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Abstract: In the present study, a numerical bifurcation analysis is carried out in order to investigate
the multiplicity and the thermal runaway features of metallic and superconducting wires in a unified
framework. The analysis reveals that the electrical resistance, combined with the boiling curve, are
the dominant factors shaping the conditions of bistability—which result in a quenching process—and
the conditions of multistability—which may lead to a temperature blowup in the wire. An interesting
finding of the theoretical analysis is that, for the case of multistability, there are two ways that a
thermal runaway may be triggered. One is associated with a high current value (“normal” runaway)
whereas the other one is associated with a lower current value (“premature” runaway), as has been
experimentally observed with certain types of superconducting magnets. Moreover, the results of the
bifurcation analysis suggest that a static criterion of a warm or a cold thermal wave propagation may
be established based on the limit points obtained.

Keywords: superconductor stability; metallic wire; boiling; bifurcation analysis; thermal wave fronts;
thermal runaway temperature blow-up

1. Introduction

Superconducting coils/magnets that produce strong magnetic fields are in high de-
mand in contemporary cutting edge technologies such as MRI machines used in hospitals,
fusion reactors, NMR spectrometers and particle accelerators, to name a few [1–3]. Al-
though the zero resistance these coils/magnets provide is definitely very attractive, it is
not free of problems, with stabilization being among the most critical. Indeed practical
superconductors are susceptible to losing their superconducting ability after an increase
in temperature due to disturbances (i.e., a flux jump, conductor motion or temperature
rise of the boiling liquid coolant) close to the critical temperature—in which case a normal
conducting mode (quenching) is formed, where the resistance increases rapidly, causing a
destabilizing thermal process due to Joule heating. The concepts of the minimum length of a
normal zone and the minimum quench energy of a disturbance required for the growth of a
normal zone have been introduced in the analysis of the stability of superconductors [4–12].
Yet stability is not the only technological problem thus far encountered. Maeda and Yanagi-
sawa, in their review paper [13], described the difficulty in protecting the magnet in the
case of an abrupt thermal runaway as a technological challenge for the further development
of high temperature superconducting coils. Thermal runaway is believed to be the reason
for the electric faults in the 13kA circuits of the Large Hadron Collider in 2008, according
to Werweij [14] and Willering et al. [15]. Similar behavior has been encountered in super-
conducting devices, where during several experiments it was observed that the quenching
to a normal state of high temperature superconducting wires, tapes or films was followed
by the sample’s local destruction due to overheating, as reported by Rakhmanov et al. [16]
and Romanovskii and Watanabe [17]. Recently, Yanagisawa et al. [18] described a method
for suppressing a catastrophic thermal runaway of a REBCO coil of an NMR magnet.
Furthermore, recent advances in superconducting transistors (Rocci et al. [19,20]) suggest

J 2021, 4, 803–823. https://doi.org/10.3390/j4040055 https://www.mdpi.com/journal/j

https://www.mdpi.com/journal/j
https://www.mdpi.com
https://doi.org/10.3390/j4040055
https://doi.org/10.3390/j4040055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/j4040055
https://www.mdpi.com/journal/j
https://www.mdpi.com/article/10.3390/j4040055?type=check_update&version=1


J 2021, 4 804

that the non-linear, and especially the non-monotonic, temperature dependence of the
resistance observed may result in an even more complicated bifurcation pattern, including
limit cycles (Hopf bifurcation), as demonstrated by Elmer [21].

