand-
ing of the interaction of N- and O-linked glycosylation sites of the spike glycoprotein with
the carboxyl group on the MP galactan CRD in SARS-CoV-2 infection.

Some natural bioactive compounds and flavonoids such as hesperidin and hesperetin
which are related to citrus pectin have demonstrated the potency of the antiviral effect.
Hesperidin in citrus peel contains a very interesting molecule with potential antiviral activ-
ity against SARS-CoV-2 [91]. Studies reported that the inhibitory activities of hesperidin
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against SARS-CoV-2 are through its binding affinity to the protease domain, the ACE-2
receptor-binding domain, and the spike glycoprotein receptor-binding domain [64,92,93].
Hesperetin binds to the receptor domain by inhibiting the attachment of SARS-CoV-2 to
the ACE-2 receptor [65]. Further study revealed that citrus hesperidin and hesperetin have
the highest binding affinity to the SARS-CoV-2 receptors spike glycoprotein (S1-NTD),
protease, and ACE-2 by showing the lowest dock scoring, which indicates a high inhibitory
potential against the viral infection and replication [64].
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which are related to citrus pectin have demonstrated the potency of the antiviral effect. 
Hesperidin in citrus peel contains a very interesting molecule with potential antiviral ac-
tivity against SARS-CoV-2 [91]. Studies reported that the inhibitory activities of hesperi-
din against SARS-CoV-2 are through its binding affinity to the protease domain, the ACE-
2 receptor-binding domain, and the spike glycoprotein receptor-binding domain 
[64,92,93]. Hesperetin binds to the receptor domain by inhibiting the attachment of SARS-
CoV-2 to the ACE-2 receptor [65]. Further study revealed that citrus hesperidin and hes-
peretin have the highest binding affinity to the SARS-CoV-2 receptors spike glycoprotein 

Figure 3. Effect of modified pectin (MP) associated with galectin-3 (GAL-3) during severe SARS-CoV-2 infection. Receptor
binding and adhesion: MP binds to the GAL-3 receptor to inhibit SARS-CoV-2 attachment and adhesion to the host cell
surface. During severe SARS-CoV-2 infection, the activation of T cell immune response through AKT and NF-KB/TLR4
pathways induces the release of GAL-3 and increase inflammatory cytokines such as interleukins (IL-1, IL-6, IL-8, IL-18)
in circulating macrophages and monocytes, resulting in a feedback loop that may contribute to the development of the
cytokine storm. This elevates the levels of TGF-ß and NF-KB, leading to pulmonary fibrosis. MP binds GAL-3 at the
initiation and/or activation of the immune response stage, epithelial membranes, endothelial, and enterocytes to inhibit
cytokine feedback and also prevents gastrointestinal tract (GIT) syndrome. GAL-3 inhibition by MP prevents or reduces the
release and/or levels of the inflammatory cytokines which contributes to preventing pulmonary fibrosis.
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4.2. Modified Pectin and Galectin-3 Response to the Cytokine Storm Effect

According to studies, cytokine inhibition is one of the best therapeutic methods for
COVID-19 depending on the stage of infection in the patient. It was further suggested that
therapies aimed at reducing hyper inflammation and lung damage should be administered
at the severe (pneumonia) stage [94,95]. Based on the human immune response against
SARS-CoV-2 infection, changes in T lymphocytes subsets (lymphopenia) accompanied
by the cytokine storm syndrome contribute to the progression of the disease and poor
prognosis. During this period, lymphopenia is commonly observed with an increase in
IL-6 and other inflammatory cytokines (pneumonia phase). Acute lung injury, high initial
viral titers, and macrophage/neutrophil build-up in the lungs are all symptoms of severe
SARS-CoV-2 infection, as well as a high level of pro-inflammatory cytokines such as the
interleukins IL-1, -6, -8, -18 and monocyte chemotactic protein-3 in the blood [96].

