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Abstract: Terroir is one of the core concepts associated with wine and presumes that the land from
which the grapes are grown, the plant habitat, imparts a unique quality that is specific to that growing
site. Additionally, numerous factors can influence yeast diversity, and terroir is among the most
relevant. Therefore, it can be interesting to use Remote Sensing tools that help identify and give
helpful information about the terroir and key characteristics that define the AOP (Appellation of
Origin). In this study, the NDVI (Normalized Difference Vegetation Index) calculated from Landsat
8 imagery was used to perform a spatio-temporal analysis during 2013, 2014, and 2015 of several
vineyards belonging to four different AOP in Galicia (Spain). This work shows that it is possible to use
Remote Sensing for AOP delimitation. Results suggest: (i) satellite imagery can establish differences
in terroir, (ii) the higher the NDVI, the higher the yeast species richness, (iii) the relationship between
NDVI, terroir, and yeasts shows a stable trend over the years (Pearson’s r = 0.3894, p = 0.0119).

Keywords: designation of origin; appellation of origin; NDVI; vegetation index; precision viticulture;
yeast; biogeography; terroir; Vitis vinifera L.; remote sensing

1. Introduction

Worldwide, the average climatic conditions of wine regions determine, to a large
degree, the grape cultivars that can be grown there, while wine production and quality
are chiefly influenced by site-specific factors, production practices, and short-term climate
variability [1]. These factors can be captured within the terroir definition. Terroir (terruño, in
Spanish) is one of the core concepts associated with wine. It is a French term that describes
how the environment, farming practices, crop characteristics, and cultural elements of a
place affect grape and wine production, combined in a specific way that cannot be replicated
in any other place. This concept is the basis of the French wine appellation d’origine contrôlée
(AOC) system, which is a model for wine appellation and regulation in France and around
the world. It is also known as Apelación d’Origine Protégée (AOP, Appellation of Origin) in
the European Union, as Designation of Origin (in English), and as Denominación de Origen
(DO, Denomination of Origin) in Spanish. This system presumes that the land from
which the grapes are grown, the plant habitat, imparts a unique quality specific to that
growing site [2].

According to European Union regulations, any group of wine producers can apply
to establish an AOP by giving reasons and proofs for the request, including full details
of the terroir, among others. Terroir seems to play a critical role in the quality of wines,
and AOP boundaries are fixed according to geological, topographical, morphological, and
agro-pedological criteria. Terroir affects the chromatic characteristics of wines and clearly
affects the phenolic composition [3]. Furthermore, tasting confirms, without doubt, these
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differences according to the nature of the terroir [4]. Therefore, it could be interesting to
develop and use tools that help to identify and give helpful information about the terroir
and key characteristics that define the AOP, not only for the European production model,
mainly based on Appellations of Origin, but also for the emerging wine grape-producing
countries, whose production is much more liberalized [5].

Remote sensing can be a valuable tool to achieve this goal, since it allows obtaining
information quickly, accurately, objectively, and non-destructively [6]. Algebraic combina-
tions of spectral information bands are helpful, such as the NDVI (Normalized Difference
Vegetation Index) [7], which has proved to be a valuable tool in precision viticulture to
classify vineyards according to their characteristics [8], monitor table grape quality charac-
teristics [9], differentiate zones with respect to biomass, vine water status, and fruit and
wine character [10], or estimate different specific zones according to grape maturity and
quality parameters [11]. The NDVI has also been used to assess other crop parameters,
including LAI [12], amount of vegetation [13], and even fruit quality parameters such as
phenols [14].

Imagery can be obtained from various sources, such as UAV (unmanned aerial ve-
hicle), aircraft, satellites, or proximal sensing. Each approach has its advantages and
disadvantages. Aiming to work at the AOP scale level, satellite information can be handy
because it can capture a large image of the entire area at once, so vineyards can be compared
simultaneously. Moreover, sensors mounted on satellites usually have a better spectral
and radiometric resolution and, as they are not usually repairable once launched, they
have better electronics and redundancy [15]. Even a breakpoint was placed slightly above
5 ha, meaning that satellite images may be more convenient above such scale size [16].
Furthermore, some satellite images can be downloaded for free, such as Landsat 8 im-
agery, equipped with the Operational Land Imager (OLI) instrument. OLI is a visible and
near-infrared (VNIR) multispectral sensor that operates from 400 to 2500 nm and provides
reflectance products with a spatial resolution of 30 m and a revisit time of 16 days [17].