The stability of superconducting wires and the propagation of evaporating fronts on
electrically heated metallic wires share many common features, since they are both cooled
by a multi-boiling liquid and the heat generation mechanism is due to the current flow. The
latter has received considerable attention after the experimental work of Nukiyama [22].
A thin metallic wire may be used as the heating and sensing element at the same time,
and observations are even further facilitated, since the boiling phenomena take place
exclusively along the longitudinal axis. There is a considerable literature dealing with
boiling on wires. For example, Zhukov et al. [23,24] investigated the propagation of
boiling modes both theoretically and experimentally. A linear approximation of the boiling
heat transfer coefficient in the nucleate and film regimes, with an abrupt transition, was
utilized, which resulted in an analytical expression of the wave velocity. The experiments
were carried out with a platinum wire of 100 µm diameter in distilled water for various
orientations of the heating element and different degrees of subcooling. The complicated
structure of the nonuniform temperature field associated with the simultaneous presence
of all the boiling modes appearing on heat generating elements immersed in boiling
liquid has been addressed by Zhukov and Barelko [25]. Extensive experiments carried out
using electrically heated thin metallic filaments, controlling either voltage, current or the
element’s resistance, have shown that different nonuniform modes occur on the heated
surface. Moreover, estimates of the critical heat fluxes have also been given, together with a
thorough discussion of the uncertainties associated with the unstable region of the boiling
curve. Lee and Lu [26] investigated two-mode boiling on a horizontally heated wire for a
variety of boiling liquids and wire metals. A method for calculating the equilibrium current
and transition velocity was presented. Multiplicity and stability features of an electrical
wire cooled by radiation have been reported by Nivoit et al. [27].

In the present study, a numerical bifurcation analysis is carried out in order to investi-
gate the multiplicity features and the thermal runaway of metallic and superconducting
wires in a unified framework. The analysis reveals that the electrical resistance, combined
with the boiling curve, are the dominant factors for shaping the conditions of bistability,
which result in a quenching process or conditions of multistability that may lead to a
temperature blowup in the wire. An interesting finding of the theoretical analysis is that,
for the case of multistability, there are two ways a thermal runaway may be triggered. One
is associated with a high current value (“normal” runaway), whereas the other is associated
with a lower current value (“premature” runaway), as has been experimentally observed
with certain types of superconducting magnets. Moreover, the results of the bifurcation
analysis suggest that a static criterion of a warm or cold thermal wave propagation may be
established based on the limit points obtained.

2. Analysis

The one dimensional energy balance on a wire cooled by a multi-boiling fluid takes
the form:

γCA
∂T
∂t

=
∂

∂X

(
KA

∂T
∂X

)
− PH(T − T∞) + Aqg (1)

with Neumann boundary conditions:

∂T
∂X

∣∣∣∣
X=0

=
∂T
∂X

∣∣∣∣
X=L

= 0 (2)

A is the cross sectional area, P is the perimeter, γ is the density, C is the heat capacity,
K is the thermal conductivity, qg is the internal heat generation rate per unit volume
due to the transport current and H is the boiling heat transfer coefficient. Introducing
dimensionless variables:
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x = X/L, τ = αt/L2, Θ =
T − T∞

Tref − T∞
, h = H/Href, k = K/Kref, c = C/Cref (3)

the temperature distribution along the wire takes the form:

c
∂Θ
∂τ

=
∂

∂x

(
k

∂Θ
∂x

)
− u2(hΘ−Qg

)
(4)

The conduction–convection parameter (CCP) is defined as:

u2 =
HrefL2

Kref(A/P)
(5)

where Href = H(∆Tref) denotes the heat transfer coefficient at a reference temperature
difference ∆Tref. ∆Q is the dimensionless net heat flux, i.e., the difference between the
boiling heat flux and the internal heat generation heat flux:

∆Q = Qc −Qg = hrΘ−Qg (6)

2.1. Metallic Wire

The application of a DC current I produces an internal heat generation rate Metaxas [28]:

qg = ρ̂(I/A)2, (7)

where ρ̂ is a temperature dependent electrical resistivity. The dimensionless heat generation
rate may then be expressed as:

Qg = Gρ(Θ), (8)

where the generation number G is defined as:

G =
I2

AP

(
ρ̂

H∆T

)
ref

(9)

2.2. Steady State

Under steady state conditions, the partial differential equation, Equation (4), reduces
to a second order ordinary differential equation for the temperature distribution:(

k Θ′
)′

= u2∆Q, 0 < x < 1, (10)

with corresponding dimensionless boundary conditions:

Θ′(0) = Θ′(1) = 0, (11)

where Θ′′ and Θ′ represent the second and the first derivatives with respect to x. It
can be seen from Equation (10) that the dimensionless temperature Θ and its derivative
Θ′ will be a function of the wire’s position and in addition will depend on the reduced
current and the conduction–convection parameter. A simple, albeit generalized, boiling
heat transfer coefficient based on a smoothed Heaviside function has been adopted, from
Speetjens et al. [29]. In this way, the main features (i.e., the critical and minimum heat
flux) of a typical boiling curve are retained and, at the same time, smooth and continuous
derivatives may be obtained up to any desired order, which is an essential requirement
for numerical accuracy and stability. Moreover, the analysis remains general and is not
confined to a particular working fluid.
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2.3. Wave Fronts

