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Abstract: Dirac materials and their advanced physical properties are one of the most active fields of
topological matter. In this paper, we present an ab initio study of electronics properties of newly
designed LaXS (X = Si, Ge, Sn) tetragonal structured ternaries, with the absence and presence of
spin–orbit coupling. We design the LaXS tetragonal non-symophic p4/nmm space group (no. 129)
structures and identify their optimization lattice parameters. The electronic band structures display
several Dirac crossings with the coexistence of both type I and type II Dirac points identified by
considering the effect of spin–orbit coupling toward the linear crossing. Additionally, we perform
the formation energy calculation through the density functional theory (DFT) to predict the stability
of the structures and the elastic constants calculations to verify the Born mechanical stability criteria
of the compounds.

Keywords: Dirac point; topological semimetal; first-principles; band structure; formation energy;
elastic properties

1. Introduction

Adding topological insulators and topological semimetals beyond conventional in-
sulators, metals, semimetals, and semiconductors expands quantum matter towards a
new era. The nontrivial topology of electronic band structure of these distinct materials
highlights exotic physical properties such as ultra-high mobility and extremely large, lin-
ear magneto-resistances [1]. Topological insulators exhibit gap-less, conducting surface
states [2,3] while topological semimetals (Dirac semimetals, Weyl semimetals, and nodal
line semimetals) exhibit band crossings in momentum space which are inverted beyond
the crossing point (or line) [4–6]. In Dirac materials, linearly dispersed conduction and
valence bands touch each other at single, discrete points near Fermi energy in momentum
space. Those linearly dispersed band crossings are protected by topological invariants
and the symmetries of the material’s crystalline space group. To describe the mass-less
high mobility electrons behaviors of this unusual band dispersion require relativistic Dirac
description contrasts to the usual non-relativistic Schrödinger description employed in the
usual set of bulk electronic materials.

After the first discovery of Dirac band dispersion in graphene [7,8], the search for Dirac
materials was extended to three-dimensional (3D) materials [9–11]. After experimental
realization of symmetry protected 3D Dirac cones in both Cd3As2 and Na3Bi by using
angle-resolved photo-electron spectroscopy (ARPES) [12–15], many different materials
that host Dirac behaviors are predicted theoretically and verified experimentally. Among
them Dirac semimetal behavior in Na3Bi and Cd3As2 [1,9,12–14,16–20], Weyl semimetal
behavior in TaAs, TaP, NbAs [21–27], and nodal line semimetal behavior predicted in
Cu3PdN, Ca3P2, CaP3, PbO2, CaAg, TiB2, CaAgAs, ZrB2, SrSi2 [10,28–35] and realized
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in PbTaSe2, PtSn4, ZrSiS, ZrSiSe, ZrSiTe, HfSiS, and ZrSnTe [27,36–43] are to name but a
few examples.

By considering the slope of a linear band dispersion at the crossing point, Type I
and Type II Dirac points can be identified. Type I points straighten in respect to energy
with having equal and opposite slopes of the bands, while type II point tilted with having
unequal slopes of the bands [44–46]. The concept of non-symmorphic symmetry plays
an important role for identifying new types of Dirac cones as suggested by Young and
Kane [47]. With the interest of searching materials belonging to non-symmorphic space
groups, ZrSiS [42] was discovered and realized experimentally, and followed by ZrSiSe,
ZrSiTe, HfSiS, and ZrSnTe [36,39,40,43].

In this work, a detailed study of the electronic band structures and density of states
(DOS) of new ternary LaXS (X = Si, Ge, Sn) compounds belong to non-symmorphic space
group is presented. To the best of our knowledge, these compounds have not yet been
reported. In this paper, we report calculated electronic structures of LaXS after following
carefully detailed volume optimization scheme for tetragonal structure to minimize the
energy. We predict the formation of type I and type II Dirac crossings near the Fermi level.
With careful investigation of electron bands and DOS features with and without inclusion
of SOC effect, topological features are identified and discussed in detail. Most importantly,
we identify type II Dirac crossings along Γ − M plane and a few crossings belong to type I
along R − Γ − X − Z path. Three compound’s DOS and band structure with and without
SOC effect are calculated and compared. Additionally, elastic constants and formation
energy calculations are performed to verify the mechanical and structural stability of the
new compounds.

