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Abstract: Topological indices are numeric quantities that describes the topology of molecular structure in
mathematical chemistry. An important area of applied mathematics is the chemical reaction network
theory. Real-world problems can be modeled using this theory. Due to its worldwide applications,
chemical networks have attracted researchers since their foundation. In this report, some silicate and
oxide networks are studied, and exact expressions of some newly-developed neighborhood degree-based
topological indices named as the neighborhood Zagreb index (MN), the neighborhood version of the
forgotten topological index (FN), the modified neighborhood version of the forgotten topological index
(F∗N), the neighborhood version of the second Zagreb index (M∗2 ), and neighborhood version of the hyper
Zagreb index (HMN) are obtained for the aforementioned networks. In addition, a comparison among
all the indices is shown graphically.
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1. Introduction

Networks connect nodes that are somehow interconnected. Numerous personal computers connected
together form a network. Cell phone users create a network. The networking process involves examining
the best way to implement a network. Cheminformatics is a new area of research in which chemistry,
mathematics, and information science are combined. That is how it caught the attention of researchers
around the world. In this paper, we consider different silicate and oxide networks. The most abundant
minerals in the Earth’s crust are silicates. In most frequently-found silicates, including almost all silicate
minerals found in the crust of the Earth, each silicon atom comprises the center of a tetrahedron (Figure 1),
the corners of which are occupied by oxygen atoms, connected to it by single covalent bonds according
to the octet rule. Silicates are obtained by fusing metal oxides or metal carbonates from sand. We can
get various silicate structures by combining different tetrahedron silicates. Similarly, silicate networks
are built by different silicate structures. The oxide networks are obtained by removing silicon atoms
from the center of tetrahedra. Here, we also consider the copper (II) oxide (cupric oxide) network.
Copper has enormous applications in medical science. It plays an important role in the synthesis and
stabilization of skin proteins, and it also has potent biocidal properties [1]. The copper (II) oxide (cupric
oxide) forms an inorganic chemical compound CuO. This mineral is important in animals and plants.
Copper (II) oxide is utilized in mineral and vitamin supplements as a copper source and is regarded as safe.
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Figure 1. Silicate tetrahedra (SiO4).

Molecular graphs are pictorial models of chemical compounds, assigning atoms as nodes and chemical
bonds as edges. Throughout this report, we consider only molecular graphs [2–4]. We consider V(G) and
E(G) as vertex and edge sets, respectively, for a graph G. The degree of a vertex u ∈ V(G), denoted by
dG(u), is the number of edges that are incident to u in G. We say that a node u is a neighbor of another
node v if u is adjacent to v in G. Here, δG(v) represents the totality of degrees of all neighbors of v in G,
i.e.,

δG(v) = ∑
u∈NG(v)

dG(u),

where NG(v) = {u ∈ V(G) : uv ∈ E(G)}. Graph theory creates a link between mathematics and chemistry
by a useful tool named the topological index. A topological index is a real number associated with a
graph obtained by certain rules such that two isomorphic graphs have the same topological index. It
characterizes the topology of molecular structure. Topological indices play a vital role in the quantitative
structure–property relationship (QSPR) and the quantitative structure–activity relationship (QSAR) models
to predict different physico-chemical properties and bioactivity that help in drug discovery. Its applications
in various fields such as nano-science, biotechnology, etc., are also remarkable. That is why it has attracted
researchers’ attention worldwide. The journey of topological indices started when chemist Harold Wiener
introduced the Wiener index [5] in 1947. Several topological indices have been introduced over the past
decades based on the vertex degree. Inspired by the works [6–8], we designed some new degree-based
topological indices [9,10] having nice correlations with entropy and the acentric factor. Their mean isomer
degeneracy is also remarkable. These indices are defined as follows.

The neighborhood Zagreb index is denoted by MN(G) and is defined as:

MN(G) = ∑
v∈V(G)

δG(v)2.

The neighborhood version of the forgotten topological index is denoted by FN(G) and is defined as:

FN(G) = ∑
v∈V(G)

δG(v)3.

The modified neighborhood version of the forgotten topological index is denoted by F∗N(G) and is
defined as:

F∗N(G) = ∑
uv∈E(G)

[δG(u)2 + δG(v)2].
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The neighborhood version of the second Zagreb index is denoted by M∗2(G) and is defined by:

M∗2(G) = ∑
uv∈E(G)

[δG(u)δG(v)].

The neighborhood version of the hyper Zagreb index is denoted by HMN(G) and is defined by:

HMN(G) = ∑
uv∈E(G)

[δG(u) + δG(v)]2.

In [11–19], topological indices for different chemically important graphs were discussed. Baig et al. [20]
derived topological indices for some silicate and oxide networks. Javaid et al. [21] discussed the topological
properties of rhombus-type silicate and oxide networks. In [22], topological indices for the copper (II) oxide
network were obtained. For further work related to this field, readers are referred to [23–26]. Motivated
by those works, in this paper, we obtain some exact expressions of five novel indices described above for
some silicate and oxide networks and compare the results graphically.

This paper is organized as follows. In the next section, the motivation behind this work is described.
The usefulness of these indices is illustrated here. The computation of the topological indices for
different silicate and oxide networks using vertex and edge partition procedures is presented in Section 3.
The graphical representation of the results is shown here using MATLAB (9.2, The MathWorks, Inc., Natick,
MA, USA) and Maple (2015.1, Maplesoft, Waterloo, ON Canada) software. We conclude this report with a
comparative study of the indices for different networks under consideration.