As previously stated, terroir gives wines their complexity [18]. It also affects yeast
diversity by linking yeasts to a geographical area [19,20]; therefore, it is interesting to
properly monitor the variables that compose terroir, such as yeast diversity, to improve
wine quality [21]. The influence of a greater diversity of indigenous yeasts, especially non-
Saccharomyces, has been amply demonstrated [22,23], and these biogeographical patterns of
indigenous yeasts, specific to a given region, can improve the chemical–sensory charac-
teristics of wines [20,24]. However, few studies have developed and related the concept
of microbial terroir or yeast terroir to other disciplines, since this concept is controversial
because it is still unclear how microbes contribute to terroir [25].

The oenological potential of non-Saccharomyces autochthonous yeasts has been re-
ported, comparing yeast diversity in musts from organic and conventional production in
four Denominations of Origin (AOP) from Galicia [26,27]. However, to our knowledge,
this is the first work that aims to identify a spatio-temporal relationship between NDVI
calculated from satellite imagery, terroir, and, more specifically, the biogeographic patterns
of yeasts in vineyards of the northwest Iberian Peninsula.

The objective of the present study was to analyze the potential use of satellite multi-
spectral imagery to detect differences in terroir and yeast population due to AOP according
to NDVI variations, studying: (i) if satellite imagery can establish differences in terroir,
(ii) the relationship between NDVI and yeast species richness, (iii) the temporal stability
over the years between NDVI, terroir, and yeasts. Considering the inherent relationship
between the terroir and the AOP, a spatio-temporal analysis was carried out between
14 vineyards belonging to 4 different AOP in Galicia (Spain). Several open-access multi-
spectral images obtained from the Landsat satellite in 2013, 2014, and 2015 were used to
calculate the NDVI (Normalized Difference Vegetation Index), which provides information
about the vegetation within the vineyards, including vine canopy.
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2. Materials and Methods
2.1. Satellite Imagery

Free-cloud Landsat 8 images from the study area (Figure 1) of 2013, 2014, and 2015
were downloaded and atmospherically corrected using the DOS1 algorithm. The selected
months were July and August due to the proximity of veraison since, at this phenological
stage (or even after), the relationship between leaf area and NDVI is greater [14,28]. Unfor-
tunately, the image of august 2014 had to be changed to the immediately previous ones
(25 July 2014) due to clouds.

Figure 1. Location of the Landsat imagery and commercial vineyards in Galicia (Spain).

The NDVI was used to perform the spatio-temporal analysis. NDVI is an index that
allows quantifying the amount of vegetation of an area and its health. It relates the reflected
radiation in the Red and Near-Infrared (NIR) bands of the electromagnetic spectrum (1).

NDVI =
(NIR− Red)
(NIR + Red)

(1)

2.2. Vineyards

Grapes were harvested from 14 commercial vineyards planted with representative
grapevine cultivars within 4 different AOP during 3 consecutive years (2013, 2014, 2015) in
Galicia (Figures 1 and 2). Table 1 shows the characteristics of the vineyards and grapevine
cultivars used in this study. The vineyards have different characteristics and were under
two different farming systems: organic and conventional There were one organic and one
conventional vineyard per AOP and cultivar. Regular phytosanitary treatments were used
depending on rainfall and management system: copper and plant extract treatments in
organic, without herbicides, and traditional fungicides and herbicides in conventional
management, in both cases managed according to each AOP protocol and legislation in
force. Regarding soil and canopy management, there was non-irrigated vegetation cover
in all vineyards, except in Ribeira Sacra, with adventitious vegetation without mowing,
vertical trellis training system in Monterrei and Ribeiro, no vegetation management in
Ribeira Sacra, and pergola/overhead trellising in Rías Baixas.

In addition, climate data were collected from the closest weather station to each
vineyard during the three years of the study. The average values for the three-year study
for monthly average temperature (T), monthly average rainfall (R), monthly average wind
speed (WS), and monthly average relative humidity (RH) were 14.40 ◦C, 242.67 L/mm2,
3.08 m/s, and 77.00% for Ribeiro; 14.93 ◦C, 331.67 L/m2, 6.78 m/s, 77.33% for Rias Baixas;
13.67 ◦C, 225.00 L/m2, 5.82 m/s, 79.00% for Ribeira Sacra; 12.83 ◦C, 162.33 L/m2, 4.88 m/s,
77.67% for Monterrei. The weather information can be found on the web service of the
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Meteorological Observation and Prediction Unit of Galicia (https://www.meteogalicia.
gal/web/inicio.action, accessed on 28 May 2021).

