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Abstract: Spring bead models are commonly used in the constitutive equations for polymer melts.
One such model based on kinetic theory—the finitely extensible nonlinear elastic dumbbell model
incorporating a Peterlin closure approximation (FENE-P)—has previously been applied to study
concentration-dependent anisotropy with the inclusion of a mean-field term to account for inter-
molecular forces in dilute polymer solutions for background profiles of weak shear and elongation.
These investigations involved the solution of the Fokker–Planck equation incorporating a constitutive
equation for the second moment. In this paper, we extend this analysis to include the effects of large
background shear and elongation beyond the Hookean regime. Further, the constitutive equation
is solved for the probability density function which permits the computation of any macroscopic
variable, allowing direct comparison of the model predictions with molecular dynamics simulations.
It was found that if the concentration effects at equilibrium are taken into account, the FENE-P model
gives qualitatively the correct predictions, although the over-shoot in extension in comparison to the
infinitely dilute case is significantly underpredicted.

Keywords: molecular dynamics; FENE dumbbell model; rheology

1. Introduction

Spring bead models prove to be an effective way to construct constitutive equations
for polymer melts. Perhaps the most widely used with success is the finitely extensible
nonlinear elastic (FENE) dumbbell model, which exhibits a viscous response that arises
from Brownian motion and an elastic response that arises from the spring connecting
the beads [1]. However, single dumbbell models are just a simple approximation to
polymer melt solutions and do not reflect all the complex physical processes that can occur.
Augmented dumbbell models have been developed that include additional effects such
as internal viscosities [2,3], additional hydrodynamic interactions [4–6], and aniostropic
drag [7]. These advances resulted in a computationally viable constitutive model, allowing
improved predictions and greater understanding of single polymer experiments [8–11].

The aim of this article is to further investigate the mean-field model proposed by
Schneggenburger et al. [12], which also incorporated concentration effects and weak shear.
This model is revisited in [13] to include steady uniaxial elongation within the Hookean
regime. The behavior of the FENE dumbbell model without the mean-field term is well
understood and has been extensively studied [14,15]. The mean-field model under uni-
form weak shear-flow conditions gives good predictions of the orientation angle and
qualitative predictions of the radius of gyration when compared with light scattering
experiments [12,16]. Concentration effects have been quantified experimentally under
equilibrium conditions and for shear flows [16–18]. Concentration-induced effects were
found to be more significant in elongational flows than in shear flows [19]. A study using
a four-roll mill found that increases in concentration effects result in a reduction of the
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extension due to polymer entanglement [20]. A later study using a FENE-CR fluid to model
the full four-roll mill system found qualitative agreement with experiments [21]. This reduc-
tion in extension due to semi-dilute behaviors has also been reported experimentally [22],
in Brownian dynamical simulations [23] and from modified dumbbell models [24].

In this paper, we will extend the investigations in [12,13], the authors of which solved
the constitutive equations for the second moment. We will include the effects of strong
shear and large elongation. Further, we will explore the form of the probability density
function, ψ, which permits the computation of any macroscopic variable, thus enabling
direct comparisons of the FENE dumbbell model with molecular dynamics simulations.
The paper is structured as follows. The governing equations are introduced in Section 2.
The equations are solved Section 3, with results presented for the dumbbell model with
mean-field force under strong shear and elongation. Finite element solutions of the FENE
model incorporating the Peterlin closure approximation (FENE-P) are also presented, along
with results of molecular dynamics simulations. Results are discussed and conclusions
drawn in Section 4.

