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Abstract: Small-signal models of DC-DC converters are often based on a state-space averaging approach,
from which both control-oriented and other frequency-domain characteristics, such as input or output
impedance, can be derived. Updating these models when extending the converter by filters or non-trivial
loads, or adding control loops, can become a tedious task, however. To simplify this potentially
error-prone process, a modular modeling approach is being proposed in this article. It consists of small
state-space models for certain building blocks of a converter system on the one hand, and standardized
operations for connecting these subsystem models to an overall converter system model on the other
hand. The resulting state-space system model builds upon a two-port converter description and allows
the extraction of control-oriented and impedance characteristics at any modeling stage, be it open loop
or closed loop, single converter or series connections of converters. The ease of creating more complex
models enabled by the proposed approach is also demonstrated with examples comprising multiple
control loops or cascaded converters.

Keywords: DC-DC converters; small-signal modeling; state-space modeling; two-port modeling;
unterminated modeling

1. Introduction

Small-signal modeling of DC-DC converters has been a subject of research for several decades
now, resulting in two main families of modeling techniques: state-space averaging [1] and switch
or circuit averaging [2,3]. State-space averaging has become a broadly used modeling approach for
DC-DC converters [4], and is considered the most effective method for building small-signal models [5].
It continuously received extensions, for example, for converters in discontinuous conduction mode
(DCM) [6,7] or variable-frequency operation [8], and new theoretical results to this day [9].

The typical workflow using state-space averaging (SSA) includes applying Laplace transform and
deriving frequency-domain transfer functions characterizing input/output impedance or control-oriented
behavior [10], which must then be maintained individually. Thus, whenever the converter is being
extended, for example, by control loops, this leads to the tedious and potentially error-prone work of
having to adapt all frequency-domain models separately [11]. Even worse, the underlying state-space
model might have to be derived again if circuit elements (such as an input filter) are added to the converter.
Basso [12] calls this the “pain of the SSA technique”.

For easier modeling, the idea of modular approaches has emerged in the last two decades, be it
for single converters [13], or even working towards automatic modeling solutions for microgrids [14,15].
Building and analyzing models for multi-converter configurations has of course been of increasing interest
since the advent of DC microgrids [4,16], but has been the subject of research long before, especially when
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studying converter interactions in a cascaded source-load setup [17–19]. Matters of particular interest
are impedance analysis [11,20,21], implications for controller design [17,22,23] and, of course, stability
[18,19,24]. It has been pointed out [25,26] that studying detailed dynamic interactions between source and
load converters is important for stability analysis, going beyond constant power load assumptions.

Many existing studies adopt an inverse-hybrid two-port description of converters (also known
as g-parameters) [27], which lends itself well to the behavioral modeling of converters and converter
systems [28,29], especially in the case of unterminated converter models [30–32].

Departing from the prevalent approach of deriving individual frequency-domain transfer functions
for the different aspects of converter (system) modeling, this article proposes creating and maintaining
a single state-space model in the time domain. It encompasses both control-oriented and electrical
characteristics in a two-port description with inverse-hybrid parameters (g-parameters), following existing
good practice and enhanced by additional control inputs as necessary. Whenever needed, of course, all
relevant frequency-domain transfer functions can easily be extracted at any modeling stage from this
model, superseding the necessity of updating individual frequency-domain transfer functions.

In order to relieve the “SSA pain” when building larger models, standardized (and therefore less
error-prone) operations are being proposed for attaching controllers, closing control loops and creating
series-connections of converter subsystems. These subsystems can be passive circuits such as input filters,
open-loop or controlled converters, or even series-connections of converters themselves. In that manner,
the actual modeling effort is reduced to modeling smaller building blocks which can later on be reused
and combined to create larger converter system models.

The remainder of this article is organized as follows: The general modeling approach is presented in
Section 2. Modeling examples for building blocks such as passive components, converters and controllers
are given in the Appendixes A–C, respectively. From these ingredients, a complete model of a converter
system can be built up incrementally. For this purpose, new model connection operations are introduced
in Section 3 (adding control loops to converters) and Section 4 (series-connecting converter subsystems),
which form the main contribution of this article. Finally, examples for modeling a multiloop-controlled
converter and a two-stage converter system are presented in Section 6.

2. Modular Modeling Approach

2.1. Model for Passive Components

For passive components of a converter system, such as an input filter or an electrical load, the two-port
state-space model is given in general form in (1). The number of state variables, and therefore the size of
the matrices A, B, C depends on the order of the respective system, that is, the number of storage elements.

ẋ(t) = A · x(t) +
(

B1 B2

)
·
(

vin(t)
iout(t)

)
(

iin(t)
vout(t)

)
=

(
C1

C2

)
· x(t) +

(
D11 D12

D21 D22

)
·
(

vin(t)
iout(t)

) (1)

Figure 1 illustrates the definition of input and output voltages and currents for a generic two-port
system. Examples for modeling passive subsystems of a converter system are given in Appendix A.
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Figure 1. Generic two-port network. Currents are defined as flowing into the input and output ports.