Figure 2. Commercial vineyards. Codes are shown in Table 1. Scales are different to ease visualization.

Table 1. Characteristics of vineyards and grapevine cultivars used in this study. Average annual rainfall during the three
years of the study, obtained from the closest weather station to each vineyard (MeteoGalicia). AOP: Appellation of Origin.

AOP Cultivar Code Coordinates Elevation
(m)

Average Annual
Rainfall (L/m2)
2013-2014-2015

Row
Orientation

Monterrei
Treixadura Mo-Trx 41◦52′11.9′′ N, 7◦25′49.7′′ W

41◦52′12.8′′ N, 7◦25′54.5′′ W
406
402

787-928-595

N–S
E–W

Mencía Mo-Men 41◦52′11.0′′ N, 7◦25′51.9′′ W
41◦52′12.5′′ N, 7◦25′56.9′′ W

404
399

N–S
E–W

Ribeiro
Brancellao Ri-Bra 42◦19′24.8′′ N, 8◦6′7.8′′ W

42◦19′22.3′′ N, 8◦5′51,7′′ W
270
290

1211-1351-752

E–W
N–S

Treixadura Ri-Trx 42◦19′27.6′′ N, 8◦6′2.0′′ W
42◦19′22.0′′ N, 8◦5′52.4′′ W

278
289

E–W
N–S

Ribeira Sacra Mencía RS-Men 42◦34′11.5′′ N, 7◦43′3.4′′ W
42◦34′11.4′′ N, 7◦43′3.5′′ W

243
244 1075-1197-719 NE–SW

NE–SW

Rías Baixas
Albariño RB-Alb 42◦5′47.9′′ N, 8◦21′18.1′′ W

42◦5′46.8′′ N, 8◦21′16.9′′ W
74
72

1489-1649-1071

N−S
N−S

Treixadura RB-Trx 42◦5′48.2′′ N, 8◦21′15.1′′ W
42◦5′46.2′′ N, 8◦21′17.7′′ W

75
71

E–W
N–S

https://www.meteogalicia.gal/web/inicio.action
https://www.meteogalicia.gal/web/inicio.action
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2.3. Sample Processing and Yeast Isolation

A total of 42 samples per year were collected and processed. The obtained must (grape
juice) was separated for different analyses, including isolation and yeast diversity identifi-
cation. The materials and methods used for sample processing and yeast identification at
the species level consisted of PCR amplification of the 5.8S rRNA gene and the ITS1 and
ITS2 spacers, and sequencing of the D1/D2 region of 26S rDNA gene was used to confirm
yeast identity, as described in Castrillo et al. [27].

2.4. Statistical and Data Analysis

Differences in NDVI and yeast population due to AOPs, production system, cultivars,
and years were tested using one-way and two-way Bray-Curtis PERMANOVA. In addition,
Principal Component Analysis (PCA) and Two-block Partial Least squares (TB-PLS) were
carried out to separate richness of yeast species (S) and NDVI samples according to AOPs,
production systems, cultivars, and years. Finally, Canonical Correlation Analysis (CCA)
and a bilateral Pearson correlation were carried out to evaluate the correlation between
NDVI and yeast species richness (S).

Additionally, a CCA was performed to determine the influence of terroir on NDVI
and yeasts during the years of the study concerning the different AOPs. Several factors that
characterize terroir were assessed in the analysis: monthly average temperature (T); canopy
(C); monthly average rainfall (R); monthly average wind speed (WS); soil management
(SM); monthly average relative humidity (RH); altitude (A); orientation.

All image, statistical, and data analyses were carried out using customized codes
written in R statistical program (version 3.6.X, R Foundation for Statistical Computing,
R Core Team 2019, https://www.R-project.org/, accessed on 21 May 2021, Vienna, Austria),
Python (version 3.9.X, Python Software Foundation, https://www.python.org/, accessed
on 21 May 2021, Wilmington, DE, USA), and PAST software (version 4.04, Hammer &
Harper, Oslo, Norway).