2. Materials and Methods
The Governing Equations

We will model the fluid as a suspension of dumbbells embedded in a Newtonian
solvent. The dumbbells comprise two beads connected by a spring. The behavior of the
dumbbell can be completely described by the vector Q that connects the location of one
of the beads to the other. The governing equations are expressed solely in terms of Q.
To form the equations that describe the evolution of Q, an elastic law for the spring must
be proposed. We adopt the FENE relation for the spring force Fc,

Fc =
HQ

1−Q2/Q2
0

, (1)

where H is a spring constant and Q0 is the maximum possible extension of the dumb-
bells [1]. Taking the limit Q0 → ∞, the linear Hookean spring law is recovered, which
microscopically reduces to the Oldroyd B model. In the limit at which the end-to-end vector
reaches its maximum extension, the fluid acts analogous to a suspension of infinitely thin
rigid rods. (1) is an empirical approximation to the physically derived inverse Langevin
operator [25]. Other approximations could have been used, for instance, the Marko–Siggia
force law [26], the Padé law [27], or improved closure approximation modifications such as
the FENE-L model [28,29].

The equation of motion for an individual dumbbell can be found from the spring law.
Assuming that the velocity field is homogeneous over the length scale of the polymer, then
the evolution of Q is given by the Langevin equation [30]:

dQ =

(
L ·Q− 2

ζ

(
Fc + FMF

))
dt +

√
4kT

ζ
dW. (2)

Here, FMF denotes the mean-field forces, k is the Boltzmann constant, T is the absolute
temperature, and ζ is the drag constant. The tensor L is the transpose of the velocity gradi-
ent given by Lij =

∂ui
∂xj

. The Brownian term dW is a Wiener process whose components are
independent Gaussian variables with mean zero and variance dt. The Langevin equation
has an equivalent Fokker–Planck (FP) equation for the probability distribution ψ(Q, t).
The evolution equation for ψ is given by the partial differential equation

∂ψ

∂t
= ∇ ·

(
−LQψ +

2
ζ

(
Fc + FMF

)
ψ

)
+

2kT
ζ
∇2ψ. (3)
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The velocity field is given by

u = (ε̇x,−ε̇y), (4)

where ε̇ is the elongation rate. We adopt the mean-field force term used in [12,31],

F(MF) = − kT
Q4

0
f
〈

QQ
〉

Q. (5)

The mean-field term is introduced to model weak anisotropic effects from concentra-
tion effects due to intra- and intermolecular interactions. The parameter f determines the
strength of the mean-field term and is a positive function of the concentration. For infinitely

dilute solutions, f = 0. f increases with increasing concentration by f = (c/c∗)
1
3 , where c∗

is a reference concentration. QQ denotes the the deviatoric part of the symmetric decom-
position of a tensor QQ. Equation (5) was derived from studies of rod-like polymers [32].
At equilibrium, when QQ is isotropic, there is no preferential direction and the mean-field
term becomes zero.

For finite Q0, the system cannot be solved analytically as a closed constitutive equation
cannot be formed from only the second moment, or radius of gyration tensor, 〈QQ〉.
A closed system can be formed if the Hookean spring force is used; however, in elongational
flows, one can expect the solution to be valid over a small range of elongation rates only due
to the dumbbells becoming infinitely extended. The standard approach to overcome this
closure problem is to replace the spring force model in (1) with the pre-averaged Peterlin
closure approximation in which the nonlinear Wagner spring force term is approximated
by a self-consistent average term [33]. This results in a spring force model of the form

Fc ≈ HQ
1− 〈Q2〉/Q2

0
. (6)

This has the advantage that the nonlinear finite extensiblity term is now linear with
respect to the microscopic variables.

3. Results
3.1. Mean-Field Force under Elongation

We now seek an exact solution to (3) for homogeneous planar elongational flow with
elongation rate ε̇. This was first investigated in [13]. We extend their analysis to investigate
the non-Hookean response. We will use the convention that L is the velocity gradient tensor,
i.e., Lij =

∂ui
∂xj

. For purely planar elongational flow, L is given by Lij = ε̇δi1δj1 − ε̇δi2δj2,
where δij is the Kronecker delta function. To find a steady-state solution, we adopt a change

of variable approach by writing ψ = χ · φ, where φ = e
ζ

4kT L:QQ and : denotes full index
contraction. This form of solution is motivated by solutions of the FP equation found for
elongational flows in [30]. This removes the advective term and the FP equation reduces to