2.2. Model for Controlled Converters and Converter Systems

Based on Section 2.1, the model for a converter (system) gains at least one additional input: the control
signal ctl(t). For a single DC-DC converter, this will be the duty cycle in most cases. Equation (1) is
therefore enhanced to (2). Examples are given or referenced in Appendix B.

ẋ(t) = A · x(t) +
(

B1 B2 B3

)
·

vin(t)
iout(t)
ctl(t)


(

iin(t)
vout(t)

)
=

(
C1

C2

)
· x +

(
D11 D12 D13

D21 D22 D23

)
·

vin(t)
iout(t)
ctl(t)


(2)

Equation (2) is a very general model. Depending on both the approach for controlling the converter
(such as voltage mode or current mode) as well as the modeling stage during the elaboration of the model,
there are different possible meanings or functions the control signal ctl(t) can possess: duty ratio, peak
or average current reference (in current mode control, if the model only describes the current loop so
far), voltage reference (in voltage mode or if the outer voltage control loop around a current-controlled
converter has been closed), or even the respective open-loop inputs if the control loop has not yet been
closed in the model.

Additionally, (2) is very general in the regard that the model may contain a (series) connection of
several controlled converters. In this case, ctl(t) is a vector containing the individual control loop inputs
for the converters in this model.

When connecting input filters or loads to the model according to (2), its structure remains the same,
therefore (2) is being used both for modeling “bare” converters as well as the final result, that is, a converter
system with one or more controlled converters as well as possible filter and load subsystems.

2.3. Model for Controllers

While controllers—such as a controller for the output voltage or an underlying average current mode
controller—will be modeled in this article in a state-space representation as well, they require a different
treatment and do not fit into the two-port model category. This is due to the fact that even though the
controllers may be realized in analog form by means of electric circuits, they represent an information
flow rather than a power flow. The controller model employed here will be a continuous-time state-space
model given in (3), with a single input (the control error value e) and a single output (the control signal u
of the respective controller). Examples of controllers typically used for converters are given in Appendix
C.

ẋC(t) = AC · xC(t) + BC · e(t)
u(t) = CC · xC(t) + DC · e(t)

(3)
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2.4. Making Connections

The most simple form of a practical converter system consists of the actual “bare” converter (such as
a buck or boost converter), an (optional) input filter and a load, cf. Figure 2. A more complicated case
arises when a second converter is attached as the load system of a first converter.

Input Filter LoadConverter
iin

vin
iout
vout

ctl

Figure 2. Two-port network description consisting of three subsystems: input filter, converter (with a
control input ctl), and the actual load.

In this article, a solution is presented to create a complete system model for arbitrary series connections
of converter subsystems. The generic model ingredients have already been presented in Section 2.1 (passive
components), Section 2.2 (converters), and Section 2.3 (controllers). Two different methods of connecting
these model ingredients to a complete system mode are necessary: (1) connecting a converter with one or
more controllers, which will be presented in Section 3, and (2) connecting (controlled) converter subsystems
or passive subsystems in a series connection, which will be presented in Section 4.

A typical workflow of using the models and methods presented in this article is as follows: (1) create
a converter model (examples in Appendix B), (2) create a controller model (examples in Appendix C) and
connect the controller (Section 3) for every control loop of the converter, (3) make series connections to
further controlled converters (if present, Section 4), (4) create models for input filter and load (examples in
Appendix A) and connect them (Section 4). The latter may, of course, also be connected before connecting
the controller in order to tune the controller according to possible interactions of the converter with source
and load impedances, especially if the system consists only of a single converter.

3. Adding Control Loops to Converter Models

In the following, a general procedure is being described that combines a two-port converter model
featuring one (scalar) control input ctl(t) as given in (2) with a model of the controller according to (3).
Firstly, an open-loop model is being constructed, followed by the closed-loop model, both of which
maintaining the same interface of the general two-port state-space model (2).

The control input ctl(t) of the given converter could be the duty cycle or the set-point of an inner
control loop, such as an inner current control loop. Through the stages of connecting the converter model
with the controller model, the meaning of the model’s control input changes from its original meaning to
the control error value e(t) (open-loop case) and finally the set-point (reference signal) r(t) of the closed
control loop. The interfaces of the respective two-port models are shown in Figure 3.
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Figure 3. Interfaces of the two-port network models with control inputs when adding a controller to a
converter. (a) Open-loop case. (b) Closed-loop case.

In order to obtain the open-loop model, the state variable vector of the converter model must be
enhanced by the state variables of the controller model. In general, a common model structure of the
open-loop and closed-loop models can be given as follows in (4), with subscripts OL and CL distinguishing
the open-loop and closed-loop case.