Equation (1) admits travelling wave solutions connecting two different uniform solu-
tions of ∆Q = 0. Introducing a different parameterization:

z = X/
√

A, τ = αt/A (12)

since now the length of the wire is considered to be in the region (−∞, ∞), the energy
balance takes the form:

c
∂Θ
∂τ

=
∂

∂z

(
∂Θ
∂z

)
− Bi∆Q (13)

where Bi = P(H/K)ref is the Biot number. Travelling wave solutions will be of form,
Θ(z, τ) = Θ(z− υτ) and substituting ξ = z− υτ in Equation (13) yields:(

k Θ′
)′
+ υc Θ′ − Bi∆Q = 0 (14)

The primes now denote differentiation with respect to ξ and the front profile will
depend on G and Bi. The travelling wave solution is subjected to the below boundary
conditions:

lim
ξ→±∞

(
Θ, Θ′

)
= (Θ±, 0) (15)

where Θ± are two zeros of ∆Q = 0.

2.4. Stability

The stability of a certain steady state Θs(x) to small perturbations ϑ(x), i.e.:

Θ(x, τ) = Θs(x) + ϑ(x) exp(λτ) (16)

is determined by the eigenvalues λ of the corresponding Sturm–Liouville problem after substi-
tuting Equation (16) into the original partial differential equation, Equations (10) and (11):(

kϑ′
)′
+ kΘΘ′sϑ′ −

[
u2∆QΘ + cλ− kΘΘΘ′s2 − kΘΘ′′s

]
ϑ = 0, 0 < x < 1 (17)

with corresponding boundary conditions, ϑ′(0) = ϑ′(1) = 0. During branch tracing,
for every steady state that has been calculated from Equations (10) and (11), the associ-
ated Sturm–Liouville problem, Equation (17), is subsequently numerically solved and a
sufficient number of eigenvalues are determined. Stable solutions are characterized by
negative eigenvalues, whereas positive eigenvalues correspond to unstable temperature
distributions.

2.5. Superconducting Composite Wire

For the superconducting composite wire the usual approximation is being employed,
following Bellis and Iwasa [8]. With the aid of the previous definitions, the dimensionless
variables it may be expressed as below:

Qg =


0 Θ ≤ Θcs

Gρ Θ−Θcs
Θc−Θcs

Θcs ≤ Θ ≤ Θc

Gρ Θ ≥ Θc

(18)

where Θc is the critical temperature at I = 0 and Θcs is the temperature at which current
sharing starts. The thermal conductivity and the heat capacity in Equation (4) represent
average properties of the metal matrix and the superconductor since the composite struc-
ture of the wire has be taken into account. Furthermore, the generation number is defined
similarly to Equation (9) as:

G =
I2

f AP

(
ρ̂

H∆T

)
ref

(19)
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3. Results, Applications and Discussion

The second order, two-point boundary value problem described by Equations (10) and (11)
has been solved numerically. Continuation along the various branches has been carried
out along the lines suggested by Seydel [30]. For the computation of the singular points,
an extended problem is formed by the partial derivatives of Equations (10) and (11) with
respect to the parameters, according to Witmer et al. [31]. The continuous and smooth
boiling curve enables the numerical calculation of both monotonic and oscillating fronts
from the boundary value problem of Equation (14). Practically, we are seeking a truncated
heteroclinic orbit on a finite interval, since it will take an infinite amount of time for a
particle to follow the ideal trajectory moving from one uniform solution to the other. Since
the heteroclinic orbit enters or leaves the uniform solutions tangentially to the eigenspaces,
the truncated orbit should start and end close to the corresponding eigenspaces related to
the saddles Θ±. Thus, certain free parameters are introduced that measure the distances
of the starting and ending points of the approximate orbit with respect to the saddles,
following Beyn [32] and Friedman and Doedel [33]. In this way, an extended boundary
value problem is solved for the determination of the wave profile and its speed. Because the
problem is by no means trivial, and in order to avoid spurious wave fronts, an additional
solution methodology is applied. The integration is started close to the unstable manifold
of Θ− from the left side of the interval and close to the stable manifold of Θ+ from the
right side of the interval, matching the temperature and its first and second derivatives
from each side at an interior point, say ξ = 0. The continuity of the wave profile at the
matching points provides three nonlinear algebraic equations by which the wave speed
and the temperature at the edges of the interval are determined.