2. Computational Method

First principal density functional theory (DFT) calculation were performed mainly
using the Quantum ESPRESSO (QE) simulation package [48,49]. The plane-wave pseudo-
potential method formulated with generalized gradient approximation (GGA) and the
Perdew-Burke-Ernzerhof (PBE) scheme has been used with the ultra soft pseudo-potentials
from PSlibrary, including fully relativistic ultra soft pseudo-potentials for spin–orbit cou-
pling (SOC) [50–55]. We used the k-mesh of 20 × 20 × 20, kinetic energy cutoff for wave
functions of 80 Ry and kinetic energy cutoff for charge density and potential of 480 Ry
with checking extreme convergence of energy and charge to increase the accuracy of the
simulation. Additionally, WEIN2K simulation package by using PBE pseudo-potentials
and plane-wave basis set with GGA is used to compare and verify the QE results [56,57].
ElaStic software package interfaced with QE, a tool to calculate the full second order elastic
stiffness tensor, has been used to calculate elastic properties [58]. The elastic tensor of
second order is calculated by using the expansion of the elastic energy in terms of the
applied strain and the best polynomial fits.

3. Results and Discussion
3.1. Crystal Structure

Electron configurations of La, Si, Ge, Sn and S are [Xe] 5d1 6s2, [Ne] 3s2 3p2, [Ar] 3d10

4s2 4p2, [Kr] 4d10 5s2 5p2, and [Ne] 3s2 3p4, respectively. The La-d orbitals, X (Si, Ge, Sn)-p
orbitals, and S-p orbitals are not fully occupied. The LaXS compounds are designed with
tetragonal lattice structure with non-symmorphic space group symmetry of 129 (P4/nmm),
by using data available for ZrSiS in Material Project [59]. The crystal structure of LaXS is
consisting of S-La-X-La-S layers and held together weakly by van-der-Waals forces. There
is a cleavage plane between the layers and belong to square-net materials [60]. The LaSiS
structure is shown in Figure 1a. The other two structures, LaGeS and LaSnS, are the same
by replacing Si with Ge and Sn, respectively. The Si, Ge, and Sn represented in blue are
at top square net layer, the red La atoms are in hollow layer, and the green S atoms are in
the next layer, and so on. The first Brillouin zone (BZ) of the structure shows in Figure 1b
with the high symmetric points on the Brillouin zone (BZ) with Γ(0, 0, 0) point located



J 2021, 4 579

at the center. The calculated Fermi surfaces displays in Figure 1c by indicating diamond
shape interior Fermi surface with extended multiple Fermi pockets outward within the BZ.
The crystal momentum in units of k = (π/a, π/a, π/c) is used throughout the discussion
unless otherwise specified.
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Figure 1. (Color online) Structure of bulk LaSiS. Panel (a): Crystal structure of LaSiS. The a, b, and c show the real space
lattice vectors. The blue, red, and green solid spheres denote the Si, La, and S atoms, respectively. Panel (b): Bulk primitive
BZ. The kx, ky, and kz show the reciprocal lattice vectors. The black dots displays the high symmetry points of the BZ with
labeling Γ(0, 0, 0), M(0.5, 0.5, 0.0), X(0, 0.5, 0), R(0, 0.5, 0.5), and Z(0, 0, 0.5). Paths labeled in blue display the k-path selection
for the calculations. Panel (c): Fermi surface of LaSiS bands. Panel (d): Volume optimization of LaSiS Structure. Main graph
displays the volume optimization for lattice parameter a (data points represented in black solid circles and third order
polynomial plot represented in red dotted lines) and the inset displays the volume optimization by choosing c/a ratio (data
points represented in blue solid circles and third order polynomial fit represented in blue dotted lines).