(
ẋ(t)

ẋC(t)

)
= AOL/CL ·

(
x(t)

xC(t)

)
+ BOL/CL ·

 vin(t)
iout(t)

ctlOL/CL(t)


(

iin(t)
vout(t)

)
= COL/CL ·

(
x(t)

xC(t)

)
+ DOL/CL ·

 vin(t)
iout(t)

ctlOL/CL(t)


with ctlOL/CL(t) =

{
ctlOL(t) = e(t) open-loop case (control error)

ctlCL(t) = r(t) closed-loop case (reference signal)

(4)

The main step required to obtain the A, B, C, D matrices of the open-loop model is to account for the
changed meaning of the control input of the model. The (now internal) control input of the converter must
be connected to the output of the controller, cf. (5).

AOL =

(
A B3 · CC

0m×n AC

)
, BOL =

(
B1 B2 B3 · DC

0m×1 0m×1 BC

)
,

COL =

(
C1 01×m

C2 01×m

)
, DOL =

(
D11 D12 D13 · DC
D21 D22 D23 · DC

) (5)

In (5), n refers to the number of state variables in the converter model, and m to the number of state
variables in the controller model.

When deriving the closed-loop model in the following, it will be assumed that there is no (or only a
negligible) direct feedthrough from the original control input to the desired control variable. If, for example,
the output voltage is the desired control variable, D23 ≈ 0 should hold, which is the case for all converter
types mentioned in this article.
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The B, C, D matrices of the open-loop and closed-loop case are identical, that is, BCL = BOL,
CCL = COL, DCL = DOL. The A matrix of the closed-loop model is computed via (6), which is an equation
known from classical state feedback control.

ACL = AOL − BOL · K (6)

A suitable feedback gain matrix K must be chosen depending on which control loop is being closed,
such as an inner average current loop or an output voltage loop. It is important to note that K is not
being used to design the controller (as in state feedback control), but only to select and feed back the
desired control variable when constructing the closed-loop state-space model. The controller parameters
are contained in the controller model (3). To demonstrate that the choice of K is almost trivial in most
applications, the (probably) most important two cases will be shown in Sections 3.1 and 3.2.

As a final side note, a sensor or filter with non-negligible dynamics in the feedback path can rather
easily be accounted for by extending the converter model with the respective dynamics and choosing the
output of the sensor or filter as the control variable.

3.1. Average Current Mode

For closing a current loop, K must be chosen in order to extract the desired current variable from the
vector of converter system states x(t) and feed it back to the third input of the open-loop converter model,
that is, ctlOL(t). If we, for example, assume for the converter model that the average current is the first
state variable (as in the boost converter example in Appendix B.2), K simply has to be chosen as (7).

K =

(
02×1 02×(n−1+m)

1 01×(n−1+m)

)
(7)

3.2. Voltage Mode or Outer Voltage Loops

If output voltage vout(t) is the desired control variable, which is the case for voltage mode as well as
for an outer voltage loop around a current-controlled converter, K has to be chosen as (8).

K =

(
02×n 02×m

C2 01×m

)
(8)

This assumes that D23 ≈ 0 holds for the uncontrolled converter model, which means that vout(t) can
approximately be extracted from the state variable vector by vout(t) ≈ C2 · x(t).

4. Connecting Converter Models

In order to create a combined state-space model for a series connection of two subsystems (denoted
“source” and “load” here), the respective models for source (superscript S) and load (superscript L) must
be given in the following form:
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ẋS/L(t) = AS/L · xS/L(t) + BS/L ·


vS/L

in (t)

iS/L
out (t)

ctlS/L(t)


(

iS/L
in (t)

vS/L
out (t)

)
= CS/L · xS/L(t) + DS/L ·


vS/L

in (t)

iS/L
out (t)

ctlS/L(t)


(9)

Note that the connection operation introduced in this section works regardless of the number of
control inputs ctl(t) in the source and load models, that is, even without control inputs, as is the case for
passive subsystems such as filters or loads. In these cases, the respective columns of the B and D matrices
must simply be left out in all of the following equations.

The input and output ports of the combined system are the input port of the source subsystem and
the output port of the load subsystem, that is, the following equations hold: iin(t) = iSin(t), vin(t) = vS

in(t),
vout(t) = vL

out(t), and iout(t) = iLout(t), cf. Figure 4. The result is the following combined model (10).

(
ẋS(t)
ẋL(t)

)
= A ·

(
xS(t)
xL(t)

)
+ B ·


vin(t)
iout(t)
ctlS(t)
ctlL(t)


(

iin(t)
vout(t)

)
= C ·

(
xS(t)
xL(t)

)
+ D ·


vin(t)
iout(t)
ctlS(t)
ctlL(t)


(10)

iSout=−iLin

Source LoadvS
out=vL

in

iLout= ioutiin= iSin

vin=vS
in vL

out=vout

ctlS ctlL

Figure 4. Series connection of two two-port networks (source and load). The control inputs ctlS/L(t) are
optional and only present if source or load contain at least one converter, respectively.