∇ ·
(

2
ζ

HQχ(
1− 〈Q2〉/Q2

0
) − 2kT

ζQ4
0

f
〈

QQ
〉

Qχ

)
+

2kT
ζ
∇2χ = 0. (7)

As we are concerned with pure elongational flow, we can assume a priori that the shear
term 〈QQ〉12 = 0. Thus, the tensor product term in (5) can be written as〈

QQ
〉

ipQp =
〈

QQ
〉
[ii]Q[i], (8)

where [ ] implies no summation over the elements. It follows that at the microscopic level
the spring force is now a scalar multiplied by the end-to-end vector. This additional force
acts analogous to a Hookean spring with non-constant H, where the spring constant is a
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function of the macroscopic variables. Thus we can write a solution for the probability
distribution ψ as

ψ(r, θ) = J exp
{
−1

2
Wr2

(
1− ε

(
cos2(θ)− sin2(θ)

))}
exp

{
Hλε̇r2

kT
(cos2(θ)− sin2(θ))

}
. (9)

To simplify the notation, we replace Qr, Qθ , Qx, Qy by r, θ, x, y and introduce the
characteristic spring time, λ = ζ/4H. The variables W, J and ε are given by

W =
H

kT
(
1− 〈r2〉/Q2

0
) , J =

H
√{

1− ε− 2λε̇
(
1− 〈r2〉/Q2

0
)}{

1 + ε + 2λε̇
(
1− 〈r2〉/Q2

0
)}

2πkT
(
1− 〈r2〉/Q2

0
) ,

ε =
kT

HQ4
0

f
〈

QQ
〉

11

(
1−

〈
Q 2
〉

/Q2
0

)
. (10)

Physically ε is a measure of the anisotropy that arises solely from mean-field effects
and acts like an additional elongation rate.

〈
r2〉 and ε are not free variables as they have a

hidden dependency on ψ. They can be determined by the averaging conditions〈
r2
〉
=
∫ 2π

0

∫ ∞

0
r2ψ(r, θ;

〈
r2〉, ε)rdrdθ, (11)

2HQ4
0ε

kT f
(
1− 〈r2〉/Q2

0
) =

∫ 2π

0

∫ ∞

0
r2
(

cos2(θ)− sin2(θ)
)

ψ(r, θ;
〈
r2〉, ε)rdrdθ. (12)

Integration of (11) and (12) gives the transcendental equations

〈
r2
〉
=

2kT
(
1−

〈
r2〉/Q2

0
)

H(1− ε− 2λε̇
(
1− 〈r2〉/Q2

0
)
)(1 + ε + 2λε̇

(
1− 〈r2〉/Q2

0
)
)

, (13)

HQ4
0ε

kT f
(
1− 〈r2〉/Q2

0
) =

kT
(
ε + 2λε̇

(
1−

〈
r2〉/Q2

0
))(

1−
〈
r2〉/Q2

0
)

H(1− ε− 2λε̇
(
1− 〈r2〉/Q2

0
)
)(1 + ε + 2λε̇

(
1− 〈r2〉/Q2

0
)
)

. (14)

Adopting the scalings Q∗ = Q√
KT/H

, t∗ = t
λ , ε̇∗ = λε̇, ψ∗ = kT

H ψ and f ∗ = k2T2

H2Q4
0

f ,

we obtain

F̂c =
1
2

Q∗

1− 〈Q2〉/b
, F̂MF = −1

2
f ∗
〈

Q∗Q∗
〉

Q∗,

∂ψ∗

∂t∗
= ∇ ·

(
−L∗Q∗ψ∗ +

(
F̂c + F̂MF

)
ψ∗
)
+

1
2
∇2ψ∗. (15)

The parameter, b = HQ2
0/kT, is the ratio of the flexible spring time ζ

4H to the character-

istic rigid time ζL2

12kT . Physically b represents the number of monomers in the polymer [34].
Dropping the ∗ for convenience, we recover a system of nonlinear algebraic equations:

〈
r 2
〉
=

2
(
1−

〈
r 2〉/b

)
(1− ε− 2ε̇(1− 〈r 2〉/b))(1 + ε + 2ε̇(1− 〈r 2〉/b))