2. Motivation

In order to determine the usefulness of a topological index to predict the physico-chemical behavior
of a chemical compound, the correlation coefficient (r) between the physico-chemical properties and
topological indices is calculated. In QSPR/QSAR analysis, the topological indices for which r2 exceeds 0.8
are very useful. In [9,10], it was shown that the r2 values of five topological indices MN , FN , F∗N , M∗2 , and
HMN have excellent correlations with entropy and the acentric factor for octane isomers. The r2 values
of those indices with entropy are 0.989, 0.88, 0.868, 0.926, and 0.879, respectively. The r2 values of those
indices with the acentric factor are 0.907, 0.989, 0.952, 0.819, and 0.961, respectively. Linear correlations of
these indices with entropy and the acentric factor are depicted in Figure 2. The above-mentioned indices
are therefore effective in QSPR/QSAR analysis with high statistical accuracy. Furthermore, their mean
isomer degeneracy is also remarkable in comparison with other degree-based topological indices [9,10],
which provides assurance of their good isomer discrimination ability. Calculating these indices for distinct
chemically-important networks and composite graphs is therefore worthwhile. Here, we consider some
oxide and silicate networks.
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Figure 2. Linear fitting of five topological indices with entropy and the acentric factor.

3. Computation of Topological Indices

In this section, we first discuss the vertex and edge partition of the networks, and then, using that
partition, we obtain five topological indices discussed in the previous section for the networks. Here,
we consider dominating silicate (DSL(n)) and oxide (DOX(n))) networks, regular triangulene silicate
(RTSL(n)) and oxide (RTOX(n)) networks, rhombus silicate (RHSL(n)) and oxide (RHOX(n)) networks,
and the copper (II) oxide (CuO) network. The construction procedures of these networks are discussed
in detail in [21,22,26]. The first three types of networks can be constructed from a honeycomb network
HC(n) of dimension n (number of hexagonal layers) [26]. The structure of HC(3) is shown in Figure 3.
To create the vertex and edge partitions, we consider the following notations.

Vi = {u ∈ V(G) : δG(u) = i},

E(p,q) = {uv ∈ E(G) : δG(u) = p, δG(v) = q}.

By |Vi| and |E(p,q)|, we mean the cardinality of the sets Vi and E(p,q), respectively.

Figure 3. Honeycomb network HC(3) of dimension three.

3.1. Dominating Silicate (DSL(n)) and Oxide (DOX(n))) Networks

In this subsection, we obtain the five aforementioned indices for dominating silicate (DSL(n))
and oxide (DOX(n)) networks. The structures of DSL(3) and DOX(3) are depicted in Figures 4 and 5,
respectively. Dominating silicate networks have 45n2− 39n+ 12 nodes and 108n2− 108n+ 36 edges [20,26].
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Dominating oxide networks admit 27n2 − 21n + 6 nodes and 54n2 − 54n + 18 edges [20,26]. Vertex and
edge partitions for dominating silicate networks are as follows.

V(DSL(n)) = V15 ∪V18 ∪V24 ∪V27 ∪V30, (1)

E(DSL(n)) = E(15,15) ∪ E(15,24) ∪ E(15,27) ∪ E(18,27) ∪ E(18,30) ∪ E(24,24)

∪E(24,27) ∪ E(27,30) ∪ E(30,30)

(2)

Vertex and edge partitions for dominating oxide networks are as follows.

V(DOX(n)) = V8 ∪V12 ∪V14 ∪V16, (3)

E(DOX(n)) = E(8,12) ∪ E(8,14) ∪ E(12,12) ∪ E(12,14) ∪ E(14,16) ∪ E(16,16). (4)

Figure 4. Dominating silicate network (DSL(3)).
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Figure 5. Dominating oxide network (DOX(3)).

Theorem 1. The neighborhood Zagreb index (MN) of the dominating silicate (DSL(n)) and oxide (DOX(n)))
networks for n ≥ 2 is given by:

(i) MN(DSL(n)) = 30, 132n2 − 38, 016n + 14, 040,
(ii) MN(DOX(n)) = 6912n2 − 9072n + 3408.

Proof. The general formula of the neighborhood Zagreb index is given by:

MN(G) = ∑
v∈V(G)

δG(v)2.

(i) Let G ∼= DSL(n). Now, applying vertex partition (1) on the definition of the neighborhood Zagreb
index, we get:

MN(G) = ∑
v∈V15

δG(v)2 + ∑
v∈V18

δG(v)2 + ∑
v∈V24

δG(v)2 + ∑
v∈V27

δG(v)2 + ∑
v∈V30

δG(v)2.
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Using Table 1, we obtain:

MN(G) = |V15|(152) + |V18|(182) + |V24|(242) + |V27|(272) + |V30|(302)

= (24n− 12)(152) + (18n2 − 30n + 12)(182) + (6n)(242)

+12(n− 1)(272) + (27n2 − 51n + 24)(302)

= 30, 132n2 − 38, 016n + 14, 040.

Table 1. Vertex partition of dominating silicate networks (DSL(n)) with dimension n.

Vi V15 V18 V24 V27 V30

|Vi| 24n− 12 18n2 − 30n + 12 6n 12(n− 1) 27n2 − 51n + 24

(ii) Let G ∼= DOX(n). Now, using vertex partition (3) and Table 2 on the definition of the neighborhood
Zagreb index, we obtain:

MN(G) = |V8|(82) + |V12|(122) + |V14|(142) + |V16|(162)

= (12n− 6)(82) + (6n)(122) + 12(n− 1)(142)

+(27n2 − 51n + 24)(162).

Table 2. Vertex partition of dominating oxide networks (DOX(n)) with dimension n.

Vi V8 V12 V14 V16

|Vi| 12n− 6 6n 12(n− 1) 27n2 − 51n + 24

After simplifying and arranging the terms, the required result can be obtained easily.

Hence the proof.

Theorem 2. The neighborhood versions of the forgotten topological index (FN) of the dominating silicate (DSL(n))
and oxide (DOX(n))) networks for n ≥ 2 are given by:

(i) FN(DSL(n)) = 833, 976n2 − 1, 151, 820n + 441, 288,
(ii) FN(DOX(n)) = 110, 592n2 − 159, 456n + 62, 304.

Proof. The general formulation of the neighborhood version of the forgotten topological index is given by:

FN(G) = ∑
v∈V(G)

δG(v)3.