The equations of the resulting model can be found by replacing the inner terminal variables of the
two-port series connection, which are not present in (10) anymore, cf. Figure 4. For the inner voltage
vS

out(t) = vL
in(t) and the inner current iSout(t) = −iLin(t) the following equations hold:
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vL
in = vS

out = CS
2 xS + DS

21vS
in + DS

22iSout + DS
23ctlS

= CS
2 xS + DS

21vS
in + DS

22

(
−CL

1 xL − DL
11vL

in − DL
12iLout − DL

13ctlL
)
+ DS

23ctlS

=
1

1 + DL
11DS

22
·
(

CS
2 xS − DS

22CL
1 xL + DS

21vin − DS
22DL

12iout + DS
23ctlS − DS

22DL
13ctlL

)
(11)

iSout = −iLin = −CL
1 xL − DL

11vL
in − DL

12iLout − DL
13ctlL

= −CL
1 xL − DL

11

(
CS

2 xS + DS
21vS

in + DS
22iSout + DS

23ctlS
)
− DL

12iLout − DL
13ctlL

=
−1

1 + DL
11DS

22
·
(

DL
11CS

2 xS + CL
1 xL + DL

11DS
21vin + DL

12iout + DL
11DS

23ctlS + DL
13ctlL

)
(12)

Putting (11) and (12) in the source/load state equations of (9) will now lead to the combined state
equations in (10). Similarly, the output equation of the connected system in (10) is obtained by putting (11)
and (12) in the output equations from (9) for iin(t) = iSin(t) and vout(t) = vL

out(t). The resulting detailed
formulation of the matrix contents for A, B, C, D in (10) is given in (13).

A =


AS − BS

2 DL
11CS

2

1 + DL
11DS

22
− BS

2CL
1

1 + DL
11DS

22

BL
1 CS

2

1 + DL
11DS

22
AL − BL

1 DS
22CL

1

1 + DL
11DS

22

 , C =


CS

1 −
DS

12DL
11CS

2

1 + DL
11DS

22
− DS

12CL
1

1 + DL
11DS

22

DL
21CS

2

1 + DL
11DS

22
CL

2 −
DL

21DS
22CL

1

1 + DL
11DS

22

 ,

B =


BS

1 −
BS

2 DL
11DS

21

1 + DL
11DS

22
− BS

2 DL
12

1 + DL
11DS

22
BS

3 −
BS

2 DL
11DS

23

1 + DL
11DS

22
− BS

2 DL
13

1 + DL
11DS

22

BL
1 DS

21

1 + DL
11DS

22
BL

2 −
BL

1 DS
22DL

12

1 + DL
11DS

22

BL
1 DS

23

1 + DL
11DS

22
BL

3 −
BL

1 DS
22DL

13

1 + DL
11DS

22

 ,

D =


DS

11 −
DS

12DL
11DS

21

1 + DL
11DS

22
− DS

12DL
12

1 + DL
11DS

22
DS

13 −
DS

12DL
11DS

23

1 + DL
11DS

22
− DS

12DL
13

1 + DL
11DS

22

DL
21DS

21

1 + DL
11DS

22
DL

22 −
DL

21DS
22DL

12

1 + DL
11DS

22

DL
21DS

23

1 + DL
11DS

22
DL

23 −
DL

21DS
22DL

13

1 + DL
11DS

22



(13)

It has to be noted that (13) will often be reduced to a simpler form in practical cases since not all
matrix elements of the subsystem matrices are non-zero. Furthermore, (10) and (13) are primarily meant to
be implemented in a computer algebra system or a numerical software package only once and then be
used to conveniently build up a complete model of a DC-DC converter system from simple subsystems in
a fully or semi-automated manner. Compact matrix formulations for (13) can be found by inspection, the
corresponding set of equations is presented in (14).
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A = diag
(

AS, AL
)
−M1 ·MC

B =
(

diag
(

BS
1 , BL

2
)

diag
(

BS
3 , BL

3
) )−M1 ·MD

C = diag
(

CS
1 , CL

2

)
−M2 ·MC

D =
(

diag
(

DS
11, DL

22
)

diag
(

DS
13, DL

23
) )−M2 ·MD

(14)

In (14), the abbreviations defined in (15) were used for recurring terms.

M1 = diag
(

BS
2 , BL

1

)
·
(

DS
22 −1
1 D1

11L

)−1

M2 = diag
(

DS
12, DL

21

)
·
(

DS
22 −1
1 DL

11

)−1

MC = diag
(

CS
2 , CL

1

)
MD =

(
diag

(
DS

21, DL
12
)

diag
(

DS
23, DL

13
) )

(15)

To summarize the connection procedure, all that is required to obtain the connected model from two
given source and load models is to arrange the input, output, and state variables of the resulting system as
given in (10), and compute the A, B, C, D matrices using (13).