, (16)

ε =
f
(
ε + 2ε̇

(
1−

〈
r 2〉/b

))(
1−

〈
r 2〉/b

)2

(1− ε− 2ε̇(1− 〈r 2〉/b))(1 + ε + 2ε̇(1− 〈r 2〉/b))
. (17)

3.2. Mean-Field Force under Shear

The effects of concentration dependent shear-induced anisotropy were investigated
in [12] by means of solving the constitutive equation for the second moment. However,
at no extra computational cost, we can obtain ψ which permits the computation of any
macroscopic variable, thus enabling direct comparison of the predictions of the model with
molecular dynamics simulations.
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In contrast to the case for elongational flow, it is clear that the term 〈QQ〉12 will be
non-zero and thus a different approach must be taken. For Hookean dumbbells under shear
flow with no mean-field dependence, the velocity gradient tensor L is given by Lij = γ̇δi1δj2,
where δij is the Kronecker delta function, and the FP equation has solution [30] takes the form

ψSR ∝ exp

{
− H

2kT

(
x2 − 2λγ̇xy + (1 + 2λ2γ̇2)y2)

1 + λ2γ̇2

}
. (18)

For the analogous case, which includes a mean-field force under shear, we anticipate
that the solution is of a similar form as (18), and seek a trial solution of the form

exp

(
−H(Ax2 + Bxy + Cy2)

2kT(1− 〈Q2〉/Q2
0)

)
. (19)

where A, B, C are constants to be determined. We need not restrict ourselves to pure shear
flow but could consider a flow field that exhibits both elongational and shear phenomena.
We take a general homogeneous velocity gradient field for which the velocity components
are given by u = ε̇x + γ̇1y and v = −ε̇y + γ̇2x. Substitution of this trial solution into the
FP equation leads to

∇ ·
[
−ε̇qψ−

(
γ̇1
γ̇2

)
◦ q′ψ +

2HQψ

ζ(1− 〈Q2〉/Q2
0)

+
2kT

ζ
∇ψ

]
= 0 (20)

where q = (x,−y) and q′ = (y, x). The symbol ◦ denotes array-wise multiplication.
We find

A =
(1− 2γ̇1γ̇2λ2 + 2λ2γ̇2

2 − 2λε)

(1 + γ̇2
1λ2 − 2λ2γ̇1γ̇2 + γ̇2

2λ2)
, B =

−2λ((γ̇1 + γ̇2) + 2ε(γ̇2 − γ̇1)λ)

(1 + γ̇2
1λ2 − 2λ2γ̇1γ̇2 + γ̇2

2λ2)
,

C =
(1− 2λ2γ̇1γ̇2 + 2λ2γ̇2

1 + 2λε)

(1 + γ̇2
1λ2 − 2λ2γ̇1γ̇2 + γ̇2

2λ2)
. (21)

The mean-field term is decomposed into a shear-like component and an elongation-
like component: F(MF) = − kT

2Q4
0

f
(〈

x2 − y2〉)q− kT
Q4

0
f 〈xy〉q′, by means of two basis vectors,

q and q′. Therefore,

∇ ·

− kT
ζQ4

0
f
(〈

x2 − y2
〉)

qψ−

 γ̇ + 2kT
ζQ4

0
f 〈xy〉

2kT
ζQ4

0
f 〈xy〉

 ◦ q′ψ +
2HQψ

ζ(1− 〈Q2〉/Q2
0)

+
2kT

ζ
∇ψ

 = 0, (22)

which is analogous to the solution for f = 0 with modified shear rate γ̇1 = γ̇ + γ̇2, γ̇2 =
2kT f
ζQ4

0
〈xy〉 and modified elongation rate ε̇ = kT f

ζQ4
0

〈
x2 − y2〉 . From (21) the parameters

A, B, C are

A =
1− γ̇λΓ

(
1−

〈
r2〉/Q2

0
)2 −Θ

(
1−

〈
r2〉/Q2

0
)