(i) Let G ∼= DSL(n). Using vertex partition (1) and Table 1 on the above formula, we have:

FN(G) = (24n− 12)(153) + (18n2 − 30n + 12)(183) + (6n)(243) +

12(n− 1)(273) + (27n2 − 51n + 24)(303)

= 833, 976n2 − 1, 151, 820n + 441, 288.
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(ii) Let G ∼= DOX(n). Using vertex partition (3) and Table 2, the general formula of the FN index gives
the following computation.

FN(G) = (12n− 6)(83) + (6n)(123) + 12(n− 1)(143) +

+(27n2 − 51n + 24)(163)

= 110, 592n2 − 159, 456n + 62, 304.

Hence the proof.

Theorem 3. The modified neighborhood versions of the forgotten topological index (F∗N) of the dominating silicate
(DSL(n)) and oxide (DOX(n))) networks for n ≥ 2 are given by:

(i) F∗N(DSL(n)) = 163, 296n2 − 215, 136n + 80, 676,
(ii) F∗N(DOX(n)) = 27, 648n2 − 37, 824n + 14, 400.

Proof. The general formula of the modified neighborhood version of the forgotten topological index is
given by:

F∗N(G) = ∑
uv∈E(G)

[δG(u)2 + δG(v)2].

(i) Let G be the dominating silicate network with dimension n. Then, applying edge partition (2) on the
definition of the F∗N index, we have:

F∗N(G) = ∑
uv∈E(G)

[δG(u)2 + δG(v)2]

= ∑
uv∈E(15,15)

[δG(u)2 + δG(v)2] + ∑
uv∈E(15,24)

[δG(u)2 + δG(v)2]

+ ∑
uv∈E(15,27)

[δG(u)2 + δG(v)2] + ∑
uv∈E(18,27)

[δG(u)2 + δG(v)2]

+ ∑
uv∈E(18,30)

[δG(u)2 + δG(v)2] + ∑
uv∈E(24,24)

[δG(u)2 + δG(v)2]

+ ∑
uv∈E(24,27)

[δG(u)2 + δG(v)2] + ∑
uv∈E(27,30)

[δG(u)2 + δG(v)2]

+ ∑
uv∈E(30,30)

[δG(u)2 + δG(v)2.

Using Table 3, we can obtain:

F∗N(G) = |E(15,15)|(152 + 152) + |E(15,24)|(152 + 242) + |E(15,27)|(152 + 272)

+|E(18,27)|(182 + 272) + |E(18,30)|(182 + 302) + |E(24,24)|(242 + 242)

+|E(24,27)|(242 + 272) + |E(27,30)|(272 + 302) + |E(30,30)|(302 + 302)

= 6(2n− 1)(152 + 152) + (24n)(152 + 242) + 24(n− 1)(152 + 272)

+12(n− 1)|(182 + 272) + (54n2 − 102n + 48)(182 + 302)

+(6)(242 + 242) + 12(n− 1)(242 + 272) + 24(n− 1)(272 + 302)

+(54n2 − 114n + 60)(302 + 302).
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Table 3. Edge partition of dominating silicate networks (DSL(n)) with dimension n.

E(p,q) E(15,15) E(15,24) E(15,27) E(18,27) E(18,30) E(24,24) E(24,27) E(27,30) E(30,30)

|E(p,q)| 6(2n− 1) 24n 24(n− 1) 12(n− 1) 54n2 − 102n + 48 6 12(n− 1) 24(n− 1) 54n2 − 114n + 60

After simplification, the desired result is clear.
(ii) Let G be the dominating silicate network with dimension n.

Now, applying the vertex partition (4) and Table 4 on the definition of the F∗N index, we have:

F∗N(G) = |E(8,12)|(82 + 122) + |E(8,14)|(82 + 142) + |E(12,12)|(122 + 122)

+|E(12,14)|(122 + 142) + |E(14,16)|(142 + 162) + |E(16,16)|(162 + 162)

= (12n)(82 + 122) + 12(n− 1)(82 + 142) + (6)(122 + 122)

+12(n− 1)(122 + 142) + 24(n− 1)(142 + 162)

+(54n2 − 114n + 60)(162 + 162)

= 27, 648n2 − 37, 824n + 14, 400.

Table 4. Edge partition of dominating oxide networks (DOX(n)) with dimension n.

E(p,q) E(8,12) E(8,14) E(12,12) E(12,14) E(14,16) E(16,16)

|E(p,q)| 12n 12(n− 1) 6 12(n− 1) 24(n− 1) 54n2 − 114n + 60

Hence the theorem.

Theorem 4. The neighborhood versions of the second Zagreb index (M∗2 ) of the dominating silicate (DSL(n)) and
oxide (DOX(n))) networks for n ≥ 2 are given by:

(i) M∗2(DSL(n)) = 77, 760n2 − 103, 572n + 39, 258,
(ii) M∗2(DOX(n)) = 13, 824n2 − 19, 296n + 7488.

Proof. The general formula of the neighborhood version of the second Zagreb index is given by:

M∗2(G) = ∑
uv∈E(G)

[δG(u)δG(v)].

(i) Let G ∼= DSL(n). Now, applying the edge partition (2) and Table 3 on the definition of the
neighborhood version of the second Zagreb index, we get the desired result as follows.

M∗2(G) = 6(2n− 1)(15.15) + 24n(15.24) + 24(n− 1)(15.27) + 12(n− 1)(18.27)

+(54n2 − 102n + 48)(18.30) + 6(24.24) + 12(n− 1)(24.27)

+24(n− 1)(27.30) + (54n2 − 114n + 60)(30.30)

= 77, 760n2 − 103, 572n + 39, 258.



J 2019, 2 393

(ii) Let G ∼= DOX(n). Applying the edge partition (4) and Table 4 on the definition of the neighborhood
version of the second Zagreb index, we get the desired result as follows.

M∗2(G) = 12n(8.12) + 12(n− 1)(8.14) + 6(12.12) + 12(n− 1)(12.14)

+24(n− 1)(14.16) + (54n2 − 114n + 60)(16.16)

= 13, 824n2 − 19, 296n + 7488.

Hence the proof.