3.2. Volume Optimization

The volume that has the lowest total energy is identified as the ground state volume
of the stable structure. Therefore, the first step is to optimize the crystals and find the
volume that has the lowest total energy. In our calculations, we performed the geometry
optimizations of the unit cell by using following scheme. First, the total energy has been
calculated for different volumes of crystal structure by changing the lattice parameter
a and by keeping the same c/a ratio. After taking the optimized volume, we calculate
the total energy for different c/a ratios by keeping the same optimized volume in the
above step. By varying these parameters until reaching the minimum of energy, we have
performed detailed structural optimizations of the unit cell geometries as a function of the
external stress and strain. The final volume optimizations graphs of LaSiS are presented in
Figure 1d. Volume is calculated as V = a2c since the structures are tetragonal. The data
points of the total energy as a function of a and c/a are plotted and fitted to third order
polynomials. After following detailed optimization procedure for the LaXS, we identify
the lattice parameters corresponding to the lowest energy structure as shown in Table 1.
We update the unit cell parameters retaining the same atomic coordinates for all three
compounds. Hence, the crystal structures at optimized bulk lattice parameters are used for
further investigation of LaXS properties during the project.
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Table 1. The calculated lattice constants a, c, and formation energies, E of LaXS compounds.

a (Å) c (Å) E (eV/atom)

LaSiS 3.7854 9.9782 −1.1898
LaGeS 3.8581 9.9772 −1.2830
LaSnS 4.0546 10.1559 −1.2089

3.3. Formation Energy

At thermal equilibrium, compounds that show negative formation energies with
respect to its elemental phases are stable. Therefore, to study the stability of the structures,
we have calculated the energy of formation for LaXS (X = Si, Ge, Sn) compounds. In
general, the formation energy per atom for ternary LaXS can be calculated as

ELaXS
f =

ELaXS − NLaELa − NXEX − NSES

NLa + NX + NS

=
ELaXS − 2ELa − 2EX − 2ES

6
, (1)

where NLa, NX , and NS are the numbers of La, X (Si, Ge, Sn), and S atoms in the unit cell,
respectively. Since the LaXS unit cell have two atoms of each element, NLa = NX = NS = 2
is taken. ELaXS is the calculated total free energy of the LaXS compound, and ELa, EX , and
ES, are the calculated total free energies per atom of the elemental phases of La, X, and
S, sequentially.

During total energy calculation of La, X, and S, we use optimized structures of
hexagonal space group 194 (P63/mmc) for La, face centered space group 227 (Fd3m) for
X, and monoclinic space group 13 (P2/c) for S. The calculation of formation energies of
LaXS are presented in Table 1. Using these formation energies, stable and competing
phases can easily be illustrated. By using Equation (1) the calculated formation energy for
LaSiS, LaGeS, and LaSnS are −1.1898 eV/atom, −1.2830 eV/atom, and −1.2089 eV/atom,
sequentially. Since all three compounds indicate negative formation energies with respect
to its elemental phases, we identify those structures are stable.

3.4. Elastic Properties

First principles density functional calculations were applied to extensively explore
the mechanical properties of the structures. The elastic constants are essential parameters
that can provide valuable information about crystal stability and stiffness together with
mechanical properties. The elastic stiffness matrix Cij or flexibility matrix Sij (= [Cij]

−1) is
used to calculate the bulk modulus, Young’s modulus, shear modulus, and Poisson’s ratio
of LaXS polycrystals by Voigt–Reuss approximation methods [58]. Average polycrystalline
modules (Hill’s average) are obtained by using the upper limit and lower limit of the actual
effective modulus correspond to Voigt bound and Reuss bound, which is said to be mostly
agreed with the experimental result [58].