1 + λ2γ̇2
(
1− 〈r2〉/Q2

0
)2 ,

B =
−2γ̇λ

(
1−

〈
r2〉/Q2

0
)
− 2Γ

(
1−

〈
r2〉/Q2

0
)
+ 2γ̇λΘ

(
1−

〈
r2〉/Q2

0
)2
)

1 + λ2γ̇2
(
1− 〈r2〉/Q2

0
)2 ,

C =
1 + 2γ̇2λ2(1− 〈r2〉/Q2

0
)
+ γ̇λΓ

(
1−

〈
r2〉/Q2

0
)2

+ Θ
(
1−

〈
r2〉/Q2

0
)

1 + λ2γ̇2
(
1− 〈r2〉/Q2

0
)2 , (23)

where Θ = kT f
HQ4

0

〈
x2 − y2〉/2 and Γ = kT f

HQ4
0
〈xy〉. In the limit as f tends to zero (i.e., Θ, Γ→ 0)

and Q0 → ∞ the standard Hookean solution (18) is recovered. The normalization constant
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J can be expressed as J = H
√

4AC−B2

4πkT(1−〈r2〉/Q2
0)

. The consistency conditions for the system

naturally give rise to an equivalent set of equations as derived by [12] who used a change
of basis method. The two conditions (11) and (12) still hold, however, as no ansatz is used
regarding A12, the extra degree of freedom is accounted for by an additional consistency
condition. We can write 〈

r2
〉
= J

∫
r2ψ(r, θ;

〈
r2
〉

, Γ, Θ)rdrdθ, (24)

HQ4
0

kT f
Γ = J

∫ 2π

0

∫ ∞

0
r2 sin(θ) cos(θ)ψ(r, θ;

〈
r2
〉

, Γ, Θ)rdrdθ, (25)

HQ4
0

kT f
Θ =

1
2

J
∫ 2π

0

∫ ∞

0
r2
(

cos2(θ)− sin2(θ)
)

ψ(r, θ;
〈

r2
〉

, Γ, Θ)rdrdθ. (26)

Use of the aforementioned scalings, with the shear rate scaling analogous to the elonga-
tion rate (i.e., γ̇∗ = γ̇λ ), leads to the system of equations (with the star notation dropped),

〈
r2
〉
=

2
(

1 + γ̇2(1− 〈r2〉/b
)2
)(

1−
〈
r2〉/b

)(
1− (1− 〈r2〉/b)2

(Γ2 + Θ2 + 2γ̇Γ)
) , (27)

Γ =
f
(
γ̇ + Γ− γ̇Θ

(
1−

〈
r2〉/b

))(
1−

〈
r2〉/b

)2(
1− (1− 〈r2〉/b)2

(Γ2 + Θ2 + 2γ̇Γ)
) , (28)

Θ =
f
(
γ̇2(1− 〈r2〉/b

)
+ Θ + γ̇Γ

(
1−

〈
r2〉/b

))(
1−

〈
r2〉/b

)2(
1− (1− 〈r2〉/b)2

(Γ2 + Θ2 + 2γ̇Γ)
) , (29)

which are again solved by the Newton–Raphson method. It can be seen that for elongational
flow, increasing f leads to greater stretching of the dumbbell. For shear flows, increasing f
leads to greater orientation of the dumbbell along the flow. We will now compare these
results to those of the full nonlinear FENE model. The expansion for small γ̇ was previously
obtained in [12], however the effect for large shear was not addressed. We will consider
this effect by using the method of dominant balance [35]. This results in the expressions

〈
r2
〉
∼ b− 2−

1
3 b

4
3 γ̇−

2
3 +

2
1
3 b

2
3
(
2 + b + b2 f

)
6

γ̇−
4
3 +O(γ̇−

6
3 )

Θ ∼ b f
2
− 2

2
3 b

1
3 f (2 + b)

4
γ̇−

2
3 +O

(
γ̇−

4
3

)
,

Γ ∼ 2−
2
3 b

2
3 f γ̇−

1
3 − f

12

(
b2 f + 4b + 8

)
γ̇−1 +O(γ̇−

4
3 ).