Theorem 5. The neighborhood versions of the hyper Zagreb index (HMN) of the dominating silicate (DSL(n))
and oxide (DOX(n))) networks for n ≥ 2 are given by:

(i) HMN(DSL(n)) = 318, 816n2 − 422, 280n + 159, 192,
(ii) HMN(DOX(n)) = 55, 296n2 − 76, 416n + 29, 376.

Proof. (i) Let G ∼= DSL(n). Now, applying edge partition (2) and Table 3 on the definition of the HMN
index, we get the following computation.

HMN(G) = ∑
uv∈E(G)

[δG(u) + δG(v)]2

= 6(2n− 1)(15 + 15)2 + (24n)(15 + 24)2 + 24(n− 1)(15 + 27)2

+12(n− 1)((18 + 27)2 + (54n2 − 102n + 48)(18 + 30)2

+6(24 + 24)2 + 12(n− 1)(24 + 27)2 + 24(n− 1)(27 + 30)2

+(54n2 − 114n + 60)(30 + 30)2

= 318, 816n2 − 422, 280n + 159, 192.

(ii) Let G ∼= DOX(n). Now, applying edge partition (4) and Table 4 on the definition of the HMN index,
we get the following computation.

HMN(G) = ∑
uv∈E(G)

[δG(u) + δG(v)]2

= (12n)(8 + 12)2 + 12(n− 1)(8 + 14)2 + 6(12 + 12)2

+12(n− 1)((12 + 14)2 + 24(n− 1)(14 + 16)2

+(54n2 − 114n + 60)(16 + 16)2

= 55, 296n2 − 76, 416n + 29, 376.

Hence the theorem.

Five topological indices for DSL(n) and DOX(n) are shown graphically in Figure 6.



J 2019, 2 394

Figure 6. Different topological indices for dominating (a) silicate and (b) oxide networks.

3.2. Regular Triangulene Silicate (RTSL(n)) and Oxide (RTOX(n)) Networks

In this subsection, we obtain the five aforementioned indices for regular triangulene silicate (RTSL(n))
and oxide (RTOX(n)) networks. The structures of RTSL(5) and RTOX(5) are shown in Figures 7 and 8,
respectively. Using the method described in [26], it can be said that regular triangulene silicate networks
have 5n2+15n+2

2 nodes and 3n2 + 31n− 28 edges. The regular triangulene oxide network admits 3n2+9n+2
2

nodes and 3n2 + 6n edges [23,26]. Vertex and edge partitions for the regular triangulene silicate network
are as follows.

V(RTSL(n)) = V12 ∪V15 ∪V18 ∪V24 ∪V27 ∪V30, (5)

E(RTSL(n)) = E(12,12) ∪ E(12,15) ∪ E(12,24) ∪ E(15,15) ∪ E(15,24) ∪ E(15,27) ∪ E(18,24)

∪E(18,27) ∪ E(18,30) ∪ E(24,24) ∪ E(24,27) ∪ E(27,27) ∪ E(27,30) ∪ E(30,30).
(6)

Figure 7. Regular triangulene silicate network (RTSL(5)).
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Figure 8. Regular triangulene oxide network (RTOX(5)).

Vertex and edge partitions for the regular triangulene oxide network are as follows.

V(RTOX(n)) = V6 ∪V8 ∪V12 ∪V14 ∪V16, (7)

E(RTOX(n)) = E(6,6) ∪ E(6,12) ∪ E(8,12) ∪ E(8,14) ∪ E(12,12) ∪ E(12,14) ∪ E(14,14) ∪ E(14,16) ∪ E(16,16). (8)

Theorem 6. The neighborhood Zagreb index (MN) of the regular triangulene silicate (RTSL(n)) and oxide
(RTOX(n))) networks for n ≥ 2 is given by:

(i) MN(RTSL(n)) = 1674n2 + 1674n− 702,
(ii) MN(RTOX(n)) = 384n2 + 216n− 208.

Proof. The general formula of the neighborhood Zagreb index is given by:

MN(G) = ∑
v∈V(G)

δG(v)2.

(i) Let G ∼= RTSL(n). Now, apply vertex partition (5) and Table 5 on the definition of the neighborhood
Zagreb index, we get:

MN(G) = |V12|(122) + |V15|(152) + |V18|(182) + |V24|(242)

+|V27|(272) + |V30|(302)

= (4)(122) + (6n− 2)(152) + (n2)(182) + (4)(242) + (6n− 8)(272)

+(
3n2 − 9n + 6

2
)(302).
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Table 5. Vertex partition of regular triangulene silicate networks (RTSL(n)) with dimension n.

Vi V12 V15 V18 V24 V27 V30

|Vi| 4 6n− 2 n2 4 6n− 8 3n2−9n+6
2

After simplification, the desired result can be obtained easily.
(ii) Let G ∼= RTOX(n). Now, using vertex partition (7) and Table 6 on the definition of the neighborhood

Zagreb index, we obtain:

MN(G) = |V6|(62) + |V8|(82) + |V12|(122) + |V14|(142) + |V16|(162)

= (4)(62) + (3n− 2)(82) + (4)(122) + (6n− 8)(142)

+(
3n2 − 9n + 6

2
)(162).

Table 6. Vertex partition of regular triangulene oxide networks (RTOX(n)) with dimension n.

Vi V6 V8 V12 V14 V16

|Vi| 4 3n− 2 4 6n− 8 3n2−9n+6
2

After simplifying and arranging the terms, the required result can be obtained easily.

Hence the proof.

Theorem 7. The neighborhood version of the forgotten topological index (FN) of the regular triangulene silicate
(RTSL(n)) and oxide (RTOX(n))) networks for n ≥ 2 is given by:

(i) FN(RTSL(n)) = 46, 332n2 + 16, 848n + 113, 994,
(ii) FN(RTOX(n)) = 6144n2 − 432n− 2912.

Proof. The general formulation of the neighborhood version of the forgotten topological index is given by:

FN(G) = ∑
v∈V(G)

δG(v)3.