3. Results

Table 2 shows NDVI values calculated using free-cloud Landsat 8 images in the chosen
dates. Figure 3 shows that NDVI was relatively stable over the years in all vineyards,
although the trend shows that maximum values were reached during 2014 and minimum
values during 2015, except in Ribeiro. When analyzing NDVI per AOP, Rias Baixas had the
highest values during the three years, with maximum values of 0.49 and minimum values
of 0.24, followed by Ribeira Sacra AOP, with 0.45 and 0.24, respectively. On the other hand,
the lowest NDVI values were in Monterrei AOP, with maximum and minimum values
of 0.25 and 0.13, followed by Ribeiro AOP, with values of 0.32 and 0.19, respectively. In
addition, the NDVI ranged from a maximum of 0.49 to a minimum of 0.13 for all AOPs
and years. Each year, the maximum and minimum values were similar: for 2015, between
0.43 and 0.13, for 2014, between 0.49 and 0.14, and for 2013, between 0.48 and 0.14.

https://www.R-project.org/
https://www.python.org/
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Table 2. NDVI (Normalized Difference Vegetation Index) values calculated using free-cloud Landsat 8 images from the
study area taken in 2013, 2014, and 2015. July and August were selected due to the proximity of veraison.

Vineyard 6 July 2013 23 August 2013 9 July 2014 25 July 2014 12 July 2015 29 August 2015

Mo-Men-A 0.25 0.22 0.22 0.24 0.23 0.24
Mo-Men-B 0.17 0.14 0.14 0.15 0.15 0.13
Mo-Trx-A 0.23 0.20 0.19 0.22 0.20 0.23
Mo-Trx-B 0.23 0.18 0.23 0.20 0.20 0.17
RB-Alb-A 0.36 0.26 0.39 0.36 0.36 0.32
RB-Alb-B 0.27 0.25 0.30 0.26 0.25 0.24
RB-Trx-A 0.48 0.38 0.49 0.48 0.43 0.41
RB-Trx-B 0.39 0.36 0.46 0.47 0.37 0.37
Ri-Bra-A 0.26 0.24 0.31 0.29 0.31 0.26
Ri-Bra-B 0.25 0.19 0.23 0.25 0.26 0.22
Ri-Trx-A 0.29 0.24 0.32 0.29 0.29 0.27
Ri-Trx-B 0.23 0.23 0.25 0.25 0.24 0.22

RS-Men-A 0.31 0.29 0.33 0.31 0.31 0.24
RS-Men-B 0.39 0.35 0.45 0.38 0.39 0.31

Figure 3. NDVI values per AOP calculated using Landsat imagery close to veraison. Years 2013,
2014, and 2015.

The statistical analysis confirmed the previous analysis. PERMANOVA was used to
evaluate differences in NDVI between years, cultivars, AOPs, and culture systems. The
NDVI only showed significant differences between AOPs (p = 0.0040, F = 7.2530) but not
between years (p = 0.3353, F = 1.374), farming systems (p = 0.4865, F = 0.5193), and cultivars
(p = 0.9309, F = 0.2096). In addition, significant differences were found in the RB-Mo
pairwise (p = 0.0311, F = 13.2700), and in the Mo-Ri pairwise (p = 0.0208, F = 5.2270). In
RS-Mo pairwise, the values were F = 9.621 at p = 0.0637. However, in the RS-RB pairwise,
no significant differences were found, with the lowest F = 0.1310 and the highest p = 0.7971.
Therefore, this paper focused on the AOPs.

Figure 4 shows a different NDVI and a different yeast species richness for each AOP,
being in both cases higher in the Rías Baixas and Ribeira Sacra AOPs than in the Ribeiro
and Monterrei AOPs for each vintage during the three years.



J 2021, 4 250

Figure 4. Species richness and NDVI in the four AOPs during 2013, 2014, and 2015. AOPs: Mo:
Monterrei, Ri: Ribeiro, RS: Ribeira Sacra, RB: Rías Baixas.

PERMANOVA was also used to assess differences in yeast population (species rich-
ness) between campaigns, cultivars, AOPs and farming systems. Species richness presented
significant differences among AOPs [27,29]. Regarding yeast diversity in musts, in terms
of species richness, different yeast species were identified during the three years of study,
distributed as shown in Figure 4. A PCA of NDVI of the vineyards (Figure 5) was used to
analyze both data sets separately between the different AOPs, considering all grapevine cul-
tivars, farming systems, and years. Furthermore, Axis1 separated Rías Baixas and Ribeira
Sacra from Ribeiro and Monterrei AOP samples on both sides of the Y-axis. However, the
separation between NDVI values was not clear, considering the different farming systems
and cultivars.

Figure 5. PCA of NDVI during 2013, 2014, and 2015 in vineyards planted with four representative
cultivars within four Galician AOPs. AOPs: Mo: Monterrei, Ri: Ribeiro, RS: Ribeira Sacra, RB: Rías
Baixas; grape cultivars (in green: organic, in black: conventional): Trx: Treixadura, Alb: Albariño,
Bra: Brancellao, Men: Mencía.