These series exhibit much better convergence than those for elongational flow. We see
that the effects of concentration increase the radius of gyration. These effects decay as γ̇−

4
3 ,

which is a slower decay than for the elongational case, where the decay is proportional to
ε̇−2. An interesting feature of shear flows is that the degree of shear changes the orientation
of the dumbbells. The orientation angle is given by [36]

χ =
π

4
− 1

2
tan−1

(
ΓΘ−1

)
∼ π

4
− 2−

2
3 b

2
3 γ̇−

1
3 +

1
12

(b f − 2)γ̇−1. (30)

As γ̇ → ∞, the angle of orientation is π
4 as expected and the dominant effect is the

finite extension force. We see that the mean-field term which decays as γ̇−1 has opposite
sign to the finite extension effect and acts so as to resist the orientation of the dumbbell.
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3.3. FENE Solution

An iterative finite element scheme was used to solve the FP equation with the inclusion
of the fully nonlinear FENE force term. Although the Peterlin closure approximation
removes the unwanted infinite elongation that occurs with Hookean spring models, it only
imposes a constraint on the averaged value of the end-to-end vector rather than an upper-
bound, thus dumbbells can exist which have length greater than Q0 [37]. Furthermore,
the effect of the Peterlin closure approximation is non-local. The distribution for the FENE-
P model is Gaussian whereas the FENE model cannot have a chain length greater than
the maximum extension that gives compact support. This difference in the FENE-P model
has previously been shown to effect the transient response as well [14]. In this study,
we limit our investigation to steady state flows. We will use the notation that Ω is the
computational domain and ∂Ω is the bounding region. Under purely elongational flow,
the FP equation is solved for radius 0 < r <

√
b, which arises from the FENE model

restricting the radius of gyration. To reduce the computational domain, we consider the
upper quadrant and impose symmetry boundary conditions along the x− and y−axes.
The Dirichlet condition, ψ = 0, is applied on the boundary r =

√
b, which enforces zero

probability of the dumbbell being fully extended. Strong symmetry does not exist for
the pure shear case and the FP equation must be solved over the entire circular domain.
As such a system has purely homogeneous boundary conditions, the trivial zero solution
would be recovered. To overcome this we add a point constraint on the probability at the
origin where the constant is determined by requiring conservation of probability.

Simulations from FENE and FENE-P schemes for elongational flow are shown in
Figures 1 and 2 for f = 0, 0.5 and 0.75. The analytical solution for f = 0 is given by
N
∫

r2(1− r2/b)b/2eε̇r2 cos(2θ)dΩ where N is the appropriate normalization constant [7].
This is in close agreement with the results from the finite element solution (Figure 2a). Plots
of the radius of gyration calculated from the FENE and FENE-P models for f = 0, 0.5, and
0.75 for the case of shear flow are shown in Figure 3. It was found that for large elongation
rates, use of the Peterlin closure approximation (Figure 2) gave similar results to the FENE
model for the dependence of the radius of gyration on the non-dimensionalized elongation
rate. However, the Peterlin closure approximation systematically overestimated the radius
of gyration. For the case f = 0, the overestimation can be explained as the finite extension
is imposed only on the average extension. We also found that the greatest error occurs
for moderately small elongation rates. The magnitude of the error is increased and the
maximum peak error occurs at a lower elongation rate for increasing values of f . This
error is due to the relatively large gradients of the radius of gyration with respect to the
elongation rate. These large gradients are due to coil stretch transition and are eventually
smoothed when the finite extensibility constraint starts to dominate.For shear flow with
f = 0, the error increases monotonically with shear rate. However, with the introduction
of the mean-field term the peak error occurs at a finite shear rate. The effect of increasing
f is similar, but less pronounced than the effect seen with elongational flows, where the
magnitude of the error increases and occurs at a lower shear rate.