(i) Let G be a regular triangulene silicate network having dimension n. Using vertex partition (5) and
Table 5 on the above formula, we have:

FN(G) = (4)(123) + (6n− 2)(153) + (n2)(183) + (4)(243) +

(6n− 8)(273) + (
3n2 − 9n + 6

2
)(303)

= 46, 332n2 + 16, 848n + 113, 994.
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(ii) Let G be a regular triangulene oxide network having dimension n. Using vertex partition (7) and
Table 6, the general formula of the FN index gives the following computation.

FN(G) = (4)(63) + (3n− 2)(83) + (4)(123) + (6n− 8)(143)

+(
3n2 − 9n + 6

2
)(163)

= 6144n2 − 432n− 2912.

Hence the proof.

Theorem 8. The modified neighborhood version of the forgotten topological index (F∗N) of the regular triangulene
silicate (RTSL(n)) and oxide (RTOX(n))) networks for n ≥ 2 is given by:

(i) F∗N(RTSL(n)) = 5400n2 + 28, 278n− 38, 394,
(ii) F∗N(RTOX(n)) = 1536n2 + 480n− 864.

Proof. The general formula of the modified neighborhood version of the forgotten topological index is
given by:

F∗N(G) = ∑
uv∈E(G)

[δG(u)2 + δG(v)2].

(i) Let G ∼= RTSL(n). Then, applying edge partition (6) and Table 7 on the definition of the F∗N index,
we have:

F∗N(G) = (2)(122 + 122) + (4)(122 + 152) + (4)(122 + 242) + (3n− 2)(152

+152) + (10)(152 + 242) + (12n− 16)(152 + 272) + (2)(182 +

242) + (6n− 8)(182 + 272) + (10n− 24)(182 + 302) + (1)(242

+242) + (6)(242 + 272) + (6n− 7)(272 + 272) + (6n− 12)(272 +

302) + 3(n− 2)2(302 + 302).

After simplification and arranging the terms, we can get the desired result.
(ii) Let G ∼= RTOX(n). Now, applying the edge partition (8) and Table 8 on the definition of the F∗N

index, we have:

F∗N(G) = |E(6,6)|(62 + 62) + |E(6,12)|(62 + 122) + |E(8,12)|(82 + 122)

+|E(8,14)|(82 + 142) + |E(12,12)|(122 + 122) + |E(12,14)|(122 + 142)

+|E(14,14)|(142 + 142) + |E(14,16)|(142 + 162) + |E(16,16)|(162 + 162)

= (2)(62 + 62) + (4)(62 + 122) + (4)(82 + 122) + (6n− 8)(82 + 142)

(1)(122 + 122) + (6)(122 + 142) + (6n− 9)(142 + 142)

+(6n− 12)(142 + 162) + (3n2 − 12n + 12)(162 + 162)

= 1536n2 + 480n− 864.
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Table 7. Edge partition of regular triangulene silicate networks (RTSL(n)) with dimension n.

E(p,q) E(12,12) E(12,15) E(12,24) E(15,15) E(15,24) E(15,27) E(18,24) E(18,27) E(18,30) E(24,24) E(24,27) E(27,27) E(27,30) E(30,30)

|E(p,q)| 2 4 4 3n− 2 10 12n− 16 2 6n− 8 10n− 24 1 6 6n− 7 6n− 12 3(n− 2)2

Table 8. Edge partition of regular triangulene oxide networks (RTOX(n)) with dimension n.

E(p,q) E(6,6) E(6,12) E(8,12) E(8,14) E(12,12) E(12,14) E(14,14) E(14,16) E(16,16)

|E(p,q)| 2 4 4 6n− 8 1 6 6n− 9 6n− 12 3n2 − 12n + 12

Hence the theorem.

Theorem 9. The neighborhood version of the second Zagreb index (M∗2 ) of the regular triangulene silicate
(RTSL(n)) and oxide (RTOX(n))) networks for n ≥ 2 is given by:

(i) M∗2(RTSL(n)) = 2700n2 + 12, 285n− 16, 713,
(ii) M∗2(RTOX(n)) = 768n2 + 120n− 380.

Proof. The general formula of the neighborhood version of the second Zagreb index is given by:

M∗2(G) = ∑
uv∈E(G)

[δG(u)δG(v)].

(i) Let G be the regular triangulene silicate network having dimension n. Applying the edge partition
(6) and Table 7 on the definition of the neighborhood version of the second Zagreb index, we get the
desired result as follows.

M∗2(G) = 2(12.12) + 4(12.15) + 4(12.24) + (3n− 2)(15.15) + 10(15.24)

+(12n− 16)(15.27) + 2(18.24) + (6n− 8)(18.27) + (10n

−24)(18.30) + 1(24.24) + 6(24.27) + (6n− 7)(27.27)

+(6n− 12)(27.30) + 3(n− 2)2(30.30)

= 2700n2 + 12, 285n− 16, 713.

(ii) Let G be a regular triangulene oxide network having dimension n. Applying the edge partition (8)
and Table 8, on the definition of the neighborhood version of the second Zagreb index, we get the
desired result as follows.

M∗2(G) = 2(6.6) + 4(6.12) + 4(8.12) + 2(3n− 4)(8.14) + 1(12.12) + 6(12.14)

+3(2n− 3)(14.14) + 6(n− 2)(14.16) + 3(n2 − 4n + 4)(16.16)

= 768n2 + 120n− 380.

Hence the proof.

Theorem 10. The neighborhood version of the hyper Zagreb index (HMN) of the regular triangulene silicate
(RTSL(n)) and oxide (RTOX(n))) networks for n ≥ 2 is given by:

(i) HMN(RTSL(n)) = 10, 800n2 + 52, 848n− 71, 820,
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(ii) HMN(RTOX(n)) = 3072n2 + 720n− 1624.

Proof. The general formula of the neighborhood version of the hyper Zagreb index is given by:

HMN(G) = ∑
uv∈E(G)

[δG(u) + δG(v)]2.

(i) Let G ∼= RTSL(n). Now, applying edge partition (6) and Table 7 on the definition of the HMN index,
we get the following computation.