3.1. Metallic Wires

The problem of a boiling wire is very similar to the problem of boiling on extended
surfaces (fins) with internal heat generation and flat plates (Krikkis [34,35]), with the
notable exception of the boundary conditions; i.e., only the heat dissipation from the wire’s
surface area is important and the tips are assumed to be insulated. Again, a very large
number of solutions exist, as is depicted in Figure 1, in which the projection of the singular
points (limit points and pitchfork bifurcation points, as will be explained next) on the
(u, G) plane is shown. The boundary conditions have a profound effect, since the solution
structure is radically different compared to the nested cusp points calculated for the boiling
fin case [34]. Multiple steady states are confined within specific values of the generation
number G, and as the conduction-convection parameter increases the number of solutions
increases as well. Up to nine multiple solutions are calculated in Figure 1. For the particular
boiling flux and electrical load curves under consideration, the multiple solutions are
contained within a range of generation number values with a lower limit of G ≈ 0.25 and
an upper limit of ≈ 0.99. This may be explained in terms of the behavior of the uniform
solutions of Equation (10), i.e., Θ′ = Θ′′ = 0, Θ(x) = const, determined by the zeros of
the net heat flux:

∆Q = Qc(Θ)−Qg(Θ, G) = 0 (20)

which are graphically depicted in Figure 2. As long as the generation curve Qg(Θ, G)
remains below the minimum heat flux point M2 Θ = 1.62, Qc = 0.25, only one intersection
point between Qg and Qc exists, say Θu1, and Equation (10) has one solution. Similarly,
when Qg lies above the critical heat flux point M2 (Θ = 0.60, Qc = 1.00), only one inter-
section point Θu3 exists and consequently a unique solution exists. For intermediate values
of the generation number, three uniform solutions exist: Θu1, Θu2 and Θu3. It should be
pointed out that even if Equation (20) has three solutions, Equation (10) may have more
solutions as u increases because of the diffusion term in Equation (10).
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In order to describe the solution structure, Θe = Θ(0) is selected as a measure of
Θ(x). The corresponding bifurcation diagram is an S-shaped curve and is presented
in Figure 3 for u = 1. Up to three uniform solutions exist, corresponding to the three
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boiling modes—nucleate (stable), transition (unstable) and film (stable)—which are marked
with a continuous and dashed line accordingly. Two limit points calculated from the
below relationship:

(∂Θe/∂G)u = 0 (21)

separate the stable and unstable branches. As CCP is increasing, the number of multiple
solutions increases and the solution pattern becomes more complex, as shown in Figure 4.
For u = 3, a separate (and unstable, as it will be shown later) closed branch appears, which
emanates from the intermediate unstable transition boiling branch through two pitchfork
bifurcation points. A further increase to the CCP results in additional nonintersecting
nested branches, as presented in Figure 5. It is worth mentioning that this structure is very
similar to the one calculated by Speetjens et al. [29] for a two dimensional thick plane heater
in pool boiling. The projection of the limit points and the pitchfork bifurcation points on
the (u, G) plane is the abstract result presented in Figure 1.
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Seven out of the total nine temperature distributions along the wire’s length are demon-
strated in Figure 6 for G = 0.46 and u = 8 (the smallest index is associated with the smallest
tip temperature), which are in qualitative agreement with the ones calculated by Kovalev
and Usatikov [36] for water. In addition to the three uniform solutions Θ1(x) = Θu1,
Θ4(x) = Θu2 and Θ7(x) = Θu3, symmetric (with respect to x = 0.5) non-uniform solutions
in the form of standing waves exist, Θ3 and Θ5, together with antisymmetric ones, i.e., Θ2
and Θ6. Of particular interest are the solutions in which all three modes (film, transition
and nucleate FTN) are simultaneously present along the wire length: i.e., temperature
distributions Θ2 and Θ6. This coincidence is indicated in Figure 7 for the solution Θ2(x),
where, as the conduction–convection parameter u increases, the wire tip is almost attached
to the uniform temperature Θu1, corresponding to the nucleate mode, whereas the base
temperature is close to Θu3, which corresponds to the film mode. Moreover, with increasing
u the nucleate regime gradually displaces the film regime and the transition zone becomes
shorter (i.e., its length is inversely proportional to the CCP). The terminal characteristics of
the wire may be obtained from Ohm’s law:

ρ̂j =
dΦ
dX

(22)

where Φ is the electric potential. Utilizing the dimensionless variables in Equation (3)
and introducing a dimensionless electric potential φ = Φ/Φref with Φ2

re f = (ρ̂K∆T)ref,
the voltage drop across the wire is then obtained by integrating Equation (22) along the
wire for the temperature profiles that have already been calculated from the solution of
Equations (10) and (11):

∆φ = u
√

G
1∫

0

ρ(Θ)dx (23)
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Figure 6. Wire temperature distributions for G = 0.46 and u = 8.
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Figure 7. Wire temperature profiles Θ2(x) as a function of u for G = 0.46.

The results are depicted in Figure 8 for u = 3 and are in qualitative agreement with
the measurements taken by Zhukov and Barelko [25], presented as an insert in the same
figure for convenience. Because of the integral in Equation (23), the two antisymmetric
solutions collapse onto a single curve; i.e., the wire resistance will be same.
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3.2. Quench, the Destruction of Bistability and Thermal Runaway

The combination of the high temperatures involved in the film boiling regime with a
particular wire resistance curve is depicted in Figure 9. In such a case, as the temperature
increases the gradient of the electrical current flux will exceed the gradient of the boiling
curve and a fourth (unstable) intersection point will appear; i.e the equation ∆Q = 0 has
four zeros. The solution structure for low to moderate temperatures, say Θe < 2, appears
to be similar to the case with three uniform solutions; however, the length of the upper
stable branch is significantly reduced and an additional limit point appears, followed by
an unstable branch at higher temperatures, as shown in Figure 10. At this point, it is
interesting to return to Figure 5 and discuss the mechanism of transition between two
stable solutions. Assuming that the wire is operating at the nucleate regime, as the applied
current increases the operating point moves along the red arrows. As soon as the current
exceeds the value of the low temperature limit point, i.e., G > GLP1, the operating point
will jump to the upper branch of the stable film boiling regime through a wave front
mechanism described in Section 2.3; i.e., a warm (film) zone (or mode) will propagate
along the wire axis and replace the prevailing cold one (nucleate). This mechanism is also
referred to as an autowave by Zhukov et al. [23,24] and a switching wave by Gurevich and
Mints [7]. Similarly, when the wire is operating in the film boiling regime and the applied
current is decreasing, the operating point will move along the direction of the green arrows
up to the high temperature limit point. With further reduction of the current below the
limit point, G < GLP2, a low temperature (nucleate) operating point will be established,
as the wave front will gradually replace the film boiling mode by the nucleate one. Thus,
from the practical point of view the two limit points represent a static criterion of a warm
zone propagation if the generation number exceeds the low temperature limit point, and a
cold zone propagation if the generation number is reduced below the high temperature
limit point. The propagation of zones may be also represented with the aid of Figure 1,
where the limit points GLP2 and GLP1 define the multiplicity area. Following a vertical path
of constant conduction–convection parameter u for increasing or decreasing current, the
state of the system will change from film to nucleate boiling (or vice versa) as soon as the
corresponding limit points are encountered.
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Figure 10. Solution structure at higher temperatures and thermal runaway.