5. Summary of the Building-Block Modeling Approach

For convenience, all building block types and connection operations of the modular modeling
approach presented in this article are summarized in this section. Furthermore, the relation of the
developed state-space model to well-known frequency-domain models of converter systems is given.

5.1. Building Block Types

To start with modeling a DC-DC converter or converter system, the first step is to collect all building
blocks, such as models for the bare converter, controllers, filters, loads and so forth. In the modeling
approach presented in this article, there are three different categories of building blocks in terms of their
state-space model representation. For convenience, they are listed again in Table 1. Concrete examples for
these three building block types are given in the Appendixes A–C.
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Table 1. Summary of building block types in terms of their state space equation structure.

Type Equation Definition

Passive components (1)
ẋ(t) = A · x(t) +

(
B1 B2

)
·
(

vin(t)
iout(t)

)
(

iin(t)
vout(t)

)
=

(
C1
C2

)
· x(t) +

(
D11 D12
D21 D22

)
·
(

vin(t)
iout(t)

)

Controlled converters (2)

ẋ(t) = A · x(t) +
(

B1 B2 B3
)
·
vin(t)

iout(t)
ctl(t)


(

iin(t)
vout(t)

)
=

(
C1
C2

)
· x +

(
D11 D12 D13
D21 D22 D23

)
·
vin(t)

iout(t)
ctl(t)


Controllers (3)

ẋC(t) = AC · xC(t) + BC · e(t)
u(t) = CC · xC(t) + DC · e(t)

5.2. Connecting Building Blocks

There are two different kinds of connections that can be made in order to create a converter system
model from smaller building blocks:

1. Connecting converters with passive components or other converters. Since both building blocks for passive
elements as given by (1) and building blocks for converters as given by (2) are two-port models, the
same connection operation can be used for all these cases. The resulting model (10) is obtained by
applying (13).

2. Creating control loops. Connecting a controller, that is, a building block type as given by (3), to a
converter is done by creating an open-loop model (4) using (5). For closing the control loop, the
model’s A matrix must be adapted using (6), with a feedback gain matrix K chosen depending on
the controlled variable, for example, one of (7) or (8) for current or voltage mode control.

All resulting models (connected subsystems, open- or closed-loop models) are of the same structure
as the generic model (2), which means that frequency-domain characteristics as listed in the following
section can be extracted at any modeling stage.

Since the structure and linearity of the resulting state-space models are preserved by the connection
operations, there is no impact on the small-signal modeling accuracy of the building blocks.

5.3. Frequency-Domain Analysis

As mentioned before, one major benefit of the modular state-space modeling approach presented
in this article is that, when needed, frequency-domain transfer functions can easily be obtained at any
modeling stage. Table 2 lists all frequency-domain models that can be extracted from the generic converter
or converter system model (2), regardless of the current modeling state (e.g., with or without closed-loop
control, with or without filters and loads etc.).
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Table 2. Transfer functions than can be obtained from the converter (system)
model (2), cf. Section 2.2, at any modeling stage (e.g., with or without controller).

Name Definition

Control-to-output † Gco(s) =
vout(s)
ctl(s)

= C2 · (sI − A)−1 · B3 + D23

Output impedance Zout(s) =
vout(s)
iout(s)

= C2 · (sI − A)−1 · B2 + D22

Input admittance Yin(s) =
iin(s)
vin(s)

= C1 · (sI − A)−1 · B1 + D11

Forward voltage gain Gv(s) =
vout(s)
vin(s)

= C2 · (sI − A)−1 · B1 + D21

Reverse current gain Gi(s) =
iin(s)
iout(s)

= C1 · (sI − A)−1 · B2 + D12

† If there is more than one control input (after connecting several converters to one
model), the control-to-output transfer function for the k-th control input is obtained
using the B2+k column of the B matrix and D2,(2+k) instead of B3 and D23.

6. Examples

In the following, three modular modeling examples are presented with special emphasis on
demonstrating the systematic methods to extend two-port oriented state-space models of converters
with control loops (method from Section 3, example in Section 6.1) and to create an overall model from
series-connections of subsystems (method from Section 4, examples in Sections 6.2 and 6.3).

It should be noted that the parameterization of converters and controllers in this section was chosen
rather arbitrarily and solely to serve as numerical examples for the modeling methods developed here.
For simplicity, all inductors and capacitors in the following examples are being modeled with a uniform
equivalent series resistance (ESR) value of rL/C = 10 mΩ, unless otherwise noted.

As will be demonstrated, all models developed in these examples can be constructed from already
available modules, thus no manual effort is required regarding the derivation of state-space equations. In
order to illustrate the validity of the models in an intuitive manner, comparisons will be provided with
time-domain results from circuit simulations.