HMN(G) = 2(12 + 12)2 + 4(12 + 15)2 + 4(12 + 24)2 + (3n− 2)(15 + 15)2

+10(15 + 24)2 + (12n− 16)(15 + 27)2 + 2((18 + 24)2

+(6n− 8)(18 + 27)2 + (10n− 24)(18 + 30)2 + 1(24 +

24)2 + 6(24 + 27)2 + (6n− 7)(27 + 27)2 + (6n−
12)(27 + 30)2 + 3(n− 2)2(30 + 30)2

= 10, 800n2 + 52, 848n− 71, 820.

(ii) Let G ∼= RTOX(n). Now, applying edge partition (8) and Table 8 on the definition of the HMN index,
we get the following computation.

HMN(G) = 2(6 + 6)2 + 4(6 + 12)2 + 4(8 + 12)2 + (6n− 8)(8 + 14)2

+1(12 + 12)2 + 6(12 + 14)2 + (6n− 12)(14 + 16)2

+(3n2 − 12n + 12)(16 + 16)2

= 3072n2 + 720n− 1624.

Hence the theorem.

Five topological indices for RTSL(n) and RTOX(n) are shown graphically in the Figure 9.

Figure 9. Different topological indices for regular triangulene (a) silicate and (b) oxide networks.

3.3. Rhombus Silicate (RHSL(n)) and Oxide (RHOX(n)) Networks

In this subsection, we obtain the five aforementioned indices for rhombus silicate (RHSL(n)) and
oxide (RHOX(n)) networks. The structures of RHSL(3) and RHOX(3) are shown in Figures 10 and 11,
respectively. For a rhombus silicate network (RHSL(n)) having dimension n, the number of nodes and
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edges is 5n2 + 2n and 12n2, respectively [21]. For a rhombus oxide network (RHOX(n)) having dimension
n, the number of nodes and edges is 3n2 + 2n and 6n2, respectively [21,26]. The vertex and edge partitions
of the rhombus silicate network are as follows.

V(RHSL(n)) = V12 ∪V15 ∪V18 ∪V24 ∪V27 ∪V30, (9)

E(RHSL(n)) = E(12,12) ∪ E(12,24) ∪ E(15,24) ∪ E(18,24) ∪ E(24,27) ∪ E(15,15) ∪ E(18,27)

∪E(27,27) ∪ E(15,27) ∪ E(27,30) ∪ E(18,30) ∪ E(30,30).
(10)

Figure 10. Rhombus-type silicate network (RHSL(3)).

Figure 11. Rhombus-type oxide network (RHOX(3)).

The vertex and edge partitions of the rhombus oxide network are as follows.

V(RHOX(n)) = V6 ∪V8 ∪V12 ∪V14 ∪V16, (11)

E(RHOX(n)) = E(6,6) ∪ E(6,12) ∪ E(8,12) ∪ E(8,14) ∪ E(12,14) ∪ E(14,14) ∪ E(14,16) ∪ E(16,16). (12)



J 2019, 2 401

Theorem 11. The neighborhood Zagreb index (MN) of the rhombus silicate (RHSL(n)) and oxide (RHOX(n)))
networks for n ≥ 2 is given by:

(i) MN(RHSL(n)) = 1548n2 + 3636n− 4932,
(ii) MN(RHOX(n)) = 768n2 − 736n + 2048.

Proof. (i) Let G ∼= RHSL(n). Now, applying vertex partition (9) and Table 9 on the definition of the
neighborhood Zagreb index, we obtain:

MN(G) = |V12|(122) + |V15|(152) + |V18|(182) + |V24|(242) + |V27|(272) + |V30|(302)

= 6(122) + 8(n− 1)(152) + 2(n− 1)2(182) + (4)(242)

+(8n− 12)(272) + (n− 2)(n− 1)(302)

= 768n2 − 736n + 2048.

Table 9. Vertex partition of rhombus silicate networks (RHSL(n)) with dimension n.

Vi V12 V15 V18 V24 V27 V30

|Vi| 6 8(n− 1) 2(n− 1)2 4 8n− 12 (n− 2)(n− 1)

(ii) Let G ∼= RHOX(n). Now, using vertex partition (11) and Table 10 on the definition of the
neighborhood Zagreb index, we obtain:

MN(G) = |V6|(62) + |V8|(82) + |V12|(122) + |V14|(142) + |V16|(162)

= 4(62) + 4(n− 1)(82) + 4(122) + (8n− 12)(142)

+(3n2 − 10n + 8)(162).

Table 10. Vertex partition of rhombus oxide networks (RHOX(n)) with dimension n.

Vi V6 V8 V12 V14 V16

|Vi| 4 4(n− 1) 4 8n− 12 3n2 − 10n + 8

After simplifying and arranging the terms, the required result can be obtained easily.
Hence the proof.

Theorem 12. The neighborhood version of the forgotten topological index (FN) of the rhombus silicate (RHSL(n))
and oxide (RHOX(n))) networks for n ≥ 2 is given by:

(i) FN(RHSL(n)) = 38, 664n2 + 80, 136n− 131, 868,
(ii) FN(RHOX(n)) = 12, 288n2 − 16, 960n + 5568.
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Proof. (i) Let G ∼= RHSL(n). Using vertex partition (9) and Table 9 on the above formula, we have:

FN(G) = 6(123) + 8(n− 1)(153) + 2(n− 1)2(183) + (4)(243)

+(8n− 12)(273) + (n− 2)(n− 1)(303).

After simplification and arranging the terms, the required result is obtained.
(ii) Let G ∼= RHOX(n). Using vertex partition (11) and Table 10, the general formula of the FN index

gives the following computation.

FN(G) = 4(63) + 4(n− 1)(83) + 4(123) + (8n− 12)(143)

+(3n2 − 10n + 8)(163).

= 768n2 − 736n + 2048.

Hence the proof.

Theorem 13. The modified neighborhood version of the forgotten topological index (F∗N) of the rhombus silicate
(RHSL(n)) and oxide (RHOX(n))) networks for n ≥ 2 is given by:

(i) F∗N(RHSL(n)) = 18, 144n2 − 17, 496n + 5472,
(ii) F∗N(RHOX(n)) = 3072n2 − 3456n + 712.