Now, a closer look at Figure 10 reveals that no such switching mechanism exists
between the stable states. Indeed, starting from an operating point in the nucleate regime,
as the current increases the wire temperature will follow the red arrows up to the limit point.
However, beyond the lower temperature limit point, that is, for G > GLP1, no solution
exists. This is of paramount practical importance, because if the operating current during
a transition or fault exceeds this limit point, Equation (4) can exhibit unbounded growth
in a finite time—that is, a thermal runaway or temperature blow-up. This phenomenon
has been discussed qualitatively by Gurevich and Mints [7] and rigorously by Bandle
and Brunner [37]. An engineering application for current leads for superconducting
magnets has been presented by Krikkis [38]. In that case, however, the solution structure
is much simpler, since only two solutions exist. This is because the heat dissipated by
the conduction and boiling can no longer match the heat generation rate produced by
the applied current (Joule heating). It is worth mentioning that the thermal runaway is
also encountered in everyday life, when for instance, in a common switchboard during
a short-circuit (i.e., an overcurrent) a fuse or even a group of cables may be burnt out
before the safety relays are activated. Therefore for such a combination of boiling curve
and wire electrical resistivity, the low temperature limit point GLP1 is also the threshold
for thermal runaway. This is better demonstrated with the numerical blow-up solution of
Equation (4) shown in Figure 11. Starting from a uniform steady state with G(τ = 0) = 0.3
and Θ(x, τ = 0) = 0.131, the generation number G(τ) is subjected to a step-like change
(see the insert in Figure 11). It is worth noticing that during the transition the temperature
profile remains uniform in x. As soon as the lower limit point GLP1 = 0.937 is exceeded, the
unbounded growth in the temperature is clearly evident in Figure 11. Another feature of
the smooth and continuous boiling curve worth mentioning is that it enables the numerical
calculation of the monotonic (stable) and oscillating (unstable) wave fronts that connect
the various uniform steady states, as shown in Figures 12 and 13, respectively. A notation
similar to that used by Dabholkar et al. [39] has been adopted in the description of the
fronts; i.e., υ12 refers to the travelling wave speed connecting uniform states 1 and 2.
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Figure 11. Temperature blow-up for a step-like change in the generation number.
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Figure 13. Oscillating wave fronts.

3.3. Stability

Stable solutions are designated with a continuous line and unstable solutions with
dashed lines in the relevant diagrams. Solutions emanating from the transition boiling
regime and belonging to the inner branches are highly unstable, since they are associated
with two positive eigenvalues. Two uniform stable solutions corresponding to the film and
nucleate boiling modes have been calculated, while the remaining ones are unstable. The
instability of all the non-uniform states for an exactly solvable, closely related problem
has been proved by Bedeaux and Mazur [40] (and the references therein). The convec-
tive heat transfer coefficient was assumed to be temperature independent, whereas the
conductor’s resistivity was modeled as a step function between zero and finite resistance,
representing the superconducting and the normal state, respectively. Elegant proofs of
the instability of standing wave solutions to a similar problem regarding simultaneous
heat and mass transfer on a wire have been presented by Luss and Ervin [41], based on
topological arguments, and by Jackson [42], who employed Sturmian theory for ordinary
differential equations. Epitomizing the performance of the model, consistent temperature
profiles and terminal (voltage–current) characteristics as compared with the experimental
measurements may be obtained. Moreover both monotonic and oscillating wave front
solutions may be calculated. Arguing on such grounds, it is reasonable to conclude that the
stability features are consistent as well. However, in such a case, how does one reconcile
the stability results with the experimentally observed multi-boiling modes? The answer
appears to lie in recognizing the profound effect of the CCP on the positive eigenvalue,
which is responsible for the instability. Referring to Figure 14, the eigenfunction expansion
of an FTN mode (i.e., solutions Θ2 and Θ6 in Figure 6) and in particular the magnitude of
the of the positive eigenvalue, say λ1, has been calculated as a function of the generation
number and the CCP. As u is increases, there is a substantial reduction in the magnitude
of λ1 (roughly two orders of magnitude) in a very confined zone around G ∼= 0.45 (i.e., a
“deep well”) that is related to the so called “equilibrium current”. For a typical wire of
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length 100 mm and diameter 1 mm used in experiments, u > 10, as λ1 approaches zero it
will take a long time before the exponential term in Equation (16) becomes significant, and
the solution may be physically realizable before it is destabilized. Consequently, only the
uniform solutions are stable, in contrast to the stable multi-mode boiling on fins.
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Figure 14. The positive eigenvalue λ1 as a function of u.