A tetragonal structure is characterized by six independent non-zero elastic constants,
namely C11, C12, C13, C33, C44, and C66. The calculated elastic constants and effective bulk,
shear, and Young’s modules for LaXS are given in Table 2.
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Table 2. The calculated elastic constants (Cij), bulk modulus (B), shear modulus (G), Young’s
modulus (E) in units of GPa, and Poisson’s ratio (ν) for the LaXS compounds.

C11 C12 C13 C33 C44 C66 B G E ν

LaSiS 139.9 31.4 39.8 32.8 21.8 23.9 45.44 21.85 56.50 0.29
LaGeS 134.1 57.0 39.7 47.1 14.7 52.3 55.82 24.20 63.42 0.31
LaSnS 112.3 78.2 21.4 63.8 1.0 90.7 53.65 16.00 43.65 0.36

The elastic constants calculated for the tetragonal crystal should satisfy the following
mechanical stability criteria [61,62]:{

C11 > C12; 2C2
13 < C33(C11 + C12)

C44 > 0; C66 > 0,
(2)

where Cij represent six independent non-zero elastic constants. The Cij results are obtained
for large deformations with high-order polynomial fit by identifying the plateau regions
which provides good reasonable results [58].

Calculated elastic constants for all three LaXS compounds satisfy the Born mechanical
stability criteria as shown in Equation (2). Due to the negative formation energies with the
fulfillment of the mechanical stability scheme, we conclude that all three compounds are
mechanically and structurally stable.

3.5. Band Structure and DOS Properties

The band structure calculations of LaSiS within GGA with and without inclusion
of the SO coupling along high-symmetry k-path Γ − M − X − R − Γ − X − Z are plotted
by setting the Fermi level at 0 eV on energy scale as shown in Figure 2. The top panel
shows the band structure of LaSiS compound without inclusion of SOC effect and the
bottom panel shows the compound calculated band structure with inclusion of SOC effect
(purple color lines). Irreducible representation (symmorphic crystal symmetries) of band
structure without SOC effect in the top panel shows band symmetries by using different
colored solid lines. There are few bands near the Fermi level. Interesting band features
near Fermi level are noted by using red dotted boxes, and numerated from 1 to 5. Since
irreducible representation allows us to access each eigenvalues along the chosen k-path, we
can identify connecting lines of bands and the symmetries by looking for the same colored
bands for the same symmetry [63,64].

The two linear tilted crossings in Γ-M plane (Figure 2-bin 1), Dirac like crossing at M
(Figure 2-bin 2), a single linear crossing in R − Γ plane (Figure 2-bin 3), two linear crossings
in Γ − X and X − Z planes (Figure 2-bin 4), and a single crossing in Γ − X (Figure 2-bin 5)
are identified. Since the SOC (some of the degenerate atomic levels split without magnetic
field) have appeared as promising candidates for exotic band behaviors of Dirac materials,
we perform SOC calculation to identify the topological features at the crossings. As shown
in the bottom panel in Figure 2, it is clear that the crossings at bin 3, 4, and 5 are gapped
out with inclusion of SO coupling. The Dirac point located at bin 3 (−0.15 eV) with the
coordination of k = (0, −0.30742, 0.11663) is gapped out into two fold degeneracy. Black
color represents the Γ1 and blue color represents the Γ5 in irreducible representations
with space group Cs. The blue band is identified as Si−p and black band is identified as
hybridized bands of La−d and Si−p orbital by using the flat band orientations.
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Figure 2. (Color online) Calculated electronic band structure of LaSiS compound with and without
SOC interaction along the high symmetry lines on the BZ k-path Γ − M − X − R − Γ − X − Z.
(a): Irreducible representation of Calculated bulk band structure without SOC. Colors have meaning
of band symmetries discussed in the text. (b): Calculated bulk band structure with SOC effect. Red
dotted boxes are the topological behaviors as discussed in the text. The solid black line at zero
indicates the Fermi level.