Proof. The general formula of the modified neighborhood version of the forgotten topological index is
given by:

F∗N(G) = ∑
uv∈E(G)

[δG(u)2 + δG(v)2].

(i) Let G ∼= RHSL(n). Then, applying vertex partition (10) and Table 11 on the definition of the F∗N
index, we have:

F∗N(G) = 6(122 + 122) + 6(122 + 242) + 8(152 + 242) + 2(182 + 242)

+8(242 + 272) + 4(n− 1)(152 + 152) + 4(2n− 3)(182 + 272)

+8(n− 2) + 2(272 + 272) + 8(2n− 3)(152 + 272)

+8(n− 2)(272 + 302) + 2(n− 2)(3n− 4)(182 + 302)

+6(n− 2)2(302 + 302)

= 18, 144n2 − 17, 496n + 5472.

Table 11. Edge partition of rhombus silicate networks (RHSL(n)) with dimension n.

E(p,q) E(12,12) E(12,24) E(15,24) E(15,27) E(18,24) E(18,27) E(24,27) E(15,15) E(27,27) E(27,30) E(18,30) E(30,30)

|E(p,q)| 6 6 8 8(2n− 3) 2 4(2n− 3) 8 4(n− 1) 8(n− 2) + 2 8(n− 2) 2(n− 2)(3n− 4) 6(n− 2)2
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(ii) Let G ∼= RHOX(n). Now, applying the vertex partition (12) and the Table 12 on the definition of the
F∗N index, we have:

F∗N(G) = 2(62 + 62) + 4(62 + 122) + 4(82 + 122) + 4(2n− 3)(82 + 142)

+8(122 + 142) + 2(4n− 7)(142 + 142) + 8(n− 2)(142 + 162)

+6(n− 2)2(162 + 162)

= 3072n2 − 3456n + 712.

Table 12. Edge partition of rhombus oxide networks (RHOX(n)) with dimension n.

E(p,q) E(6,6) E(6,12) E(8,12) E(8,14) E(12,14) E(14,14) E(14,16) E(16,16)

|E(p,q)| 2 4 4 4(2n− 3) 8 2(4n− 7) 8(n− 2) 6(n− 2)2

Hence the theorem.

Theorem 14. The neighborhood versions of the second Zagreb index (M∗2 ) of the rhombus silicate (RHSL(n)) and
oxide (RHOX(n))) networks for n ≥ 2 are given by:

(i) M∗2(RHSL(n)) = 8640n2 − 8820n + 2142,
(ii) M∗2(RHOX(n)) = 1536n2 − 1888n− 784.

Proof.

(i) Let G be the rhombus-type silicate network having dimension n. Applying the edge partition (10)
and Table 11,on the definition of the neighborhood version of the second Zagreb index, we get the
desired result as follows.

M∗2(G) = 6(12.12) + 6(12.24) + 8(15.24) + 2(18.24) + 8(24.27) + 4(n− 1)(15.15)

+4(2n− 3)(18.27) + ((n− 2) + 2)(27.27) + 8(2n− 3)(15.27)

+8(n− 2)(27.30) + 2(n− 2)(3n− 4)(18.30) + 6(n− 2)2(30.30)

= 8640n2 − 8820n + 2142.

(ii) Let G be the rhombus-type oxide network having dimension n. Applying the edge partition (12) and
Table 12 on the definition of the neighborhood version of the second Zagreb index, we get the desired
result as follows.

M∗2(G) = 2(6.6) + 4(6.12) + 4(8.12) + 4(2n− 3)(8.14)

+8(12.14) + 2(4n− 7)(14.14) + 8(n− 2)(14.16) + 6(n− 2)2(16.16)

= 1536n2 − 1888n− 784.

Theorem 15. The neighborhood versions of the hyper Zagreb index (HMN) of the rhombus silicate (RHSL(n))
and oxide (RHOX(n))) networks for n ≥ 2 are given by:

(i) HMN(RHSL(n)) = 35, 424n2 − 35, 136n + 7956,
(ii) HMN(RHOX(n)) = 6144n2 − 7232n + 1984.
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Proof.

(i) Let G ∼= RHSL(n). Now, applying edge partition (10) and Table 11, on the definition of the HMN
index, we get the following computation.

HMN(G) = 6(12 + 12)2 + 6(12 + 24)2 + (4n− 4)(15 + 15)2 + 8(15 + 24)2

+(16n− 24)(15 + 27)2 + 2(18 + 24)2 + (8n− 12)(18 + 27)2

+2(n− 2)(3n− 4)(18 + 30)2 + (8n− 14)(27 + 27)2

+(8n− 16)(27 + 30)2 + 6(n− 2)2(30 + 30)2

= 35, 424n2 − 35, 136n + 7956.

(ii) Let G ∼= RHOX(n). Now, applying edge partition (12) and Table 12 on the definition of the HMN
index, we get the following computation.

HMN(G) = 2(6 + 6)2 + 4(6 + 12)2 + 4(8 + 12)2 + (8n− 12)(8 + 14)2

+8(12 + 14)2 + (8n− 14)(14 + 14)2 + (8n− 16)(14 + 16)2

+6(n− 2)2(16 + 16)2

= 6144n2 − 7232n + 1984.

Hence the theorem.

The five topological indices for RHSL(n) and RHOX(n) are shown graphically in Figure 12.

Figure 12. Different topological indices for rhombus-type (a) silicate and (b) oxide network.

3.4. Copper (II) Oxide

We obtain topological indices for copper (II) oxide (CuO) here. Its molecular graph is depicted in
Figure 13. In the CuO structure, the octagons are linked to each other in columns and rows. The connection
between two octagons is achieved by creating one C4 bond between two octagons. It contains 4mn+ 3n+m
nodes and 6mn + 2n edges, where m and n represent the number of octagons in rows and columns,
respectively [22]. The vertex and edge partitions of the copper oxide network are as follows.