To study if there was a significant correlation between NDVI and species richness in the
vineyards of the different AOPs, a CCA (Figure 6A), a TB-PLS (Figure 6B), and a Pearson’s
correlation test were performed on both data sets combined. The TB-PLS also separated
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AOPs like PCA (Figure 5: NDVI data set separately). Regarding the CCA, the NDVI
triplot was not grouped by year, but the NDVI values of each year were grouped closely,
pointing towards the Rías Baixas AOP and the 2015 and 2014 quadrats. Accordingly, taking
the whole data set over the three years, Pearson’s linear correlation test results showed
significant differences (p = 0.0119) in the correlation NDVI–S (r = 0.3894). Furthermore,
this correlation between NDVI and species richness increased to a value of r = 0.6804
(p = 0.0105) when comparing the 2014 data. However, no significant differences in Pearson’s
linear correlation were found in 2013 and 2015 separately, although, in the latter year,
the Pearson’s r value was 0.4903, and the p-value was remarkably close to significance
(p = 0.0751).

Figure 6. CCA (A) and TB-PLS (B) of the correlation between NDVI and regional yeast species
diversity in the four AOPs during the three consecutive years examined. AOPs: Mo: Monterrei, Ri:
Ribeiro, RS: Ribeira Sacra, RB: Rías Baixas.

Finally, to further assess the influence of terroir on NDVI for each year concerning the
different AOPs, we performed a CCA of the influence of several factors that characterize
terroir, such as climatic factors, altitude, orientation, canopy, and soil management on
the NDVI for each year in relation to the different AOPs during the years of the study
(Figure 7). The results showed the factors that most influenced or presented the highest
correlation between NDVI and species richness were temperature (T) and rainfall (R), as
the triplot of these factors point to 2014 and RB (year and AOP with the highest NDVI) and
S15, with 2015 and BR the year and the DO showing the highest species richness.
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Figure 7. CCA of the influence of climatic factors, altitude, orientation, canopy, and soil management
on the NDVI concerning the different AOPs during the three consecutive years examined. Factors: T,
monthly average temperature; C canopy; R, monthly average rainfall; WS, monthly average wind
speed; SM, soil management; RH, monthly average relative humidity; A, altitude; NS, north–south
orientation; EW, east–west orientation; NESW, northeast–southwest orientation. S13, S14, and S15:
yeast species richness in 2013, 2014, and 2015, respectively.

4. Discussion

Firstly, the TB-PLS (Figure 6B) confirmed the separation between AOPs determined in
the PCA (Figure 5) with identical biogeographical separation by pairwise RS-RB and Mo-Ri.
Besides, a correlation between NDVI and S was confirmed, since the NDVI of the three
years in the CCA triplot pointed to the year with higher species richness (2015, together
with 2014) and to the AOP with a higher S (Rías Baixas AOP), without the need to use
the vintage variable. Consequently, Pearson’s correlation, which establishes not only if
there exists a correlation (at p < 0.05) but also a measure of this correlation according to the
r value, showed a moderate and positive correlation between NDVI and species richness
for the whole data set (r = 0.3894, p = 0.0119). Furthermore, Figure 7 results showed that,
relative to NDVI and yeast species richness, the most influential terroir factors studied
in this research were temperature (T) and rainfall (R). It was not surprising, since these
factors increase vegetation and greenness, which affects the NDVI [13], and these factors
are optimal for the development of yeasts as well [19]. Additionally, it is worth noticing
that there is a clear separation between AOPs.

Secondly, to explore the temporal stability in the relationship between NDVI and
yeasts, each year data were analyzed separately. There was a good and positive correlation
in 2014 (r = 0.6804, p = 0.0105), the year of the highest rainfall (Table 1). Although no
significant differences were found in 2013 and 2015, the r value was high, and the p-value
close to significance (r = 0.4903, p = 0.0751 in 2015). Furthermore, Figures 4 and 6A seem
to reveal a stable trend each year, showing that the higher the NDVI value, the higher the
yeast species richness, except for the Ribeiro samples in 2013 and 2014. This result can be
explained since the NDVI represents the vegetative development of a specific group of
grapevines within each pixel [13] and, as well as the NDVI, yeasts are affected by factors
such as human intervention [30] or variations in groundcover vegetation and soil [31].
Moreover, plant growth and development depend on the terroir, i.e., the plant environment,
linked to different factors such as soil, crop management, climate, and others. This fact is
already included in the European legislation in force [32], showing that plant growth and
development within an AOP (and therefore, the quality and characteristics of the grapes)
are exclusively due to a particular geographical environment with its inherent natural and
human factors and depend on a specific place, region, or country. Therefore, it is reasonable
to suggest that (i) NDVI can identify changes in yeasts species, since a larger leaf surface
could generate a microclimate or the most appropriate conditions in the stages of higher
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yeast proliferation due to several factors such as the greater presence of birds and insect
vectors, a better regulation and conservation of optimal temperature and humidity, shading
or healthier vegetation, air-wind passage, and machinery [19,33–35] and (ii) these changes
have an effect on terroir since microbial populations are part of it [19–21].