3.4. Superconducting Composites

The case of superconducting wire is quite similar to the case of metallic wire, and the
results are summarized in Figure 15. When three uniform solutions exist, as in Figure 15a,
the steady state solutions are bistable. Two stable and uniform solutions corresponding
to the nucleate and film boiling regimes exist among several unstable steady states. The
number of the unstable states depends on the value of the CCP. Starting from the lower
stable branch and gradually increasing the current (along the red arrows in Figure 15b), a
series of stable states may be obtained up to the limit point GLP1. Beyond this point, any
increase in the current will cause a jump to the upper steady state of higher temperature,
resulting in a quench. No thermal runaway is possible with this solution structure.



J 2021, 4 818J 2021, 4 FOR PEER REVIEW  17 
 

(a) Three uniform solutions 

 

(b) Quench 

 
(c) Four uniform solutions 

 

 

(d) Thermal runaway, temperature blowup. 

 
Figure 15. Superconducting composite. Quench, the destruction of bistability and thermal runaway. 

0.00 0.2 0.4 0.6 0.8 1 2 4 6 8 10
0.00
0.06
0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

Θu1

Θu2

Θu3

 Qc
 Qg

G = 0.9
M2

M1

Q
c ,

  Q
g

reduced temperature  Θ

bistability
quench

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.00
0.01

0.04
0.06
0.08

0.2

0.4
0.6
0.8

1

2

4
6
8

20

GLP2

GLP1

      u = 7
 stable
 unstable

 limit points
 pitchfork bifurcation points

re
du

ce
d 

te
m

pe
ra

tu
re

  Θ

G

0.00 0.2 0.4 0.6 0.8 1 2 4 6 8 10 20
0.00
0.06

0.2

0.3

0.4
0.5
0.6
0.7
0.8
0.91

2

3

Θu4

Θu3

Θu2

Θu1 G = 0.55

 Qc
 Qg

M2

M1

Q
c ,

 Q
g

reduced temperature Θ

multistability
thermal runaway

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.00
0.01

0.04
0.06
0.08

0.2

0.4
0.6
0.81

2

4
6
8

20

GLP3

GLP2

GLP1

thermal runaway thermal runaway

      u = 5.5
 stable
 unstable

 limit points
 pitchfork bifurcation points

re
du

ce
d 

te
m

pe
ra

tu
re

  Θ
G

Figure 15. Superconducting composite. Quench, the destruction of bistability and thermal runaway.
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As the number of uniform solutions increases from three to four, as shown in Figure 15c,
the solution structure at higher temperatures changes radically, because the resistivity is a
stronger function of the temperature. The stable branch observed in Figure 15b has been
substantially reduced and an additional limit point, GLP3, appears at a higher temperature
but at a lower current. Consequently, the bistability is progressively destroyed and replaced
by multistability. The solution structure imposed by the multistability is prone to thermal
runaway if the applied current exceeds the values of the corresponding limit points, either
on the lower or on the upper stable branches, as shown in Figure 15d. This process is
referred to as “normal” runaway by Maeda and Yanagisawa [13].

Let us now try to explain the phenomenon of “premature” runaway, which has been
experimentally observed by Maeda and Yanagisawa [13], within the framework of the
bifurcation analysis presented thus far. For this reason, the net heat flux, Equation (20), is
modified with an energy term to take into account a local disturbance:

∆Q = Qc(Θ)−Qg(Θ)−Qd(x) (24)

The disturbance is modeled by a cutoff Gaussian function centered at the middle of
the wire, xm = 0.5:

Qd(x) = D exp
[
−(x− xm)

2/w2
]

(25)

where D is the disturbance strength. The effect of the disturbance on the solution structure
is shown in Figure 16, where the unstable non-uniform solutions have been suppressed
for clarity. As the strength of the disturbance increases, all the limit points shift in the
direction of lower current. Consequently, when an operating point G < GLP1 with Qd = 0
at say τ = 0 has been established and a disturbance appears at τ > 0 then the new
limit point GLP1 corresponds to a lower current, and at the same time the applied current
remains fixed. Under these conditions, thermal runaway is possible if the disturbance
strength is sufficient to reduce GLP1 below the operating current value, as is schematically
shown in Figure 16. The numerical solution of Equation (4) depicting this temperature
blow-up is shown in the same figure as an insert. It should be pointed out that for the
case without disturbance, the limit points may easily be calculated algebraically, requiring
simultaneously the intersection points to be tangential contact points as well, i.e.:

∆Q = 0
d∆Q
dΘ = 0

}
(26)

When a local disturbance Qd(x) is present, no uniform solutions exist, since ∆Q is
now a function of the wire’s temperature and position. Therefore the limit points must
be calculated from the solution of the extended boundary value problem defined by
Equations (10) and (11), as was described by Seydel [30] and Witmer et al. [31].