V(CuO) = V4 ∪V5 ∪V6 ∪V10 ∪V12, (13)

E(CuO) = E(4,4) ∪ E(4,5) ∪ E(4,6) ∪ E(5,6) ∪ E(6,6) ∪ E(6,10) ∪ E(10,10) ∪ E(10,12). (14)
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Theorem 16. The neighborhood Zagreb index (MN) of copper oxide (CuO) for m, n > 2 is given by:

MN(CuO) = 380mn− 200m− 148n + 92.

Figure 13. Copper oxide (CuO) network with five rows and four columns.

Proof. The general formula of the neighborhood Zagreb index is given by:

MN(G) = ∑
v∈V(G)

δG(v)2.

Let G be a copper oxide network having m rows and n columns. Now, applying vertex partition (13)
and Table 13 on the definition of the neighborhood Zagreb index, we get:

MN(G) = |V4|(42) + |V5|(52) + |V6|(62) + |V10|(102) + |V12|(122)

= (2n + 4)(42) + 4(52) + (mn + 4m + 3n− 10)(62) + (2mn− 2m)(102)

+(mn−m− 2n + 2)(122)

= 380mn− 200m− 148n + 92.

Table 13. Vertex partition of copper oxide (CuO) with m rows and n columns.

Vi V4 V5 V6 V10 V12

|Vi| 2n + 4 4 mn + 4m + 3n− 10 2mn− 2m mn−m− 2n + 2

Hence the proof.

Theorem 17. The neighborhood version of the forgotten topological index (FN) of copper oxide (CuO) for m, n > 2
is given by:

FN(CuO) = 3944mn− 2864m− 2680n + 2052.
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Proof. Applying vertex partition (13) and Table 13 on the definition of the neighborhood version of the
forgotten topological index, the required result can be obtained easily like the previous proof.

Theorem 18. The modified neighborhood version of the forgotten topological index (F∗N) of copper oxide (CuO) for
m, n > 2 is given by:

F∗N(CuO) = 1248mn− 816m− 672n + 508.

Proof. Let G be a copper oxide network with m rows and n columns. Now, by the edge partition (14) and
Table 14, we have from the general formulation of F∗N the following.

F∗N(G) = |E(4,4)|(42 + 42) + |E(4,5)|(42 + 52) + |E(4,6)|(42 + 62) + |E(5,6)|(52

+62) + |E(6,6)|(62 + 62) + |E(6,10)|(62 + 102)

+|E(10,10)|(102 + 102) + |E(10,12)|(102 + 122)

= (4)(42 + 42) + (4)(42 + 52) + (4n− 4)(42 + 62) + (4)(52 + 62)

+(6m− 10)(62 + 62) + (2mn− 2m + 2n− 2)(62 + 102)

+(4n− 4)(102 + 102) + (4mn− 4m− 8n + 8)(102 + 122).

Table 14. Edge partition of copper oxide (CuO) with m rows and n columns.

E(p,q) E(4,4) E(4,5) E(4,6) E(5,6) E(6,6) E(6,10) E(10,10) E(10,12)

|E(p,q)| 4 4 4n− 4 4 6m− 10 2mn− 2m + 2n− 2 4n− 4 4mn− 4m− 8n + 8

The required result is obvious after simplification.

Theorem 19. The neighborhood version of the second Zagreb index (M∗2 ) of copper oxide (CuO) for m, n > 2 is
given by:

M∗2(CuO) = 600mn− 384m− 344n + 248.

Proof. Applying edge partition (14) and Table 14 on the the general formula of the M∗2 index, the required
result can be obtained easily like the previous proof.

Theorem 20. The neighborhood version of the hyper Zagreb index (HMN) of copper oxide (CuO) for m, n > 2 is
given by:

HMN(CuO) = 2448mn− 1584m− 1360n + 984.

Proof. Applying edge partition (14) and Table 14 on the the general formula of the M∗2 index, the required
result follows in the same way as before.

The five topological indices for CuO are depicted graphically in Figures 14–16.
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(a) (b)
Figure 14. (a) The MN index and (b) the FN index of the copper oxide network.

(a) (b) (c)
Figure 15. (a) The F∗N index, (b) the M∗2 index, and (c) the HMN index of the copper oxide network.

Figure 16. Different topological indices for the copper oxide network.

4. Remarks and Conclusions

In this work, we derived some explicit expressions of five topological indices, namely the
neighborhood Zagreb index (MN), the neighborhood version of the forgotten topological index (FN),
the modified neighborhood version of the forgotten topological index (F∗N), the neighborhood version
of the second Zagreb index (M∗2 ), and the neighborhood version of the hyper Zagreb index (HMN), for
dominating silicate (DSL(n)) and oxide (DOX(n)) networks, regular triangulene silicate (RTSL(n)) and
oxide (RTOX(n)) networks, rhombus-shaped silicate (RHSL(n)) and oxide (RHOX(n)) networks, and the
copper oxide (CuO) network. Furthermore, we made a comparison graphically among all indices for the
above-mentioned networks. The comparison was made in Figures 6, 9, 12, and 16. The aforementioned
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indices were very close at the initial stage of the given domain and then grew. Among the five topological
indices, the neighborhood version of the forgotten topological index (FN) had the most dominating power
in comparison with the other indices. The neighborhood Zagreb index (MN) grew more slowly than
the other indices. The nature of the neighborhood version of the second Zagreb index (M∗2 ) was close to
the FN index. In comparison to other networks, the HMN index was close to the FN index in RTSL(n).
In RTSL(n), the gap between the Fn and HMN indices was more than the other networks. From the vertical
axis, it was clear that the indices for different networks grew in the following order:

CuO < RTOX(n) < RHOX(n) < RHSL(n) < RTSL(n) < DOX(n) < DSL(n),

where in each case, the indices had the following order:

MN < M∗2 < F∗N < HMN < FN ,

i.e., all the indices behaved differently in each network discussed above. This work will help researchers
working in network science understand the topology of the aforementioned networks. In the future,
we would like to obtain these indices for some other chemical networks, trees, dendrimers, etc.
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