The two crossings located at bin 4 (left at −0.18 eV and right at −0.18 eV) are gapped
out again into two fold degeneracy. At the right crossing (k = 0.30742, 0, 0.04998), black
and blue bands represent the Γ1 and Γ5 in orderly with space group Cs. At the left crossing
(k = 0.30288, 0, 0), black and red colors (dominated by Si−p orbitals) represent the Γ1 and
Γ3, respectively, with space group C2v. Therefore, the crossings at around −0.15 eV and
−0.18 eV are identified as type I two-fold degenerate Dirac points. These lines at crossing
points display the same and opposite slopes around ±5 eV Å. These Dirac points are
protected by absence of SOC with the predicted electron velocity of around 7.5 × 1015 Å/s
calculated by (1/h̄)dE/dk, which is similar to the experimentally measured velocity of
Cd3As2 [1]. The crossing in bin 5 (0.20 eV) shows two-fold degeneracy with representing
black and blue symmetries as above, but there is not enough information to identify
them as linear bands. The tilted crossings at bin 1 at coordinates k = (0.08783, 0.08783,
0) (left −0.11 eV) and k = (0.22568, 0.22568, 0) (right −0.17eV) are not effected by SOC
and identified as Type II Dirac crossings. Here, black, red, and green colors represent
the Γ1, Γ3, and the Γ4, respectively, in irreducible representation with space group C2v.
The other Dirac-like crossings at the M point at energy −0.02 eV (bin 2) is protected by
the non-symmorphic symmetry of the space group and not influenced by SOC effect in
Figure 2b.

The results of total and partial DOS of LaSiS provide valuable information about the
origin of bands with contributions from each atom and each orbital. Figure 3 display total
and atom-projected DOS calculations with and without SOC effect for LaSiS. Figure 3a
shows the total DOS of each atom of the LaSiS compound without SOC. Blue, red, and
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green represent the atom-projected DOS for La, Si, and S, respectively. The total DOS
at Fermi level is around 1.8 states per eV per unit cell and dominated by Si atom DOS.
Figure 3b shows the orbital projected DOS from each atom. Mostly contributed DOS at
Fermi level are identified Si−p and La−d orbitals showing corresponding blue and red
solid lines in Figure 3b.
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Figure 3. (Color online) Calculated atom-projected DOS for LaSiS without SOC and total DOS with
and without SOC effect. Panel (a): Calculated DOS without SOC for La, Si, and S represented in blue,
red and green, respectively. Panel (b): Calculated DOS for La(s, p and d), Si(s and p), and S(s and p)
orbitals without SOC. Panel (c): Calculated total DOS for LaSiS with (black) and without (orange)
SOC. The solid black vertical line at zero indicates the Fermi level.

The total DOS for LaSiS together with and without SOC effect display in the Figure 3c.
The solid orange lines represent the total DOS with inclusion of SOC and dashed black
lines represent the total DOS without SOC effect. There is no measurable differences in the
total DOS near Fermi level.