Is the “premature” runaway predictable after all? To the extent that a quantitative
description (or at least an estimate) of the disturbance is available, then as it is demonstrated
in the present study, singularity theory (Golubitsky and Scaeffer [43]) may be employed
for the calculation of the new limit points (i.e., Figure 16), which determine the new
runaway threshold.
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4. Conclusions

A complete picture of the solution structure is presented for metallic and supercon-
ducting wires stabilized in a multi-boiling liquid utilizing a generalized heat transfer
coefficient and a one dimensional conduction-convection model with Newmann boundary
conditions. Multiple steady states together with its stability characteristics, travelling wave
solutions and temperature blowup have been calculated.

The conduction along the wire substantially affects the solution structure especially at
higher values of the conduction-convection parameter, since more solutions may exist than
the roots of the corresponding uniform states defined by ∆Q = 0. For the bistability case,
the two limit points corresponding to nucleate and film boiling regimes comprise a static
criterion of the propagation a warm zone if the applied current exceeds the low temperature
limit point, and a cold zone if the current is reduced below the high temperature limit point.

Furthermore, the analysis reveals that the electrical resistance combined with the
boiling curve are the dominant factors shaping the conditions of bistability—which result in
a quenching process—or the conditions of multistability—which may lead to a temperature
blowup in the wire. An interesting finding of the theoretical analysis is that for the case of
multistability there are two ways a thermal runaway may be triggered. One is associated
with a high current value, whereas the other one is associated with a lower value, as has
been experimentally observed for certain types of superconducting magnets.
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Nomenclature

A cross sectional area [m2]
Bi Biot number [-]
c (C/Cref) reduced specific heat capacity [-]
C specific heat capacity [J/(kgK)]
D disturbance strength [-]
f volume fraction of normal metal [-]
G generation number [-]
h (H/Href) reduced heat transfer coefficient [-]
H heat transfer coefficient [W/(m2K)]
I applied current [A]
j current density [A/m2]
k (K/Kref) reduced thermal conductivity [-]
K thermal conductivity [W/(mK)]
L conductor length [m]
P perimetry [m]
qg internal heat generation rate per unit volume [W/m3]
Qg reduced internal heat generation rate [-]
Qc (hrΘ) reduced boiling heat flux [-]
t time [sec]
T temperature [K]
x (X/L) dimensionless distance along wire [-]
X distance along wire [m]
u conduction-convection parameter [-]
υ dimensionless front velocity [-]
w disturbance width parameter [-]
z longitudinal co-ordinate [-]
Greek Symbols
α thermal diffusivity [m2/s]
∆Q

(
Qc −Qg

)
reduced heat flux difference [-]

∆T (T − T∞) temperature difference [K]
Θ [(T − T∞)/(Tref − T∞)] dimensionless temperature [-]
Θc critical temperature at I = 0 [-]
Θcs temperature where current sharing starts [-]
Θn−t knot temperature connecting nucleate and transition regimes [-]
Θt− f knot temperature connecting transition and film regimes [-]
λ eigenvalue [-]
ξ (z− υτ) dimensionless co-ordinate [-]
ρ (ρ̂/ ˆρref) reduced electrical resistivity [-]
ρ̂ electrical resistivity [Ω m]
τ dimensionless time [-]
φ (Φ/Φref) reduced electric potential [-]
Φ electric potential [V]
Subscripts
b base (x = 1) b
e tip (x = 0) e
LP reference to limit points LP
ref reference value ref
s steady state s
u reference to uniform solutions u
∞ ambient boiling liquid ∞
Superscripts
(′) derivative with respect to x or to ξ

Abbreviations
CCP Conduction-Convection Parameter
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