Additionally, it must be noted that vineyards are different and can present different
characteristics such as groundcover vegetation or more soil proportion that affect the NDVI
values, but also the vegetation and characteristics within the pixel area and, therefore, the
plant environment and yeast population [36], being consistent with the central hypothesis
of the study. For example, RS and RB had the highest S and NDVI values, although for
totally different reasons: RS has adventitious vegetation, and the grapevines are isolated
without trellising, whereas the grapevines in RB are trained using overhead trellis and
cover almost the whole area. In pairwise RS–RB, the PERMANOVA test of the NDVI found
no significant differences, which statistically supports this conclusion.

Furthermore, higher species richness was found in Rías Baixas and Ribeira Sacra,
the AOPs with the highest NDVI values (Figure 4). The separation between AOPs in
the PCA and the PLS grouped the samples in the pairwise RB–RS, and Mo–Ri reinforced
the biogeographical approach or differentiation of the Galician terroir. These findings
are consistent with what has already been reported in previous works, which showed
the different distribution of yeasts in the four AOPs in the same vineyards [27,29], but
they also add a correlation between NDVI (terroir) and yeasts. This result is important
since the contribution of the microbiota in defining terroir is currently in the spotlight of
scientific research due to the abundance, equilibrium, and predominance of certain yeast
species during the fermentation are essential [37]. Furthermore, the association of certain
species with specific conditions such as farming systems or regions, and even beyond
anthropogenic factors, has also been studied by other authors [30,38–42].

Finally, it is interesting to note that although the NDVI varies from year to year, the
difference between vineyards remains relatively constant (Figure 3); therefore, NDVI seems
to be a stable factor over time. This feature is critical for developing a valuable Remote
Sensing tool for monitoring and defining parameters related to terroir [43], such as AOP or
yeast level.

Other authors have reported the presence of regionally differentiated communities of
yeasts associated with grapes and terroir and the importance of microbial populations for
the regional identity of wine [44], and our results support the existence of biogeographical
patterns in yeast populations linked to terroir factors implicit in the NDVI (such as climate,
soils, or agronomic practices of each region) as a regional discriminator capable of pro-
viding unique quality and typicity to wines [20,24,37,44,45]. Therefore, the importance of
predicting and better understanding the existence of regionally differentiated communities
of yeasts associated with grapes and terroir and the possible existence of a microbial terroir
warrant further research and support the need for the present research.

5. Conclusions

The main objective of this work was to analyze the potential use of spatio-temporal
analysis of satellite multispectral imagery to detect differences in terroir and yeast popula-
tion due to AOP according to NDVI variations. The results suggest that it is possible to
use Remote Sensing for AOP delimitation, showing that: (i) satellite imagery can establish
differences in terroir and can help to predict it at yeast species richness level, (ii) the higher
the NDVI, the higher the yeast species richness during the same year, probably linked to
the a higher vegetation in the pixel area, and (iii) although there was no significance in the
differences in the years, the relationship between NDVI, terroir, and yeasts seems to show a
stable trend over the years. In addition, the most influential terroir factors regarding NDVI
and species richness were temperature and rainfall. This study is valuable, since terroir
affects grapevines and wine differentiation and characterization, so it is worth analyzing
these factors using new technologies.
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Although the results are promising, it is necessary to validate these results in more
vineyards within each AOP. Furthermore, it might be worthwhile to analyze whether these
results can be extended to other AOP in Spain, Europe, or worldwide. In further studies,
it might be interesting to explore the potential of other satellite imagery sources such as
Sentinel-2, the use of other vegetation indices that include a background adjustment factor,
such as SAVI, or even develop new indexes that help to classify AOP or yeast characteristics.
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