6.1. Buck Converter with Multiloop (I2) Control

The systematic approach to extend a converter model by attaching a control loop (presented in Section
3) opens up the possibility of studying characteristics of converters with multiple control loops in an easy
manner. Therefore, as a first example, a buck converter in peak current mode control will be examined,
which will be extended by a second control loop for the average current (also known as I2 control [33])
and a third outer voltage control loop. Only three steps are necessary to create the complete model from
already available building blocks:

1. As the starting point to build up the complete model, the two-port state-space model for the PCM
buck converter from Reference [34] is being used. The example is parameterized as given in the
following. Operating point: Vin = 24 V, Vout = 12 V, Iout = 2.4 A. Power stage: fSwitch = 50 kHz,
L = 100 µH, C = 100 µF. Peak current mode controller: external ramp of 1.5 A per switching cycle.

2. For the I2 current loop, an additional controller for the average inductor current is being added. A
Type 1 controller with Ki = 20,000 is employed, cf. Appendix C, which is connected to the state-space
model as described in Section 3.1.

3. For the outer voltage control loop, a Type 2 controller with zero at 0.3 kHz, pole at 25 kHz and
Ki = 3000 is being used, cf. Appendix C. It is connected to the model as described in Section 3.2.
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To validate the model in the time domain, it is being compared against a circuit simulation of this
converter/controller configuration with three test cases. Firstly, a reference step of the I2 current control
loop (i.e., using the model after step 2 as given above) is simulated using both the detailed circuit simulation
and the transfer function for the control loop of the average inductor current, which can easily be obtained
from the state-space model (transfer function from the control input to the state variable of the inductor
current). The results are given in Figure 5 and confirm that the dynamics of the average inductor current
under a combined average and peak current mode (I2) control are very well captured by the state-space
model.
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Figure 5. Impact of a reference step 2.4 A→ 2.0 A at t = 0 s on the inductor current of the buck converter
from example Section 6.1 with closed I2-current loop.

As a second test, a reference voltage step is performed using the outer voltage control loop (i.e., with
the complete model after step 3). The results are given in Figure 6 and, again, the circuit simulation and
state-space model agree very well.
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Figure 6. Reference step 13 V→ 12 V at t = 0 s of the buck converter from example Section 6.1 with closed
voltage loop and underlying I2 current control.

Finally, +25% load step is being applied. The results in Figure 7 once more confirm that the state-space
model captures the dynamics of the converter under this multiloop control configuration very well.

Again, it should be noted that frequency-domain characteristics such as impedance plots or
control-to-output transfer functions are all readily available at any stage of the state-space modeling
procedure, cf. Table 2 but omitted here for brevity. There is no necessity anymore to derive custom models
or transfer functions for the I2 current loop configuration, in contrast to existing work [33,35,36].
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Figure 7. Impact of a 25% load step 2.4 A → 3.0 A at t = 0 s on the output voltage of the buck converter
from example Section 6.1 with closed voltage loop.

6.2. Boost Converter with Input Filter

With the model connection approach presented in Section 4, building up higher-order state-space
models has become an easy task. As an example, the impact of additional input circuitry on a voltage
mode controlled boost converter will be studied here. Four steps are necessary in order to obtain the final
model from already available modules:

1. A linearized state-space model for a boost converter in CCM as given in Appendix B.2. The example
is parameterized as given in the following. Operating point: Vin = 10 V, Vout = 24 V, Iout = 1.2 A.
Power stage: fSwitch = 100 kHz, L = 20 µH, C = 220 µF.

2. A load resistance (model from Appendix A.1) corresponding to the operating point is connected at
the converter output using Section 4.

3. A Type 3 controller (cf. Appendix C) is being employed for the voltage control loop, with zeros placed
at 10 kHz, poles at 0.1 kHz and 50 kHz, and Ki = 10. It is connected to the model as described in
Section 3.2.

4. Finally, an LC filter model (cf. Appendix A.2) accounting for both an input filter and wiring is
connected at the input of the converter model using Section 4, with L = 5 µH, rL = 50 mΩ, and
C = 1 µF.

As a first step, the influence of the input filter on the frequency-domain characteristics will be
examined. The input and output impedance transfer functions can easily be obtained from our two-port
oriented state-space model, cf. Table 2. Figure 8 shows the impedance magnitude and phase plots for
the voltage mode controlled boost converter both with and without input filter. In the input impedance
plots one can clearly notice the negative resistance behavior of the controlled converter at low frequencies.
Furthermore one can, for instance, observe a dampening effect of the input filter around 1 kHz in the
output impedance, which has an impact on load step dynamics.