Patients with severe COVID-19 have significantly higher levels of GAL-3, tumor necro-
sis factor (TNF), IL-1, and IL-6 than those with moderate disease [97,98]. Furthermore,
GAL-3 regulates and possibly causes a dysregulated pattern of these pro-inflammatory
cytokine expressions during infection through the AKT signaling pathways [53]. Conse-
quently, the inhibition of GAL-3 greatly reduces the level of these cytokines, which suggests
that it could be useful in lowering the inflammatory consequences of COVID-19 [97,99].
Secreted GAL-3 produced by macrophages during injury promotes the upregulation and
elevated level of TGF-ß receptors, leading to pulmonary fibrosis (fibroblast activation),
observed to be one of the major complications of SARS-CoV-2 infection [100,101]. The inhi-
bition of GAL-3 has been shown to reduce adenovirus-induced lung fibrosis [102]. Thus, it
is worthwhile to investigate MP as a potential treatment through its GAL-3 inhibition for
pulmonary fibrotic-related diseases including severe cases in COVID-19.

The unique anti-inflammatory bioactivity of MP in humans being connected to the
sugar β-galactose-inhibiting cell signaling protein, GAL-3, is responsible for tumor cell
proliferation and metastasis [29]. This stimulates or modulates intestinal homeostasis
and also plays a role in immunological modulation [103]. Although GAL-3 inhibits the
inflammatory response of the intestinal system via the GALT, which modulates macrophage
signaling recruitment [104], it can as well bind to cell surface receptors to create a clustering
effect [57]. Consequently, a higher concentration of GAL-3 at this binding site activates
T cells with a possible evasion of the immune surveillance system. The initiation of MP
binding to GAL-3 in addition to the possible Neu5Ac interaction linked to the ganglioside
domain on the epithelial cell surface may inhibit the extracellular matrix interactions.

The RNA of SARS-CoV-2 has been presented in the gastrointestinal tracts and stool
samples of COVID-19 patients [105–107]. This implies that SARS-CoV-2 can infiltrate
enterocytes and serve as a virus reservoir [107]. It is noteworthy that a rising number of
SARS-CoV-2 patients have reported the possible indication of gastrointestinal symptoms
including diarrhea (2.0–10.1%), nausea and vomiting (1.0–3.6%), and abdominal pain
in COVID-19 patients [108,109]. Most of these patients infected with SARS-CoV-2 have
mild gastrointestinal symptoms and a good prognosis after the infection indicates that the
immune function is a strong defense against this virus. The SARS-CoV-2 binds to the ACE-2
receptors which are highly expressed on alveolar cells of the lungs, upper esophagus, and
stratified epithelial cells, as well as other cells such as absorptive enterocytes from the
ileum and colon, myocardial cells, and kidney proximal tubule cells [110]. This explains
why, in some cases, COVID-19 patients not only experience respiratory problems but also
disorders of the heart, kidneys, and digestive tract [111].

In our previous studies, we reported the initiation of MCP and adhesion of probi-
otic bacteria to specific receptors on the epithelial cell surface of the colon to inhibit the
extracellular matrix interactions of GAL-3 [17]. We further showed that MCP alginate
supplemented with a probiotic, Lactobacillus acidophilus ATCC 4356, significantly increases
fecal lactobacilli and improves the integrity of intestinal microbiota [25,112]. As a result,
the synthesized extracellular macromolecules also contribute to modulating the immune
response [113,114]. During the adhesion of microbiomes at the site, MCP modifies their
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functionality and physiological properties in the gut which causes the reduction and pre-
vention of GIT syndromes. The gut microbiome has a significant influence on systemic
and distant immune responses at the mucosal sites such as the lungs [115,116]. Certain
probiotic strains help prevent bacterial and viral infections such as gastroenteritis, sepsis,
and respiratory tract infections. The administration of certain strains of Bifidobacterium
and Lactobacilli aided the clearance of the influenza virus from the respiratory tract with
minimal inflammatory damage to the lung tissue [116]. This is influenced by the abil-
ity of the probiotic strains to modulate a systematic balance between pro-inflammatory
and anti-inflammatory immunoregulatory cytokines. In a randomized control trial study
conducted on upper respiratory tract-infected middle-aged patients, a probiotic with
Lactobacillus plantarum DR7 reduces plasma IFN-γ and TNF-α pro-inflammatory cytokines,
as well as stimulates the increases in IL-4 and IL-10 anti-inflammatory cytokines [117].