We perform the band structure and DOS calculations for LaGeS and LaSnS by using
the same structure as LaSiS. All the calculations are done by using the optimized lattice
parameters from Table 2. Comparing the band structures for LaXS for X(=Si, Ge, Sn) in
Figure 4, we conclude that all three compounds display the same band characteristics as
discussed above for LaSiS. The Dirac point located at bin 3 in Figure 2 for X = Si at energy
around −0.15 eV displays in Figure 4b and c at 0.08 eV for X = Ge and at 0.10 eV for
X = Sn. The two crossings located at bin 4 in Figure 2 are present at energy around −0.18 eV,
0.10 eV, and 0.15 eV for LaXS (X = Si, Ge, S), respectively. The tilted left crossings at bin 1 in
Figure 2 at energy around −0.11 eV for X = Si, exhibit in Figure 4b and c around 0.25 eV for
X = Ge, and 0.20 eV for X = Sn. The tilted right crossings located at Figure 4-bin 1 of energy
around −0.17 eV for LaSiS, display in Figure 4 around 0.10 eV for LaGeS, and −0.05 eV for
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LaSnS. The other Dirac-like crossings located at the M point of energy −0.02 eV (bin 2) in
Figure 2 for LaSiS, change in Figure 4b and c to around −0.15 eV for LaGeS, and −0.35 eV
for LaSnS. Comparing the band structures behavior with including SOC effect for LaXS
with X(= Si, Ge, Sn) in Figure 4d, e and f, we identify the manifest SOC effect to three Dirac
crossings located at bin 3 and 4 in Figure 2. Opening energy gaps due to SOC (∆E) are
recognized around 0.08 eV for LaSiS, 0.12 eV for LaGeS, and 0.22 eV for LaSnS as shown in
Figure 4 d, e and f. The strength of SOC effect on type I Dirac points on three compounds
are as follows: ∆ESi < ∆EGe < ∆ESn.
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Figure 4. (Color online) Calculated electronic band structures of LaXS (X = Si, Ge, Sn) with and without SOC effect. Panel
(a–c) represents band structures without SOC effect for LaXS compound in red (Si), blue (Ge) and brown (Sn) solid lines,
respectively. Panel (d–f) displays the band structures with SOC effect for LaXS compounds by using the same colors lines
as above. The same high symmetry k-path are used as Figure 2 to calculate band structures of LaXS. The solid black line at
zero indicates the Fermi level.

Comparing the total DOS for LaXS with and without inclusion of SOC for (X = Si, Ge,
Sn) in Figure 5, we conclude that electrons of X element contributes mainly to the DOS
of all three compounds near Fermi level. The total DOS at Fermi level display almost the
same number of states per eV for all three compounds, but X = Sn shows the lowest (top
panel brown dashed lines in Figure 5). The total DOS for LaXS with inclusion of SOC for
X(= Si, Ge, Sn) displays in the bottom panel of Figure 5 by denoting red, blue, and brown
for X = Si, Ge, and Sn accordingly. The difference between the total DOS at Fermi level
with and without SOC of three compounds are 0.0225/eV for LaSiS, 0.7543/eV for LaGeS,
and 0.0901/eV for LaSnS. Inset in the bottom panel of Figure 5 shows the SOC effect on
DOS at Fermi level and is determined that the order of strength of SOC effect at the Fermi
level is ∆DOSSi < ∆DOSSn < ∆DOSGe. The LaGeS compound shows the strongest SOC
effect and we suggest further theoretical and experimental investigation of the SOC effect.
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Figure 5. (Color online) Calculated total DOS for LaXS compounds with and without SOC effect.
Panel (a): Calculated DOS without SOC effect denoted by Red (X = Si), blue (X = Ge), and brown
(X = Sn) for three LaXS compounds, respectively. Panel (b): Calculated DOS for LaXS with SOC
effect presented in Red, blue and brown for X = (Si, Ge, Sn), sequentially. The SOC strength of three
samples shows in the inset. Zero energy is set to Fermi level in all panels.

4. Conclusions

In summary, our studies of LaXS (X = Si, Ge, Sn) compounds suggest that these
compounds are interesting systems to study. Dirac band behaviors near Fermi level and
strong spin–orbit coupling effects can have theoretical and experimental significance on
material properties, therefore further studies of LaXS are suggested. Linear band crossings
near Fermi level are discovered, and type I and type II Dirac crossings are identified by
investigating the SOC effect. Calculated elastic constants and formation energy predict the
mechanical and structural stability of the compounds. The predicted electronic structures of
LaXS, its important topological properties, and stability criteria will be useful for searching
novel Dirac materials for further studies.
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