Therefore, a time-domain simulation of a +100% load step at the output will be performed with
and without input filter and compared against the results of detailed time-domain circuit simulations.
The results in Figure 9 not only confirm the good accuracy of the state-space model, but also clearly
demonstrate the dampening effect of this particular input circuitry on the load step dynamics, as predicted
in the frequency-domain analysis.
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Figure 8. Input and output impedance of the boost converter from example Section 6.2, with closed voltage
loop, both with input filter (solid lines) and without input filter (dashed lines).
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Figure 9. Impact of a 100% load step 1.2 A→ 2.4 A at t = 0 s on the output voltage of the boost converter
from example Section 6.2 with closed voltage loop, both with input filter (solid lines) and without input
filter (dashed lines). For better comparability, the circuit simulation results were filtered (moving average)
to remove the switching ripple voltage.

6.3. Series-Connected Boost and Buck Converter Stages

Since the model connection approach developed in Section 4 is not restricted to attaching subsystems
with passive components, one can just as easily connect models of controlled converters in a source/load
configuration. Therefore, as a final example, we will create a series-connected configuration of the boost
and buck stages examined in Sections 6.1 and 6.2, respectively, cf. Figure 10. The following (almost trivial)
steps are required to obtain the complete model:

1. Reuse the final model from Section 6.2 (voltage-controlled boost converter including input filter) but
without the load resistance, since the buck converter will constitute the new load to the boost stage.
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2. Reuse the final model from Section 6.1 (voltage-controlled buck converter with underlying I2 current
control).

3. Connect the buck converter model at the output of the boost converter, as described in Section 4.

Boost Buck

rBoost
L CBoostLBoost

rBoost
C

rBuck
L CBuckLBuck

rBuck
C

Figure 10. Two-port view of a series connection of boost and buck converter stages. In both stages, the filter
elements L and C are being modeled with equivalent series resistances (ESR).

As a small example of the possibilities offered by the all-encompassing state-space model,
the interactions between the two power stages will be examined in the following test case. Again,
a +25% load step is applied at the output of the buck stage and the impact on the intermediate output
voltage of the boost stage is observed. From the state-space model, a transfer function from the output
current (i.e., the load) to the state variable representing the output capacitor voltage of the boost stage can
easily be extracted. It is, once more, being compared against a time-domain circuit simulation containing
the series-connected converter configuration.

From the results in Figure 11 one can conclude that the overall state-space model is very well able to
predict the essential dynamics. Since the buck stage has much faster dynamics than the boost stage, the
load step dynamics in Figure 11 closely resemble Figure 9 in this case but it has to be emphasized again
that the results in Figure 11 fully incorporate small-signal interactions of the two connected power stages
with all their respective controllers.

0 2 4 6 8 10
23.6

23.8

24

24.2

Time [ms]

O
ut

pu
tv

ol
ta

ge
[V

] Model Circuit simulation (MA)

Figure 11. Impact of a 25% output load step 2.4 A → 3.0 A at t = 0 s of the series-connected buck stage
from example Section 6.3 on the intermediate output voltage of the boost stage. For better comparability
the circuit simulation result was filtered (moving average) to remove the switching ripple voltage.

7. Conclusions

The rederivation of state-space models of converter systems when adding input filters or non-trivial
loads such as other converters was, up to now, considered a painful process [12]—and rightfully so. With
the systematic approach of extending such state-space models presented in this article, adding control
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loops and building up system models from series-connected modules such as filters, loads, or converters
have become straightforward tasks.

This modular approach leverages already existing models for common converter or filter topologies
by incorporating them as building blocks, such that users do not have to manually derive larger sets
of state-space equations anymore in many application cases. If not yet available, the modeling efforts
required are only limited to the respective subsystem.

The small-signal modeling accuracy of the building blocks is not compromised by the proposed
connection operations, the resulting models in all modeling stages preserve their structure and always
remain linear.

The validity of the resulting small-signal models has been illustrated and compared in the
time-domain against circuit simulations.

At all stages of the modeling procedure proposed in this article, the benefits of a two-port
oriented state-space description become obvious, since input/output impedance and control-to-output
or control-to-state transfer functions are easily obtainable from one single model. This also allows for
the design of controllers starting from the innermost loop in a systematic fashion, while incorporating
interactions with non-trivial source or load elements.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix. Building Blocks: Passive Component Models

The generic two-port modeling approach for passive subsystems of a converter system has already
been introduced in Section 2.1. In this section, two typical examples often found in a converter system will
be given: an (ideal) resistive load, and an LC input filter. These are also used in the examples presented in
Section 6.

Appendix A.1. Resistive Load

With no storage elements, there are no dynamics in a resistive system as shown in Figure A1a, which
means that A = 0, B = 0, C = 0 hold. Only the D matrix elements of a two-port state-space model
according to (1) are present, and one obtains the model (A1).(

iin(t)
vout(t)

)
=

(
1
R −1
1 0

)
·
(

vin(t)
iout(t)

)
(A1)

Appendix A.2. LC Filter

In (A2), the two-port state-space model of an LC filter as depicted in Figure A1b is being given.
In addition to the circuit in Figure A1b, the effects of equivalent series resistances (ESR) in both inductor
(ESR rL) and capacitor (ESR rC) have been accounted for in (A2).