Further evidence has shown the influence of MCP on immunomodulatory activities
for the regulation of inflammatory cytokines. MCP upregulates the level of IL-4, an anti-
inflammatory cytokine in the spleen of treated BALB/c mice [24]. The stimulation of this
cytokine might be of particular relevance to COVID-19 patients in preventing complications
of acute respiratory distress syndrome. MCP inhibits MAP kinase activation, increases
the expression level of downstream target Bim (a pro-apoptotic protein), and induces the
cleavage of Caspase-3 in PC3 and Caspase-1.1 [118]. Its ability modulates the immune
response, T helper cells, pro-inflammatory cytokines (IL-17, IFN-γ, and TNF-α levels),
and anti-inflammatory cytokines (IL-4 and IL-10) [24]. MCP induces the Th1 T-helper
immune response in murine influenza vaccination and allergic asthma models [71,72]. This
selectively stimulates T cytotoxic and NK cell responses, as attributed to the presence of a
low degree of methyl esterification in MCP [27]. Pectin polysaccharides from natural plants
cell walls may modulate immunity against SARS-CoV-2 through the release of cytokines
such as TNF-α and IL-6, anti-inflammatory activity, and the increased phagocytosis of
macrophages. Additionally, they may achieve this through the production of nitrous
oxide, reactive oxygen species formation, and activation of signaling pathways including
Toll-like 4, type A hijacker receptor, NF-κB, and glucan receptor [119,120].

5. Conclusions and Future Directions

With the understanding that there is a global health emergency to curb the high
mortality and morbidity caused by COVID-19, the repositioning of drugs and alternative
therapies may be a new option for the treatment of SARS-CoV-2 infection. Evidence has
shown emerging MP as one of the most promising and naturally occurring anti-GAL-3
substances. A novel approach using a GAL-3 inhibitor highlights a potential therapeutic
target against SARS-CoV-2 infection. MP has shown the potential of the GAL-3 inhibitor
in disease progression and new benefits of this bioactive compound will continuously
be unraveled. The bioactive effect of MP against GAL-3 is a promising treatment target
against SARS-CoV-2 infection. However, it is important to mention that this would be a
new area of research that will help understand that MPs are likely to interfere with the
initial attachment of viral particles to the surface epithelium of the respiratory tract.

Despite evidence from numerous studies that MP inhibits various steps in cell–cell in-
teractions, fibrotic, renal injury, and cardiovascular diseases by interacting with GAL-3, the
details of the underlying mechanisms are still largely unknown. Although pectin-derived
galactan binds specifically to GAL-3, the precise structural characteristics responsible for
the optimal binding to GAL-3 causing pro-inflammatory mechanisms associated with
immune modulation remain unknown. As variants of SARS-CoV-2 are evolving, the virus
may switch in binding sites to new receptors, from the firstly known ACE-2 to newly
discovered ones as in the case of GAL-3. This implies that virus inhibitors at the attachment
and entry stage are key to mitigating SARS-CoV-2 replication in the host cell; hence, the
quick development of these inhibitors should suffice. Despite a few uncertainties, there
is a good level of tolerance with regard to the safety and non-toxic acceptance of MP oral
consumption, with evidence that dietary and citrus pectin polysaccharide RGI fragments
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have a positive effect and good prognosis on some viral infections in vitro. Its potential to
benefit COVID-19 patients by regulating the immune response system is a possibility yet
to be determined; hence, both in vitro and in vivo studies should be explored.
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