Using the previous scaling, while dropping the ∗, the steady-state FP equation with
the inclusion of a mean-field term for elongational flow is given by

∇ ·
[
−ε̇(xex − yey)ψ +

1
2

(
x

1− r2/b
− f
〈

QQ
〉

x
)

ψ

]
+

1
2
∇2ψ = 0, (31)

where ex and ey are the unit vectors in the x- and y-directions.
Equation (31) does not account for the following two constraints. Firstly, that

∫
Ω ψdV = 1,

and second, upon scaling of ψ, the condition of
〈

QQ
〉
=
∫

QQ ψdV which introduces
nonlinearity in ψ. To approach these conditions a fixed point finite element iterative scheme
is used to reach a default tolerance:
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L (ψ, Φ; ε̇,
〈

QQ
〉

n) = 0, (32)

ψ∗ =
ψ∫

Ω ψdS
, (33)〈

QQ
〉

n+1 =
∫

Ω
QQ ψ∗dQ, (34)

where L
(

ψ, Φ; ε̇,
〈

QQ
〉)

denotes the weak form of (31). Equation (31) can be similarly
formed and solved for the case of pure shear flow which in weak form is∫

Ω
∇ ·

(
−Lxψ− 1

2

(
x

1− r2/b
− f
〈

QQ
〉

x
)

ψ

)
Φ− 1

2
∇ψ · ∇ΦdS +

1
2

∫
∂Ω

Φ∇ψ · dr = 0,

where Φ gives the shape function. The velocity gradient tensor, L, takes a different form
for shear and elongational flows. The Galerkin finite element method was used, where Φ
comprised linear piecewise polynomials. The stiffness matrix was formed from the first
term which is integrated using a fourth order quadrature method over a triangular mesh
with 40,000 nodes. The mesh density was increased near r = b, as well as along y = 0
for the elongational case, to capture the larger gradients in ψ. The advective term is the
only term which changes and is initially set to be 0. 〈QQ〉12 is found through the iterative
scheme (32)–(34). The probability density function ψ is plotted for the FENE solution for
the case of pure elongational flow in Figure 4. The effects of the additional concentration are
similar to those obtained using the Peterlin closure approximation where the concentration
term acts analogously to the elongation term and gives rise to increased probability of
larger extensions of the dumbbells. The effect is similar, but smaller, for the case of pure
shear flow as shown in Figure 5.
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Figure 1. (a) The radially averaged probability distribution ψ̄ for elongational flow for ε̇ = 1 with
f = 0, 0.5 and 0.75, denoted by the solid, dashed, and dot-dashed lines, respectively, in the upper
quadrant 0 < θ < π

4 . (b) The radially averaged distribution under shear flow, with γ̇ = 1.
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Figure 2. Numerical solution for the radius of gyration
〈
r2〉 plotted against the non-dimensional

elongation rate ε̇ for the FENE-P (dashed lines) and FENE (solid lines) for (a) f = 0, (b) f = 0.5, and
(c) f = 0.75. Circular markers indicate the exact analytic solution, where it exists.
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Figure 3. Numerical solution for the radius of gyration
〈
r2〉 plotted against the non-dimensional

shear rate γ̇ for the FENE-P (dashed lines) and FENE (solid lines) models for (a) f = 0, (b) f = 0.5,
and (c) f = 0.75.
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(a)

(b)
Figure 4. The probability density function ψ for the full nonlinear FENE solution with ε̇ = 1 and
b = 10 for (a) f = 0 and (b) f = 0.5.
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Figure 5. The probability density function ψ for the full nonlinear FENE solution with γ̇ = 1 for
f = 0 and b = 10 with (a) f = 0 and (b) f = 0.5.
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3.4. Comparison with Molecular Dynamics Simulations