(
i̇L(t)
v̇C(t)

)
=

(
− rL+rC

L − 1
L

1
C 0

)
·
(

iL(t)

vC(t)

)
+

( 1
L − rC

L

0 1
C

)
·
(

vin(t)

iout(t)

)
(

iin(t)
vout(t)

)
=

(
1 0
rC 1

)
·
(

iL(t)
vC(t)

)
+

(
0 0
0 rC

)
·
(

vin(t)
iout(t)

) (A2)
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Figure A1. Two-port network subsystems for passive elements. (a) Resistive load. (b) LC filter.

As a side note it can be stated that manually creating a model for a two-stage LC filter is not necessary.
A benefit of the connection method presented in Section 4 will be that one can create a series connection of
two LC filter models from (A2) if that is necessary.

More generally speaking: it is beneficial to create very simple building blocks as demonstrated in this
section, and bypass the error-prone process of manually modeling a larger system by creating a complete
system model from the combination of these small subsystems instead. The necessary tools are presented
in Section 4.

Appendix. Building Blocks: Converter Models

Appendix B.1. Available Converter Models

The two-port state-space approach to converter modeling goes beyond most state-space models found
in the literature, which mostly do not account for the output current iout(t) as an additional input variable
of the model. This is probably due to the fact that state-space models have so far mostly been used only as
an intermediate step in order to derive transfer functions in frequency domain.

Nevertheless, a variety of two-port oriented state-space models can already be found in more recent
work, and these can be used here almost in a plug-and-play fashion. For example, models for buck, boost,
and flyback converter in peak current mode (PCM) control, all in continuous conduction mode (CCM),
are presented in [34]; and PCM-controlled buck and boost converters in DCM in [37,38], respectively.
Furthermore, ready-to-use state-space models for buck, boost, and buck-boost converters can be found
in [39,40], which have to be seen as the most comprehensive references devoted to systematic two-port
modeling of converters.

In this article, the recommended strategy is to model the load subsystem of the converter separately
(cf. Appendix A), and connect it to the converter models afterwards (cf. Section 4). This implies that, ideally,
the converter modeled with (2) should be unterminated at first. However, most state-space converter
models found in the literature do feature a resistive load, but these can be used here by letting R→ ∞, as
done e.g., in [41]. The models presented in [39] do already describe unterminated converters.

Appendix B.2. Example: Boost Converter

For an unterminated boost converter operating in CCM (cf. Figure A2), the A, B, C, D matrices
for a linearized state-space model (2) with small simplifications (e.g., ideal switches) are given in (A3).
The power stage inductor L and capacitor C are being modeled with ESR values rC and rL. D, IL, and
Vout define the operating point for the duty cycle, the average inductor current, and the output voltage,
respectively. The two state variables are the inductor current iL(t) and the output capacitor voltage vC(t),

i.e., x(t) =
(

iL(t) vC(t)
)T

.
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A =

−
((1− D) · rC + rL)

L
−1− D

L
1− D

C
0

 , B =


1
L
− (1− D) · rC

L
Vout

L

0
1
C

− IL

C

 ,

C =

(
1 0

(1− D) · rC 1

)
, D =

(
0 0 0
0 rC −rC · IL

) (A3)
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Figure A2. Two-port view of an unterminated boost converter stage.

This model is also used and compared against time-domain circuit simulations in the examples
presented in Section 6.2 (boost converter with input filter) and Section 6.3 (series-connected boost and
buck stages).

Appendix. Building Blocks: Controller Models

For the control of voltage and current in power converters, some of the most prominent examples
of controllers used in practice besides proportional-integral controllers are the so-called Type 1, Type 2,
and Type 3 controllers described in [42,43]. These are integral controllers with zero, one, or two lead-lag
elements, respectively, and are also being used in the examples in Section 6.

In Table A1, transfer functions and state-space models according to (3) are given for these controller
types. For all of them, the state-space models do not possess direct feedthrough terms in (3), i.e., DC = 0.

Table A1. Transfer function GC(s) and state-space model matrices AC, BC, CC according to (3) for controllers
known as Type 1, 2, and 3.

Type 1 Type 2 Type 3

GC(s) =
Ki
s

GC(s) =
Ki
s
· 1 + Tzs

1 + Tps
GC(s) =

Ki
s
· (1 + Tz1s)(1 + Tz1s)
(1 + Tp1s)(1 + Tp2s)

AC = 0 AC =

(
0 0

1 − 1
Tp

)
AC =


0 0 0

1 0 − 1
Tp1Tp2

0 1 − Tz1+Tz2
Tp1Tp2



BC = Ki BC =

 Ki
Tp

KiTz
Tp

 BC =


Ki

Tp1Tp2

Ki(Tz1+Tz2)
Tp1Tp2

KiTz1Tz2
Tp1Tp2


CC = 1 CC =

(
0 1

)
CC =

(
0 0 1

)
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