The predictions of the FENE-P model were compared with stochastic data [23].
The FENE-P model predicts that with increasing f , the mean-field effect will increase
the mean extension of the dumbbell. It can be seen from (7) and (8) that the spring stiffness
constant reduces for increasing f . This feature is opposite to that which is reported in the
literature. One possible explanation is that in the model used in [12] the equilibrium radius
of gyration is independent of concentration. However, the authors of [23] report that the
equilibrium radius of gyration can vary with concentration. We model the equilibrium
mean-field effects by expressing the parameter b as a function of the concentration. We
model b as a quadratic in c/c∗, i.e.,

b = be

(
1 + b1

( c
c∗
)
+ b2

( c
c∗
)2
)

,

where the parameters b1, b2 are found by fitting to the profile of the equilibrium results for
10−3 < c

c∗ < 10 given in [23]. Stoltz et al. [23] determined the extension as a function of both
the relaxation time and the concentration dependent relaxation time (CDRT). The CDRT is
found by modeling the experimental procedure in [18], in which the polymer was stretched
under elongational flow and then allowed to relax back to equilibrium. The CDRT was
found by fitting an exponential function to the transient profile of the radius of gyration.
Stoltz et al. [23] record the affect of concentration on the mean distance between the end
points only in streamwise direction and not the radius of gyration. This can be found using
probability density function (9) to be

〈X〉 =
{

2
(
1−

〈
Q2〉/b

)
π[1− ε + 2ε̇(1− 〈Q2〉/b)]

} 1
2

. (35)

We chose be = 100 for our simulations as the results were found to be largely indepen-
dent of be provided it was sufficiently large. Figure 6 shows plots of 〈X〉 normalized by its
value for large extension against the elongation rate ε̇ and against the critical elongation
rate ε̇c. The model now predicts that the end-to-end distance is reduced for increasing
concentration when plotted against ε̇c. For comparison, 〈X〉 is plotted in Figure 7, for the
case where the mean-field force term was set to zero. If we look at the normalized values
of ε̇ 〈X〉 corresponding to ε̇ = 1 we observe a small overshoot in for the case where the
mean-field term is included (Figure 6a). Such an overshoot does not occur in the simula-
tions where this term has been neglected (Figure 7). A similar phenomena was reported
in [23], although in their study, the size of the overshoot was more pronounced.
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Figure 6. Cont.
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Figure 6. The mean horizontal extension scaled by the infinitely dilute case against (a) ε̇ and (b) ε̇c

from simulations that include the mean-field term. The results are given for c
c∗ = 0, 1, 2 denoted by

the solid, dashed and dotted lines, respectively.
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Figure 7. The mean horizontal extension scaled by the infinitely dilute case plotted against ε̇ where
the mean-field term has been set to zero. The results are given for c

c∗ = 0, 1, 2, denoted by the solid,
dashed, and dotted lines, respectively.

4. Discussion

The principle result of this article was the derivation of solutions to the Fokker–Planck
equation incorporating a FENE-P dumbbell model with the addition of a mean-field term
for both shear and elongational flows, including the effects of strong shear and elongations
close to the maximum permissible. We found that the results corresponding to elongational
flow were amenable to analytical analysis. For a linear spring force, the distribution can
be found exactly and for dumbbells near full extension, an exact solution was found that
could be expressed as the root of a quartic equation. The solution for a constant shear flow
was found by directly solving the Fokker–Planck equation. We further investigated the
effect that the closure assumption on the spring force has on the model. The probability
density function was found numerically using a finite element scheme. We found that the
closure assumption in conjunction with the mean-field term led to an over-estimation of
the extension of the dumbbell at moderate values of the elongation and shear rate. In the
latter part of the work, we matched the prediction of the model to molecular dynamics
simulations. It was found that the model developed by [12] fails to predict the reduced
stretching that occurs with increasing concentration. We thus proposed a novel extension
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by introducing a concentration dependence on the parameter b, which describes the ratio
of the flexible spring time to the characteristic rigid time, to match the results given in [23],
which were based on stochastic data. This modified model correctly predicted reduced
stretching with increased concentration; however, the overshoot in relation to the infinitely
dilute case in the aligned end-to-end vector was underpredicted.

Throughout this article we have only considered mean-field effects under steady shear
and steady elongation conditions. This leaves the areas of transient shear and elongation
open to further study.
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